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Abstract

Extended spectrum β-lactamase producing Escherichia coli (ESBL-EC) are excreted via

effluents and sewage into the environment where they can re-contaminate humans and ani-

mals. The aim of this observational study was to detect and quantify ESBL-EC in recrea-

tional water and wastewater, and perform a genetic and phenotypic comparative analysis of

the environmental strains with geographically associated human urinary ESBL-EC. Recrea-

tional fresh- and saltwater samples from four different beaches and wastewater samples

from a nearby sewage plant were filtered and cultured on differential and ESBL-selective

media. After antimicrobial susceptibility testing and multi-locus variable number of tandem

repeats assay (MLVA), selected ESBL-EC strains from recreational water were character-

ized by whole genome sequencing (WGS) and compared to wastewater and human urine

isolates from people living in the same area. We detected ESBL-EC in recreational water

samples on 8/20 occasions (40%), representing all sites. The ratio of ESBL-EC to total num-

ber of E. coli colony forming units varied from 0 to 3.8%. ESBL-EC were present in all waste-

water samples in ratios of 0.56–0.75%. ST131 was most prevalent in urine and wastewater

samples, while ST10 dominated in water samples. Eight STs and identical ESBL-EC MLVA-

types were detected in all compartments. Clinical ESBL-EC isolates were more likely to be

multidrug-resistant (p<0.001).
This study confirms that ESBL-EC, including those that are capable of causing human

infection, are present in recreational waters where there is a potential for human exposure

and subsequent gut colonisation and infection in bathers. Multidrug-resistant E. coli strains

are present in urban aquatic environments even in countries where antibiotic consumption

in both humans and animals is highly restricted.
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Introduction

Antimicrobial resistance (AMR) is an increasing worldwide problem that affects both humans

and animals. The fear that a post-antibiotic era is approaching enforces us to embrace the One

Health perspective, in the recognition that human health is closely related to the health of ani-

mals and to the environment [1, 2].

Extended spectrum β-lactamase producing Escherichia coli (ESBL-EC) are transferred

between humans and animals, but may also spread in aquatic environments and potentially

contaminate and infect exposed individuals [2, 3]. ESBL-EC are common in farm and com-

panion animals in many parts of the world [4, 5]. There are also numerous reports of their

occurrence in wild-life [6–9] and the environment on several continents [5, 10–16]. Also in

the Scandinavian countries, ESBL-EC is an increasing problem in human medicine, and their

presence has been described in domesticated animals and livestock [17–21], as well as in the

red fox [22], in gulls [6], and in potable water [11].

There are few reports using spatial and temporal methods to explore possible AMR trans-

mission between the environment and humans. We have previously shown that people with

community acquired urinary tract infection were more likely to be infected with an ESBL-EC

if they had been bathing in freshwater within the last 12 months [23]. To further investigate

possible transmission routes, whole genome sequencing (WGS) was used to compare ESBL-

EC isolates from freshwater lakes, saltwater basins and a nearby wastewater treatment plant

with human clinical strains from people living in the same area.

Ethics statement

The study was approved by the Regional Committee for Medical and Health Research Ethics

December 11th 2008 (reference number: 2009/2037 BS-08901b). It was funded by South-East-

ern Norway Regional Health Authority (grant number 2013060), and is registered in the Clini-

calTrials.gov registration system, registration ID NCT01838213, 2013. The included human

population has been part of three previously published studies [23–25], and some of the envi-

ronmental samples have been mentioned in a short communication in press [26].

Materials andmethods

Collection of samples and bacterial culture

Bacterial samples were obtained from three compartments: recreational water, wastewater and

human urine. Recreational water samples were collected on five different dates during the

summer season (May-September 2010) at one freshwater and three saltwater beaches located

in our laboratory’s catchment area close to the Norwegian capital Oslo. Sterile containers of 1

liter were rinsed three times at the sampling site before the first sample was collected from a

depth of 0.5–1 meter. Portions containing 10–500 ml of water were vacuum-filtered. The filters

were subsequently grown on Brilliance1 agar (Oxoid, Basingstoke, UK) and ChromeID1

ESBL plates (BioMérieux, Marcy-l’Etoile, France) at 35˚C for 40–48 hours. Purple colonies on

Brilliance plates were counted and considered an estimate for the total of E. coli colony form-

ing units (CFUs). Individual purple colonies on ChromeID ESBL plates representing potential

ESBL-EC isolates were frozen for later analysis. This method allowed us to estimate the total

amount of E. coli, and calculate a CFU-ratio of ESBL-EC/total E. coli. The recreational water

quality regarding E. coli content was assessed according to the EU bathing water directive

(Directive 2006/7/EC), where the water quality is described as excellent, good, sufficient, or

not-sufficient with different limits of allowed amount of E. coli in freshwater and seawater.

ESBL-EC in clinical samples, water and wastewater
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Daily flow proportional influent wastewater samples were collected from our local wastewa-

ter treatment plant (Vestfjorden Avløpsselskap) on the same days as the environmental sam-

ples. The samples were transported in sterile containers, filtered and grown on Brilliance1

and ChromID ESBL plates, like the water samples. As the concentration of bacteria was con-

siderably higher in this material, quantities of 1, 5, 10 and 50 μl of water were plated directly in

this procedure. All purple colonies from ChromID ESBL plates were individually frozen for

later analysis.

Urinary samples from people living in the catchment area of the wastewater plant, and with

close proximity to the recreational water sites, were collected between February 2009 and April

2011. The cohort of 94 Norwegian patients with community acquired urinary tract infection

caused by ESBL-EC has been described previously [24]. Written consent was obtained from all

participants. A sample selection chart is presented in Fig 1.

ESBL identification and susceptibility testing

Antibiotic susceptibility testing (AST) and bacterial identification were performed using Chro-

mID ESBL agar, VITEK-2 system (BioMérieux, Marcy l’Etoile, France) and MALDI-TOF

(Bruker Daltonics, Bremen, Germany). Non-susceptible isolates were defined as isolates either

classified as intermediate or resistant to the investigated drugs. The drugs selected for AST

were the drugs routinely used in treatment of urinary tract infections according to Norwegian

guidelines (https://unn.no/fag-og-forskning/arbeidsgruppen-for-antibiotikasporsmal-og-

metoder-for-resistensbestemmelse-afa#resistenspaneler). AST interpretations were according

to EUCAST (http://www.eucast.org). ESBL-confirmation was performed by E-test (AB-Bio-

disk, BioMérieux). The ChromID ESBL plates were read after 18 hours and re-examined after

48 hours, because we wanted the detection method to be as sensitive as possible. All isolates

growing on the selective medium were tested by ESBL E-test and a multiplex PCR for detec-

tion of blaCTX-M [27]. If they were resistant to cefotaxime and/or ceftazidime, but negative in

the blaCTX-M PCR, they were investigated by Microarray Check-MDR CT101 (Check-Points B.

V., Wageningen, the Netherlands) targeting blaTEM, blaSHV, blaNDM, blaKPC, as well as the fol-

lowing plasmid mediated AmpC variants: CMY, DHA, FOX, ACC, ACT, MIR and MOX.

Only isolates positive for ESBLs (CTX-M, TEM, SHV) or plasmid mediated AmpC were

included in further analyses. Colistin resistance was examined by the broth microdilution

Fig 1. Sample selection chart.

https://doi.org/10.1371/journal.pone.0186576.g001

ESBL-EC in clinical samples, water and wastewater

PLOSONE | https://doi.org/10.1371/journal.pone.0186576 October 17, 2017 3 / 15

https://unn.no/fag-og-forskning/arbeidsgruppen-for-antibiotikasporsmal-og-metoder-for-resistensbestemmelse-afa#resistenspaneler
https://unn.no/fag-og-forskning/arbeidsgruppen-for-antibiotikasporsmal-og-metoder-for-resistensbestemmelse-afa#resistenspaneler
http://www.eucast.org/
https://doi.org/10.1371/journal.pone.0186576.g001
https://doi.org/10.1371/journal.pone.0186576


method using in-house designed premade Sensititre microtiter plates (TREK Diagnostics,

Cleveland, OH, USA) formcr-1 positive strains.

MLVA typing

Clonal relatedness between isolates was examined by a multilocus variable number of tandem

repeats assay (MLVA) [28]. Briefly, PCR-products were subjected to capillary electrophoresis,

and each peak was identified according to colour and size by GeneMapper software (Applied

Biosystems, Foster City, CA, USA). Allele numbers were assigned according to fragment sizes

[28]. Character values were entered into BioNumerics (Applied Maths, Sint-Martens-Letem,

Belgium), and dendrograms were constructed using categorical coefficients and the Ward

algorithm. A standard minimum spanning tree was generated using categorical coefficients

together with the single and double locus variance priority rules.

Whole genome sequencing

All urine and wastewater isolates were sequenced on the Illumina HiSeq platform (Illumina,

San Diego, USA) generating 150 base pairs paired-end reads. Isolates from recreational water

were selected for WGS as follows: From each day and each site, all isolates were sequenced

unless there were multiple isolates with identical MLVA-type and AST-pattern. In such cases,

only one of these isolates was sequenced. Assembly, determination of resistance genes, plas-

mids, virulence factors and multi locus sequence types (STs) was performed by using online

tools (ResFinder [29], PlasmidFinder [30], VirulenceFinder[31]) from Center for Genomic

Epidemiology, Technical University of Denmark, (https://cge.cbs.dtu.dk/services) [32]. The

settings for the online search tools are described in supplementary file S2.

Statistical analyses

PASW statistics software, version 21.0 (IBM SPSS, IL, USA) were used for statistical analyses.

Univariate and multivariate analyses were done by binary logistic regression, and p-values�

0.05 were considered significant.

Results

ESBL detection in recreational water and wastewater

E. coli were detected in all samples. Eight out of 20 recreational water samples (40%) contained

ESBL-EC, and ESBL-EC were present at all sampling sites in an average concentration of 0.76

CFU/100 ml. ESBL-EC were found on four out of five occasions at the freshwater location.

AST and MLVA were performed on all isolates from recreational water (N = 167) (S1 Table),

and 82 unique isolates were selected for WGS (Fig 1). All wastewater samples were ESBL-EC

positive, and 91 confirmed ESBL-EC isolates were retrieved from this compartment. These

were all included in the WGS analyses. The CFU-ratio of ESBL-EC/total E. coli in recreational

water and wastewater samples varied between 0–3.8% and 0.56–0.75%, respectively (Table 1).

Antimicrobial susceptibility profiles

Comparison of antibiotic susceptibility profiles were made between the urine strains (n = 94),

the wastewater strains (n = 91) and those of the recreational water strains included in the geno-

typic resistance analyses (n = 82). The non-susceptibility rates towards quinolones, gentami-

cin, aztreonam, trimethoprim and trimethoprim/sulfamethoxazole were significantly higher

in urine strains compared to recreational water strains. Non-susceptibility rates towards quin-

olones, ceftazidime and aztreonam were also higher in urine than in wastewater strains

ESBL-EC in clinical samples, water and wastewater
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(Table 2). Multidrug-resistance (non-susceptibility towards two or more antibiotic classes

other than β-lactams) was most frequent in urinary strains (odds ratio (OR) 5.9 compared to

recreational water strains, confidence interval (CI) 2.7–12.8, p<0.001, OR 3.5 compared to

wastewater strains CI 1.6–7.5, p<0.001). The differences in multidrug-resistance were still sig-

nificant when adjusted for the high number of ST131 among the clinical isolates.

β-lactamases and co-resistance

Regardless of sample source, CTX-M-15 was the dominating ESBL, followed by CTX-M-14

(Table 3). Several strains contained multiple ESBLs, the most common combination being

CTX-M and TEM, followed by CTX-M and OXA-1. Acquired resistance genes conferring resis-

tance towards trimethoprim, macrolides, phenicols, quinolones and aminoglycosides were less

frequent in recreational water strains compared to urinary strains (Table 4). The plasmid-born

colistin resistance genemcr-1 was detected in two isolates from recreational water, as previously

described [26]. The correspondence between AST-profiles and resistance determinants as

Table 1. ESBL producingE. coli/total amount of E. coli per date and location in recreational water and wastewater samples.

ESBL producing E. coli CFU1/estimated number of E. coli CFU per 1 L water (%)

May 19th June 14th June 22nd Aug. 16th Sept. 15th

Freshwater 6/1160 (0.52) 1/520 (0.19) 0/30 (0) 4/2,100 (0.19) 8/1,070 (0.75)

Saltwater 1 0/3000 (0) 0/30 (0) 0/500 (0) 30/800 (3.8) 72/12,100 (0.60)

Saltwater 2 0/1850 (0) 0/240 (0) 0/30 (0) 26/3,800 (0.68) 0/180 (0)

Saltwater 3 0/100 (0) 0/50 (0) 0/10 (0) 0/100 (0) 4/690 (0.60)

Wastewater 320 ESBL-EC2 120/16,000 (0.75) 380/57,000 (0.67) 320/49,000 (0.65) 150/27,000 (0.56)

1Colony forming units
2 Missing data on total E. coli CFU

https://doi.org/10.1371/journal.pone.0186576.t001

Table 2. Phenotypic non-susceptibility of ESBL producing E. coli from recreational water (N = 82) and wastewater (N = 91) compared to strains
from urine (N = 94).

Urine % Water % p Wastewater % p

Ampicillin 100 100 1 991 1

Cefuroxime 100 991 1 991 1

Cefotaxime 99 98 1 96 0.21

Aztreonam 98 85 0.03 85 0.007

Ceftazidime 85 77 0.06 66 0.001

Trimethoprim 77 51 0.002 66 0.09

Trimethoprim-sulfamethoxazole 72 50 0.008 62 0.1

Ciprofloxacin 69 35 0.001 42 0.001

Gentamicin 34 20 0.03 34 0.8

Mecillinam 3 0 1 6 0.5

Piperacillin-tazobactam 5 5 0.48 7 1

Nitrofurantoin 1 0 1 7 0.09

Meropenem 0 0 - 0 -

Multidrug-resistance2 88 52 0.001 68 0.001

1100% non-susceptibility would be expected as the isolates initially grew on selective media, and contain ESBLs according to initial tests and DNA-analysis.

The wastewater isolate which was susceptible to ampicillin and cefuroxime contained blaCMY-58. The isolates from recreational water which were

susceptible to cefuroxime both contained blaSHV-12.
2Resistance to� 2 different antibiotic classes other than β-lactams.

https://doi.org/10.1371/journal.pone.0186576.t002
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detected by ResFinder was 77% for trimethoprim, 44% for gentamicin/aminoglycoside resis-

tance and 59% for ciprofloxacine/fluoroquinolone resistance (qnr and aac(6’)lb-cr combined).

Detection of plasmid replicons and virulence factors

Many different plasmid replicons were present, and in various distributions (S2 Table). Briefly, the

two dominating replicon types were IncF, present in 90% of the strains, and IncI1 present in 31%.

No significant differences in IncF or IncI1 were observed between the different compartments.

A search for virulence factors associated with gastrointestinal E. coli infections (eae, eaeA,

bfp, stx1/vtx1, stx2/vtx2 and ipaH) revealed two strains with eae. These isolates were both

retrieved from wastewater. One of them was ST3 and contained blaCTX-M-15 while the other

was ST381 and contained blaCMY-58.

Distribution of MLVA-types and STs

We detected 42 MLVA-types and 22 STs among ESBL-EC from recreational water. ST131,

ST38 and ST10 were observed in three locations, and ST405 and ST1163 were found in two

Table 3. Distribution of β-lactamases (bla) in E. coli isolates according to sample source.

Β-lactamase Urine Recreational water Wastewater

% % %

blaCTX-M-1 7 13 2

blaCTX-M-2 0 1 0

blaCTX-M-3 3 0 3

blaCTX-M-3-like 1 0 0

blaCTX-M-8 0 0 1

blaCTX-M-9 0 4 1

blaCTX-M-14 13 12 18

blaCTX-M-14b 4 0 3

blaCTX-M-15 52 48 45

blaCTX-M-24 3 0 1

blaCTX-M-27 9 1 5

blaCTX-M-32 1 0 1

blaCTX-M-55 1 6 4

blaCTX-M-139 0 0 1

blaCMY2 0 0 1

blaCMY42 0 0 1

blaCMY-58 0 0 1

blaCMY-60 1 0 0

blaOXA-1 29 5 22

blaOXA-1-like 0 0 1

blaOXA10 0 0 1

blaSHV-12 4 2 3

blaTEM-1B 56 44 31

blaTEM-1B like 5 9 9

blaTEM-1C 1 0 0

blaTEM-1D-like 0 5 0

blaTEM-33-like 0 1 1

blaTEM-52B 0 0 1

blaTEM-52C 0 1 0

https://doi.org/10.1371/journal.pone.0186576.t003
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different locations (Fig 2). Only ST38 was found repeatedly on the same site. ST131, ST10 and

ST38 were also the most frequent MLSTs in the wastewater samples, being present on five,

three and three occasions respectively (Fig 3). ST131 and ST38 were present in urine samples

from 35 (37%) and 13 patients (14%), respectively, and ST10 only in one. A minimum span-

ning tree of STs according to sample material is given in Fig 4 (Fig 4).

There was a large variation in STs, but eight STs were found in all sample materials; ST131,

ST10, ST38, ST405, ST69, ST940, ST410, and ST34. There were several MLVA-types within

each of these STs (S1 File). Some of the MLVA-types contained isolates from different sources.

Within one MLVA-type of ST38, the β-lactamases and plasmid replicons were the same in all

isolates from urine, wastewater and recreational water. Otherwise, most MLVA-types con-

tained isolates with different β-lactamases and plasmid replicons.

ST10, the most frequent ST in recreational water samples, consisted of 36 isolates dispersed

in 14 different MLVA-types. S1 Fig illustrates how the MLVA-types of ST10 strains were dis-

tributed in the different compartments (S1 Fig).

Discussion

To explore whether recreational water is a possible source for ESBL-EC colonisation and infec-

tion in humans, we have identified and compared ESBL-EC from urine, recreational water

and wastewater samples associated in time and geographical location. So far, studies of this

sort have been lacking [2]. We show that ESBL-EC are readily detected in wastewater, and are

frequently present in recreational water. However, they constitute only a relatively small

Table 4. Comparison of the frequencies of acquired resistance genes in ESBL-E. coli isolates from urine strains versus isolates from recreational
water and wastewater.

Resistance determinant Urine N = 94 Recreational water
N = 82

p Wastewater N = 91 p

N % N % N %

ESBL1 but no blaCTX-M genes 5 5 2 2 0.34 8 9 0.36

Sulphonamide2 74 78 53 65 0.06 62 68 0.15

Trimethoprim3 69 73 39 48 0.001 60 66 0.36

Tetracycline4 69 73 54 66 0.35 60 66 0.35

Aminoglycoside5 62 65 55 67 0.08 71 78 0.91

Macrolide6 55 58 27 33 0.001 36 40 0.02

Phenicol7 39 41 14 17 0.001 34 35 0.67

Fluoroquinolone/aminoglycoside8 28 29 6 7 0.001 18 20 0.16

Fluoroquinolone9 2 2 3 4 0.55 9 10 0.04

Colistin10 0 0 2 2 1 0 0 -

1blaSHV, blaCMY

2sul-1, sul-1-like, sul-2, sul-2-like, sul-3
3dfrA1, dfrA5, dfrA7, dfrA12, dfr14-like, dfr17
4tet(A), tet(A)-like, tet(B)
5strA, strA-like, strB, strB-like, aadA1, aadA1-like, aadA2, aadA2-like, aadA12, aadA5c, aadA24-like, addB, aac(3)lla, aac(3)lla-like, acc(3)lld-like, aph(3’)-

la, aph(3’)-la-like, aph(3’)-lc, aph(3’)-lc-like, aph(6)-lc-like
6erm(B)-like, mph(A), mph(A)-like
7catA1-like, catB3-like, cmlA1-like, floR-like
8aac(6’)lb-cr, aac(6’)lb-cr-like
9QnrB19, QnrS1, QnrS1-like
10mcr-1

https://doi.org/10.1371/journal.pone.0186576.t004
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portion of total E. coli in both environments (3.8% or less). The three compartments represent

highly similar populations of ESBL-EC, with some significant differences.

The general amount of E. coli in our samples increased during the summer season, and six

out of eight samples containing ESBL-EC were retrieved on the two last sampling dates in

August and September. It seems that detection of ESBL-EC is associated with high amounts of

total E. coli, as previously described by others [33]. If the total amount of E. coli is very low, and

the proportion of ESBL-EC is small, our methods are probably not sensitive enough for

ESBL-EC to exceed the detection limits. Although studies on ESBL detection in various habi-

tats are steadily increasing [2, 5, 11–13, 34, 35], there are still few studies describing not only

Fig 3. Minimum spanning tree of ESBL-producing E. coli (N = 91) fromwastewater. Each node
represents one ST, while each colour represents one of five sampling dates. The thickness and length of the
lines vary according to the similarity of STs in the connected nodes. Red = 19-May-2010, blue = 14-June-
2010, orange = 22-June-2010, green = 16-August-2010, purple = 15-September-2010.

https://doi.org/10.1371/journal.pone.0186576.g003

Fig 2. Minimum spanning tree of ESBL producing E. colimulti locus sequence types (STs) detected
in recreational water at different sites. Blue, green, red and yellow colours represent isolates detected at
Bondivann (freshwater), Kalvøya, Holmenskjæret and Furstranda, respectively. Each node represents one
ST. The thickness and length of the lines vary according to the similarity of STs in the connected nodes.

https://doi.org/10.1371/journal.pone.0186576.g002
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the prevalence of ESBL-EC, but also the proportion of ESBL-EC compared to total E. coli in

recreational water. In a similar study conducted in the Netherlands in 2011/2012, ESBL-EC

represented 0–1% of total E. coli, and ESBL-EC were present in 62% of recreational water sam-

ples [33]. In a study from Croatia in 2009 to 2013, Maravic and co-workers conducted a study

of recreational seawater. Here they found considerably higher proportions of ESBL-EC (7.7%),

even though they used non-selective culture methods [14]. The isolates from recreational

water were clonally related to clinical isolates. As ESBLs in clinical E. coli isolates are more

common in Croatia than in Norway and the Netherlands [36], it is not very surprising that

they are also more prevalent in Croatian environmental samples. However, it is also important

to note that the general levels of E. coli were much higher in the Croatian samples. In summary,

all three studies support our hypothesis that recreational water is a possible source of human

Fig 4. Minimum spanning tree of ESBL producing E. coli STs detected in recreational water (blue,
N = 82), urine (green, N = 94) and wastewater (red, N = 91). Each node represents one ST. The thickness
and length of the lines vary according to the similarity of STs in the connected nodes.

https://doi.org/10.1371/journal.pone.0186576.g004
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exposure to ESBL-EC, and they illustrate that the levels of ESBL-EC vary in different locations.

According to the EU bathing water directive (Directive 2006/7/EC), 17 samples in our study

held the quality classified as “excellent”, while two samples qualified as “good” and one less

than sufficient, regarding the amount of E. coli present in the samples. The number of coliform

bacteria in recreational water may vary substantially according to water temperature, rainfall

and other conditions [33, 37]. Hence, recording of weather data could have been relevant for

the interpretation of our results. Also, our estimates of bacterial amounts could have been

more accurate if more samples had been filtered and cultured in parallel.

We have only detected relatively small amounts of ESBL-EC in recreational water, and the

risk of becoming colonized during bathing is difficult to estimate. Water-born outbreaks of

pathogenic Shiga toxin-producing E. coli (STEC) have been reported earlier [38], demonstrat-

ing the potential risk of E. coli transmission to humans from recreational water. STEC strains

can be ESBL-producers [39, 40]. Although no Shiga toxin-genes were detected in this study,

we did find two strains with the E. coli attaching and effacing gene, eae, which is associated

with enteropathogenic E. coli (EPEC) strains.

In a previous case-control study we identified recreational freshwater swimming as an inde-

pendent risk factor for community acquired urinary tract infection caused by ESBL-EC [23].

Patients who had been swimming in freshwater during the last 12 months had an odds ratio of

2.1 of ESBL-EC compared to non-ESBL-EC (95% CI 1.0–4.3, p = 0.04). The ESBL-EC dose

required for colonisation and/or infection after exposure to contaminated recreational water

will probably depend on various strain and host factors. It is also known that antibiotic expo-

sure reduces the gut colonisation resistance provided by a normal microbiota [41].

The ESBL-ECs we detected in wastewater are probably an approximation of the mix of

commensal and pathogenic strains carried by humans in the catchment area, while the urine

samples represent more virulent strains. One can assume that recreational water is contami-

nated by fecal strains from wild animals, live-stock and manure, as well as humans, and maybe

also by wastewater [42]. The previously mentioned study from the Netherlands concludes that

ESBL-EC strains in recreational water derive both from wastewater and other sources [33].

Because we have only examined the wastewater from one single wastewater treatment plant, it

is difficult to say whether the amount of ESBL-EC at this plant is representative of other Nor-

wegian plants.

In this study we used both MLST and MLVA to assess clonal relatedness between ESBL-EC

isolates from different sources. We detected a large variation in STs, but eight STs were found

in all compartments. The pandemic, pathogenic clone ST131 phylogroup B2 dominated in

clinical samples (34/94), was frequent in the wastewater samples (16/91), and rare in the recre-

ational water samples (5/82). ST38 phylogroup D was well represented in all sources, while

ST10 phylogroup A dominated in water, but was only found in urine on one occasion. ST10

has previously been described as a successful ESBL-EC occurring in swine, cattle and poultry

as well as in humans [4, 43]. It has also been detected in surface water and wastewater in Portu-

gal [44], the Netherlands [33], the UK [34], from the river Danub [13], and in migrating pen-

guins [9]. The presence of ESBL-EC ST10 in different water and wastewater sources on

different dates, calls for further investigation of the dissemination of this strain in other eco-

logical niches in Norway, such as farm animals, manure, birds and wild animals [9]. The other

strains that we retrieved from all our sources (ST69, ST405 and ST410) are also well-known E.

coli hosts of ESBLs [4, 45].

Comparisons of ESBL-EC AST patterns across the three compartments revealed that multi-

drug resistance is more common in urine strains even if we adjust for the dominance of ST131

in clinical strains. We also performed a comparative analysis of the correlation between the

phenotypic susceptibility towards fluoroquinolones, trimethoprim and aminoglycosides and

ESBL-EC in clinical samples, water and wastewater
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the presence of relevant resistance genes fromWGS-data. WGS has the potential to predict

antimicrobial susceptibility, but the available evidence for using WGS as a tool to infer

antimicrobial susceptibility accurately is either poor or non-existent [46]. Resistance towards

fluoroquinolones is conferred by plasmid-mediated qnr-genes or acetyltransferases, but chro-

mosomal mutations in the gyrAor parC genes are the more common cause [47]. However,

chromosomal resistance is not detected by the ResFinder software. This is reflected in our

results; according to AST-profiles, many isolates are non-susceptible to ciprofloxacin even if

we don’t detect any acquired fluoroquinolone resistance genes by ResFinder. There are avail-

able tools online for identification of SNPs conferring chromosomal resistance, e.g. the CARD

database and Resistance Gene Identifier (www.card.mcmaster.ca), but extensive analysis of

chromosomal resistance genes was not within the scope of this study. Resistance towards ami-

noglycoside can also be caused by various mechanisms. It is most often linked to modifying

enzymes encoded by plasmids and transposons, but adaptive mechanisms, such as membrane

protein changes and regulation of genes involved in the anaerobic respiratory pathway may

also be involved [48]. We detected genes with a potential role in conferring aminoglycoside

resistance in several isolates which are susceptible to gentamicin according to their AST-pro-

file. This is not surprising, as many of the genes conferring aminoglycoside resistance are

highly substrate specific [48]. They may confer resistance to other aminoglycosides, but not to

gentamicin. Hence, the phenotypic susceptibility testing is an essential supplement to the

genetic detection of acquired resistance genes, as appropriate antibiotic treatment is based on

susceptibility.

We find identical or closely related MLVA-types across compartments, including a ST38

strain with identical MLVA-type, resistance genes and replicons in all three compartments.

These observations underline the interplay between strains, resistance determinants and plas-

mids between human and recreational water reservoirs.

In this study, strains with different MLVA-types and AST-profiles were selected for WGS

to emphasize strain diversity. Thus, the abundance of single STs in some samples is not

reflected in the figures, but illustrated in S1 Table. When we analyzed the MLVA fingerprints

within separate STs, we saw that even this high-resolution tool is not sensitive enough to iden-

tify isolates with identical genetic makeup in a setting like this, where isolates are collected

from different compartments over a timespan of many months. With few exceptions, there are

variations in plasmid and resistance genes content also within MLVA-types. Never the less,

MLVAmay serve as a simple and effective surrogate marker for detection of ST131 or ST38, as

their MLVA-patterns in the first four loci seem quite conserved [49, 50].

Conclusion

This study supports our hypothesis that humans can be exposed to potentially harmful

ESBL-EC strains through recreational bathing. Even in Norway, where antibiotic consumption

in both humans and animals is highly restricted, multidrug-resistant E. coli strains are readily

detected in aquatic environments. However, multidrug-resistance is less frequent in strains

from recreational water than in strains from wastewater and clinical urine samples.
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