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Abstract— Model-based prognostics approaches use domain
knowledge about a system and its failure modes through the use
of physics-based models. Model-based prognosis is generally
divided into two sequential problems: a joint state-parameter
estimation problem, in which, using the model, the health of a
system or component is determined based on the observations;
and a prediction problem, in which, using the model, the state-
parameter distribution is simulated forward in time to compute
end of life and remaining useful life. The first problem is
typically solved through the use of a state observer, or filter. The
choice of filter depends on the assumptions that may be made
about the system, and on the desired algorithm performance.
In this paper, we review three separate filters for the solution
to the first problem: the Daum filter, an exact nonlinear filter;
the unscented Kalman filter, which approximates nonlinearities
through the use of a deterministic sampling method known
as the unscented transform; and the particle filter, which ap-
proximates the state distribution using a finite set of discrete,
weighted samples, called particles. Using a centrifugal pump as
a case study, we conduct a number of simulation-based experi-
ments investigating the performance of the different algorithms
as applied to prognostics.
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1. INTRODUCTION

Model-based prognostics approaches employ domain knowl-
edge about a system, its components, and how they fail
through the use of physics-based models, derived from first
principles that capture the underlying physical phenomena.
Model-based prognosis is generally divided into two sequen-
tial problems: (i) a joint state-parameter estimation prob-
lem, in which, using the model, the health of a system is
determined based on the observations, and (ii) a prediction
problem, in which, using the model, the state-parameter
distribution is simulated forward in time to compute end of
life (EOL) and remaining useful life (RUL). The first problem
is typically solved through the use of a state observer, or
filter. The choice of filter depends on the assumptions that
may be made about the system, and on the desired algorithm
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performance and other characteristics.

The most well-known filter is the Kalman filter, which is an
exact filter for linear systems with additive Gaussian noise,
i.e., it is the optimal filter for these types of systems. Kalman
filters have been used for prognostics problems in [1, 2]. In
many cases, however, especially with prognostics, systems
are nonlinear, and the Kalman filter cannot be used. For spe-
cial classes of nonlinear dynamics, exact filters are available
such as the Beneš filter [3] and the Daum filter [4] along
with its variants. Such filters are advocated for prognostics
applications in [5], although the classes of dynamics they
support are quite restrictive in practice. Approximate filters
may also be used, such as the extended Kalman filter and
the unscented Kalman filter [6], which are restricted also
to additive Gaussian noise. Another nonlinear filter is the
particle filter, which approximates the state distribution using
a finite set of discrete, weighted samples, called particles [7].
The particle filter does not restrict the dynamics or the noise
in any way, but suffers from a high computational complexity.
Still, particle filters, due to their general applicability and ease
of implementation, have been a popular choice for nonlinear
estimation within prognostics, e.g., [8–10].

In this paper, we develop a general model-based prognostics
methodology that uses filters for the joint state-parameter
estimation step. We review three separate nonlinear filters:
(i) the Daum filter, (ii) the unscented Kalman filter, and (iii)
the particle filter. Each of these approaches differs in the
formulation of the underlying model, the assumptions that
they make, their representation of the state-parameter distri-
bution, the computational complexity, and the performance
that may be achieved. Using a centrifugal pump as a case
study, we conduct a number of simulation-based experiments
investigating the performance trade offs of the different prog-
nostic algorithms. Since the Daum filter does not support the
class of dynamics that the centrifugal pump model falls in, we
perform experiments only using the unscented Kalman filter
and the particle filter. Algorithm performance is measured
using established prognostics metrics [11].

The paper is organized as follows. Section 2 formally defines
the prognostics problem and describes the model-based prog-
nostics architecture. Section 3 describes different estimation
methods and develops a flexible variance control scheme.
Section 4 discusses the prediction methodology. Section 5
describes the case study and provides results from a number
of simulation-based experiments and evaluates the approach.
Section 6 concludes the paper.

2. MODEL-BASED PROGNOSTICS

The problem of prognostics is to predict the EOL and/or the
RUL of a component, subsystem, or system. We assume the
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Figure 1. Prognostics architecture.

system model may be generally defined as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ R
nx is the state vector, θ(t) ∈ R

nθ is
the unknown parameter vector, u(t) ∈ R

nu is the input
vector, v(t) ∈ R

nv is the process noise vector, f is the state
equation, y(t) ∈ R

ny is the output vector, n(t) ∈ R
nn is

the measurement noise vector, and h is the output equation.
This is a general nonlinear model with no restrictions on the
functional forms of f or h, or on how the noise terms are
coupled with the states and parameters.

In prognostics, we are interested in when the performance
of a system lies outside some desired region of acceptable
behavior. Outside this region, we say that the system has
failed. The desired performance is expressed through a set
of c constraints, C = {Ci}

c
i=1, where Ci is a function

Ci : R
nx × R

nθ → B

that maps a given point in the joint state-parameter space,

(x(t),θ(t)), to the Boolean domain B , [0, 1], where
Ci(x(t),θ(t)) = 1 if the constraint is satisfied. If
Ci(x(t),θ(t)) = 0, then the constraint is not satisfied and
the system has failed.

These individual constraints may be combined into a single
threshold function TEOL, where

TEOL : Rnx × R
nθ → B,

defined as

TEOL(x(t),θ(t)) =

{

1, 0 ∈ {Ci(x(t),θ(t))}
c
i=1

0, otherwise.
.

That is, TEOL evaluates to 1, i.e., the system has failed, when
any of the constraints are violated.

At some point in time, tP , the system is at (x(tP ),θ(tP )) and
we are interested in predicting the time point t at which this
state will evolve to (x(t),θ(t)) such that TEOL(x(t),θ(t)) =
1. Using TEOL, we formally define EOL with

EOL(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t)) = 1},

i.e., EOL is the earliest time point at which TEOL is met.
RUL is expressed using EOL as

RUL(tP ) , EOL(tP )− tP .

The model-based prognostics architecture is shown in Fig. 1.
In discrete time k, the system is provided with inputs uk

and provides measured outputs yk. The damage estimation
module uses this information, along with the system model,
to compute an estimate p(xk,θk|y0:k). While the damage
estimation module may be implemented in various ways, in
this paper, we focus on filtering solutions to this problem.
The prediction module uses the joint state-parameter distri-
bution and the system model, along with hypothesized future
inputs, to compute EOL and RUL as probability distributions
p(EOLkP

|y0:kP
) and p(RULkP

|y0:kP
) at given prediction

times kP . A fault detection, isolation, and identification
(FDII) module may be used in parallel to determine which
damage mechanisms are active, represented as a fault set F,
which may enable the damage estimation module to limit
the dimension of the joint state-parameter space that must be
estimated. In this paper, we assume such a module is absent.

3. DAMAGE ESTIMATION

In model-based prognostics, damage estimation reduces
to joint state-parameter estimation, i.e., computation of
p(xk,θk|y0:k). A common solution to this problem is to
use a filter, where the unknown parameters simply augment
the state vector. Treating parameters as states in most cases
makes the system nonlinear, if not already so. In any case,
most models for prognostics are nonlinear because damage
progression models are rarely linear. Therefore, we focus
here on nonlinear filters. Specifically, we consider the Daum
filter [4], which is an exact nonlinear filter for a specific
class of nonlinear functions, the unscented Kalman filter
(UKF) [6, 12], which is an approximate nonlinear filter that
uses deterministic sampling, and the particle filter (PF) [7],
which is an approximate nonlinear filter that uses stochastic
sampling.

Daum Filter

With the Daum filter, the system model is defined by

ẋ(t) = f(t,x(t),u(t)) +G(t)
dv

dt
(1)

y(t) = H(t)x(t) + n(t), (2)

where G(t) is the process noise matrix (with the covariance
of v being I), and H(t) is the observation matrix. The sensor
noise has covariance R. Note the following restrictions on
the system model. First, the process noise is restricted to
be additive and Brownian. Second, the output equation is
assumed to be linear, and the sensor noise is assumed to be
additive and Gaussian.

The system model is restricted further to satisfy certain
assumptions. First, there must exist a function ψ(x, t)
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that satisfies the following Fokker-Planck partial differential
equation (PDE):

∂ψ

∂t
= −

∂ψ

∂x
f −ψtr

(

∂f

∂x

)

+
1

2
tr

(

Q
∂2ψ

∂x2

)

, (3)

where Q = GGT . Further, there must exist A, b, c, D, and
E such that

tr

(

∂f

∂x

)

+ (s/2)rQrT = xTAx+ bTx+ c (4)

f − sQrT = Dx+E, (5)

where 0 < s < 1, and r(x, t) = ∂/∂x(lnψ(x, t)).

If these conditions hold, in addition to some additional as-
sumptions (see [4]), then we have

p(xk|y0:k) = ψ(xk, k)·

exp(−
1

2
(xk −mk)

TP−1
k (xk −mk)). (6)

Here, m and P are the filter variables and are analogous to
mean and covariance. The filter computes them using

mk = m̄k +PkH
T
kR

−1
k (yk −Hkm̄k) (7)

Pk = P̄k − P̄kH
T
k (HkP̄kH

T
k +Rk)

−1HkP̄k. (8)

The auxiliary variables m̄k and P̄k are found by solving the
following equations over tk−1 to tk with initial conditions

m̄k = mk−1 and P̄k = Pk−1:

dm̄(t)/dt = 2(s− 1)P̄(t)A(t)m̄(t)

+D(t)m̄(t) + (s− 1)P̄(t)b(t) +E(t) (9)

dP̄(t)/dt = 2(s− 1)P̄(t)A(t)P̄(t)

+D(t)P̄(t) + P̄(t)DT (t) +Q(t). (10)

Both the Kalman and Beneš filters may be derived from the
Daum filter when the assumptions for these filters are made,
as shown in [4]. The main advantage of the approach is
that, like the Kalman filter for linear Gaussian systems, it
is an exact filter for the class of nonlinear dynamics that
it covers. Further, it has computational complexity on the
order of the Kalman filter. The main disadvantage is that the
class of nonlinear dynamics that it covers is quite restrictive
for practical application, as we will see in Section 5. In
addition, it covers only additive process and sensor noise
that are of Brownian and Gaussian distributions, respectively.
This, however, is acceptable for many real systems. Another
disadvantage is that the Daum filter requires the (offline)
analytical solution of a PDE (ψ(x, t)) to both check that the
model in question satisfies the constraints of the filter, and
for use within the filter equations. It is quite possible that a
solution to this PDE does not exist or cannot be found with
the available tools.

Unscented Kalman Filter

When exact nonlinear filters are not applicable, approximate
methods are required. The most familiar is the extended

Kalman filter (EKF), which approximates the Kalman fil-
ter by linearizing the dynamics around the operating point.
However, when the model dynamics are highly nonlinear,
the performance of the EKF suffers [6]. Further, the EKF
requires the derivation of Jacobians, which may be difficult
to derive analytically, or expensive to compute online, and
in some cases do not exist (e.g., when there are discontinu-
ities). In the most basic sense, the EKF linearizes the model
at each step and then applies the Kalman filter equations.
The unscented Kalman filter, instead of approximating the
nonlinearity, approximates the state distribution [6, 12]. This
procedure maintains the nonlinear functions exactly, elimi-
nating the need to calculate Jacobians, and thereby providing
an easier implementation framework.

The UKF approximates a distribution using the unscented
transform (UT). The UT takes a random variable x ∈ R

nx ,
with mean x̄ and covariance Pxx, which is related to a second
random variable y by some nonlinear function y = g(x), and
computes the mean ȳ and covariance Pyy using a (small) set
of deterministically selected weighted samples, called sigma

points [6]. X
i denotes the ith sigma point from x and wi

denotes its weight. The sigma points are always chosen such
that the mean and covariance match those of the original
distribution, x̄ and Pxx. Each sigma point is passed through
g to obtain new sigma points Y , i.e.,

Y
i = g(X i) (11)

with mean and covariance calculated as

ȳ =
∑

i

wiY
i (12)

Pyy =
∑

i

wi(Y i − ȳ)(Y i − ȳ)T . (13)

Several methods exist for selecting sigma points, but we
describe here only the commonly used symmetric unscented
transform, in which 2nx + 1 sigma points are selected sym-
metrically about the mean in the following way [12]:

wi =











κ

(nx + κ)
, i = 0

1

2(nx + κ)
, i = 1, . . . , 2nx

(14)

X
i =















x̄, i = 0

x̄+
(

√

(nx+κ)Pxx

)i

,i = 1, . . . , nx

x̄−
(

√

(nx+κ)Pxx

)i

,i = nx+1, . . . , 2nx

, (15)

where
(

√

(nx + κ)Pxx

)i

refers to the ith column of the

matrix square root of (nx + κ)Pxx (e.g., computed using the
Cholesky decomposition). The number κ is a free parameter
that can be used to tune the higher order moments of the
distribution. Note that the sigma point weights do not directly
represent probabilities, so are not restricted to the interval
[0, 1]. If x is assumed Gaussian, then selecting κ = 3− nx is
recommended [6]. A smaller value of κ will bring the sigma
points closer together than a larger value.

The UKF assumes the general nonlinear form of the state
and output equations, but is restricted to additive Gaussian
noise. It follows the same basic form as the Kalman and
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extended Kalman filters, modified to use the sigma points.

First, ns sigma points X̂ k−1|k−1 are derived from the current

mean x̂k−1|k−1 and covariance estimates Pk−1|k−1 using the

sigma point selection algorithm of choice. The prediction
step is:

X̂
i

k|k−1 = f(X̂
i

k−1|k−1,uk−1), i = 1, . . . , ns (16)

Ŷ
i

k|k−1 = h(X̂
i

k|k−1), i = 1, . . . , ns (17)

x̂k|k−1 =

ns
∑

i

wiX
i
k|k−1 (18)

ŷk|k−1 =

ns
∑

i

wiY
i
k|k−1 (19)

Pk|k−1 = Q+
ns
∑

i

wi(X i
k|k−1 − x̂k|k−1)(X

i
k|k−1 − x̂k|k−1)

T , (20)

where Q is the process noise covariance matrix. The update
step is:

Pyy = R+

ns
∑

i

wi(Y i
k|k−1 − ŷk|k−1)(Y

i
k|k−1 − ŷk|k−1)

T

(21)

Pxy =

ns
∑

i

wi(X i
k|k−1 − x̂k|k−1)(Y

i
k|k−1 − ŷk|k−1)

T

(22)

Kk = PxyP
−1
yy (23)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (24)

Pk|k = Pk|k−1 −KkPyyK
T
k , (25)

where R is the sensor noise covariance matrix.

Particle Filter

The particle filter is the most general nonlinear filter, as it may
be directly applied to nonlinear systems with non-Gaussian
noise terms [7]. In particle filters, the state distribution is
approximated by a set of discrete weighted samples, called
particles. The particle approximation to the state distribution
is given by

{xi
k, w

i
k}

N
i=1, (26)

where N denotes the number of particles, and for particle

i, xi
k denotes the state vector estimate and wi

k denotes the
weight. The posterior density is approximated by

p(xk|y0:k) ≈

N
∑

i=1

wi
kδxi

k
(dxk), (27)

where δxi
k
(dxk) denotes the Dirac delta function located at

xi
k.

The PF has many variants. Here, we describe the sampling
importance resampling (SIR) particle filter, using systematic
resampling [13]. The pseudocode for a single step of the SIR
filter is shown as Algorithm 1. Each particle is propagated
forward to time k by sampling new states using the model.
The particle weight is assigned using yk. The weights are
then normalized, followed by the resampling step [7].

Algorithm 1 SIR Filter

Inputs: {xi
k−1, w

i
k−1}

N
i=1,uk−1:k,yk

Outputs: {xi
k, w

i
k}

N
i=1

for i = 1 to N do
xi
k ∼ p(xk|x

i
k−1,uk−1)

wi
k ← p(yk|x

i
k,uk)

end for

W ←
N
∑

i=1

wi
k

for i = 1 to N do
wi

k ← wi
k/W

end for
{xi

k, w
i
k}

N
i=1 ← Resample({xi

k, w
i
k}

N
i=1)

Variance Control

In each of these algorithms, only state estimation is described.
Joint state-parameter estimation can be accomplished by
augmenting the state vector with the unknown parameters.
To do this, some type of evolution must be assigned to the
parameters. The typical solution is to use a random walk,
i.e., for parameter θ, θk = θk−1 + ξk−1, where ξk−1 is
sampled from some distribution (e.g., zero-mean Gaussian).
In the PF, this is represented explicitly. In the Daum filter
and the UKF, this is represented by setting the corresponding
diagonal element of the process noise matrix (G for the Daum
filter and Q for the UKF) to a nonzero value. In this way, the
parameter estimates become time-varying and are modified
by the filter using the measured outputs.

The selected variance of the random walk noise determines
both the rate of parameter estimation convergence and the
estimation performance once convergence is achieved. A
large random walk variance gives fast convergence but track-
ing with too wide a variance, but too small a random walk
variance will give very slow convergence, if at all, but,
once achieved, tracking will proceed with a small variance.
In prognostics, since wear parameter values are generally
unknown, except possibly for the order of magnitude, it
becomes very difficult to tune the variance value to get the
best performance. This has resulted in several approaches that
attempt to tune this variance value online, e.g., [8,10,14]. We
generalize our previous approach to this problem described
in [10], which was developed only for particle filters, and
extend it to work with other nonlinear filters.

In this approach, the algorithm tries to control the variance
of the hidden wear parameter estimate to a user-specified
range by modifying the random walk noise variance. Since
the random walk noise is artificial, we should reduce it as
much as possible, because this uncertainty propagates into the
EOL predictions. So, controlling this uncertainty also helps
to control the uncertainty of the EOL prediction.

The algorithm for the adaptation of the random walk variance
vector, vξ, is given as Algorithm 2. We assume that the
distributions that the elements of ξ are drawn from can be
specified using a variance value, and that the variance values
are tuned initially based on the maximum expected wear
rates, e.g., if the pump is expected to fail no earlier than 100
hours, then this corresponds to particular maximum wear rate
values. Basically, the algorithm computes the actual spread
of a parameter estimate from the filter estimate, and computes
the error with the desired level of spread. The variance value
for that parameter is then modified to reduce the error. We
use a relative measure of spread, such as relative standard
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Algorithm 2 vξ Adaptation

Inputs: p(xk,θk|y0:k)
State: vξ,k−1, l← 1
Outputs: vξ,k

for all j ∈ {1, 2, . . . , nθ} do
vj ← RelativeSpread(p(θk(j)|y0:k))
if vj < tj(s(j)) then

s(j)← s(j) + 1
end if

vξ,k(j)← ξk−1(j)

(

1 +Pj(s(j))
vj − v∗

j (s(j))

v∗

j (s(j))

)

end for
vξ,k−1 ← vξ,k

deviation or relative median absolute deviation, which can be
treated equally for any wear parameter value.

The adaptation proceeds in multiple stages, maintained with
an sj variable for each parameter (with j referring to the
parameter index), with the number of stages specified by Sj .
The sj values are initialized to 1. Each stage is specified
using three variables, (i) a lower threshold that, once crossed,
signals that the next stage should be entered, (ii) the desired
spread value for the stage, and (iii) a proportional gain term
used to control the degree of adaptation during that stage. For
each parameter, the threshold vector tj , the desired spread
vector v∗

j , and the proportional gain vector Pj are of size Sj .

The algorithm works as follows. For each parameter, indexed
by j, the current relative spread is computed as vj using the
metric of choice. If this value is below the threshold value
for the the current stage, tj(s(j)), then the stage number is

increased. Then the new random walk variance vξ,k(j) is
computed. The error between the the actual and the desired
spread value for the current stage, vj − v∗

j (s(j)), is normal-

ized by v∗
j (s(j)). This normalized error is then multiplied by

the proportional gain term for the current stage, Pj(s(j)),
and the corresponding variance vξ,k−1(j) is increased or
decreased by that percentage to compute the new variance
value vξ,k(j).

Because there is some inertia to the process of vj changing

in response to a new value of vξ,k(j), the gains Pj cannot be
too large, otherwise vj will not converge to the desired value,
instead, it will continually shrink and expand. So, tuning of
these gains and the other algorithm parameters is necessary.

4. PREDICTION

Prediction is initiated at a given time kP . Using the cur-
rent joint state-parameter estimate, p(xkP

,θkP
|y0:kP

), which
represents the most up-to-date knowledge of the system
at time kP , the goal is to compute p(EOLkP

|y0:kP
) and

p(RULkP
|y0:kP

).

The representation of p(xkP
,θkP

|y0:kP
) is dictated by the

selected filter for damage estimation. In the case of the
UKF and PF, the distribution is represented by a finite set of
weighted samples. If the distribution is given in an analytical
form or represented by sufficient statistics (e.g., the mean and
covariance matrix), then generally the distribution cannot be
analytically propagated to EOL due to the nonlinearity of the
model, therefore, we must sample from these representations.
Either random sampling of a sufficient number of samples
can be performed, or the unscented transform can be used to

Algorithm 3 EOL Prediction

Inputs: {(xi
kP

,θi
kP

), wi
kP
}Ni=1

Outputs: {EOLi
kP

, wi
kP
}Ni=1

for i = 1 to N do
k ← kP
xi
k ← xi

kP

θi
k ← θi

kP

while TEOL(x
i
k,θ

i
k) = 0 do

Predict ûk

θi
k+1 ∼ p(θk+1|θ

i
k)

xi
k+1 ∼ p(xk+1|x

i
k,θ

i
k, ûk)

k ← k + 1
xi
k ← xi

k+1

θi
k ← θi

k+1

end while
EOLi

kP
← k

end for

deterministically select a small number of samples [15].

Given the finite set of N samples, {(xi
kP

,θikP
), wi

kP
}Ni=1,

we simply propagate each sample i out to EOL and use the
original sample weight for the weight of that EOL prediction.
Each sample is simulated forward to EOL to obtain the com-
plete EOL distribution. The pseudocode for the prediction
procedure is given as Algorithm 3 [16]. Each sample i is

propagated forward until TEOL(x
i
k,θ

i
k) evaluates to 1; at

this point EOL has been reached for this sample. In general,
prediction requires hypothesizing future inputs of the system,
ûk, but in this paper, we assume future inputs are known.

5. CASE STUDY

We adopt a centrifugal pump as a simulation-based case
study. In this section, we review the pump model (originally
described in [10]) and present a number of prognostics exper-
iments. The pump model does not satisfy the requirements for
the Daum filter, e.g., it has square roots and states appearing
in the denominator, therefore we apply only the unscented
Kalman filter and the particle filter. We compare the results
of these algorithms on the case study. In both cases, we
apply the variance control algorithm using relative standard
deviation (RSD) as the measure of spread.

Pump Modeling

A schematic of a typical centrifugal pump is shown in Fig. 2.
Fluid enters the inlet, and the rotation of the impeller, driven
by a motor, forces fluid through the outlet. Radial and thrust
bearings help to minimize friction along the shaft, and are
lubricated by oil in the bearing housing. A seal prevents
fluid flow into the bearing housing, and wear rings help to
minimize internal leakage from the outlet to the inlet side of
the impeller.

The state of the pump is given by

x(t) = [ω(t) Tt(t) Tr(t) To(t)]
T
, (28)

where ω(t) is the rotational velocity of the pump, Tt(t) is
the thrust bearing temperature, Tr(t) is the radial bearing
temperature, and To(t) is the oil temperature.

The rotational velocity of the pump is described using a
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Figure 2. Centrifugal pump.

torque balance,

ω̇ =
1

J
(τe(t)− rω(t)− τL(t)) , (29)

where J is the lumped motor/pump inertia, τe is the elec-
tromagnetic torque provided by the motor, r is the lumped
friction parameter, and τL is the load torque. In an induction
motor, a torque is produced only when there is a difference,
called slip, between the synchronous speed of the supply
voltage, ωs and the mechanical rotation, ω, defined as

s =
ωs − ω

ωs

. (30)

Torque τe is expressed from an equivalent circuit represen-
tation for a three-phase induction motor, based on rotor and
stator resistances and inductances, and the slip s [17]:

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
, (31)

where R1 is the stator resistance, L1 is the stator inductance,
R2 is the rotor resistance, L2 is the rotor inductance, n is the
number of phases, and p is the number of magnetic pole pairs.
Rotor speed is controlled by changing the input frequency ωs.

The load torque τL is a function of the flow rate through the
pump and the impeller rotational velocity [18, 19]:

τL = a0ω
2 + a1ωQ− a2Q

2, (32)

where Q is the flow, and a0, a1, and a2 are coefficients
derived from the pump geometry [19].

The rotation of the impeller creates a pressure difference from
the inlet to the outlet of the pump, which drives the pump
flow, Q. Pump pressure is computed as

pp = Aω2 + b1ωQ− b2Q
2, (33)

where A is the impeller area, and b1 and b2 are coefficients
derived from the pump geometry. Flow through the impeller,
Qi, is computed using the pressure differences:

Qi = c
√

|ps + pp − pd|sign(ps + pp − pd), (34)

where c is a flow coefficient, ps is the suction pressure, and
pd is the discharge pressure. The small (normal) leakage flow
from the discharge end to the suction end due to the clearance
between the wear rings and the impeller is described by

Ql = cl
√

|pd − ps|sign(pd − ps), (35)

where cl is a flow coefficient. The discharge flow, Q, is then

Q = Qi −Ql.

Pump temperatures are often monitored as indicators of pump
condition. The oil heats up due to the radial and thrust
bearings and cools to the environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)−Ho,3(To − Ta)),

(36)

where Jo is the thermal inertia of the oil, and the Ho,i terms
are heat transfer coefficients. The thrust bearings heat up due
to the friction between the pump shaft and the bearings, and
cool to the oil and the environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)), (37)

where Jt is the thermal inertia of the thrust bearings, rt is the
friction coefficient for the thrust bearings, and the Ht,i terms
are heat transfer coefficients. The radial bearings behave
similarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta)) (38)

where Jr is the thermal inertia of the radial bearings, rr is the
friction coefficient for the radial bearings, and the Hr,i terms
are heat transfer coefficients. Note that rt and rr contribute
to the overall friction coefficient r.

The overall input vector u is given by

u(t) = [ps(t) pd(t) Ta(t) V (t) ωs(t)]
T
. (39)

The measurement vector y is given by

y(t) = [ω(t) Q(t) Tt(t) Tr(t) To(t)]
T
. (40)

The performance constraints of the pump are specified by
efficiency and temperature limits:

C1 : η(t) > η− (41)

C2 : To(t) < T+
o (42)

C3 : Tt(t) < T+
t (43)

C4 : Tr(t) < T+
r , (44)

where the − subscript denotes a minimum and the + su-
perscript denotes a maximum, and efficiency η is defined as
η = (V I)/((pd − ps)Q). We take η− = 0.75η0, where η0
is the nominal efficiency. When the maximum temperatures
are reached, irreversible damage occurs. Here, we use T+

o =
333 K and T+

t = T+
r = 370 K.

The most significant damage mechanism for pumps is im-
peller wear, represented as a decrease in impeller area A [20,
21]. Since the impeller area is proportional to b0, a decrease
causes a decrease in the pump pressure, and, hence, the pump
efficiency. We use the erosive wear equation [22] to describe
how the impeller area changes over time [10]:

Ȧ(t) = −wAQi(t)
2,
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Table 1. Estimation and Prediction Performance for UKF

n PRMSEwA
PRMSEwt

PRMSEwr
RSDwA

RSDwt
RSDwr

RA RSDRUL

1 2.44 1.95 3.29 10.97 10.05 9.40 97.42 8.39

10 3.36 2.77 3.74 10.56 9.77 9.54 96.67 8.46

100 4.26 2.56 4.48 11.27 9.68 9.77 95.65 9.15

1000 3.82 3.41 4.17 11.91 10.26 11.41 94.84 10.47

Table 2. Estimation and Prediction Performance for PF

n PRMSEwA
PRMSEwt

PRMSEwr
RSDwA

RSDwt
RSDwr

RA RSDRUL

1 4.32 5.73 3.65 12.73 11.77 11.27 96.95 10.65

10 4.99 3.05 3.43 12.63 11.71 11.02 96.38 10.68

100 11.77 4.33 7.27 12.52 12.22 10.90 92.47 10.71

1000 20.54 10.25 19.35 12.43 11.30 11.43 71.52 13.29

where wA is a wear coefficient. Because A is proportional to

b0, then ḃ0(t) = kȦ(t) = −kwAQi(t)
2, so we estimate b0(t)

and wb0 = kwA.

Another significant damage mechanism for pumps is bearing
wear, captured as an increase in the friction coefficient.
Sliding and rolling friction generate wear of material which
increases the coefficient of friction [10, 22]:

ṙt(t) = wtrtω
2 (45)

ṙr(t) = wrrrω
2, (46)

where wt and wr are the wear coefficients.

Results

We performed a number of simulation experiments in which
the values of wear parameters for the different damage pro-
cesses were selected randomly in [1 × 10−3, 4 × 10−3] at

increments of 1 × 10−3 for wb0 , in [1 × 10−11, 7 × 10−11]
at increments of 0.5 × 10−11 for wt and wr, such that the
maximum wear rates corresponded to a minimum EOL of 20
hours. The filters had to jointly estimate the state and these
unknown parameters. Both algorithms used the variance
control algorithm, controlling the RSD of the hidden wear
parameter estimates, with Sj = 2 and v∗

j = [50, 10], Tj =

[60, 0], and Pj = [1 × 10−3, 1 × 10−4] for all j. In order
to investigate how the algorithms performed under different
noise levels, we varied the sensor noise variance by factors
of 1, 10, 100, and 1000, and performed 15 experiments for
each case, averaging results over each case. The future input
of the pump was considered to be known, and it was always
operated at a constant RPM. Hence, the only uncertainty
present is that involved in the noise terms and that introduced
by the filtering algorithms.

The estimation performance is calculated using percent root
mean square error (PRMSE) for accuracy of the wear param-
eter estimates, and RSD for spread. Note that the variance
control algorithm attempts to control the RSD of each wear
parameter estimate to 10%, so ideally the computed RSD
would be exactly that. The RUL prediction performance is
calculated using relative accuracy (RA) [11] for accuracy (a
score of 100% is best) and RSD for prediction spread. The
prediction metrics are computed at each prediction point and

averaged over an entire experiment.

The results for the UKF are summarized in Table 1. The wear
parameters were estimated with very good accuracy, and with
spread around the desired 10%. As sensor noise increased
(denoted by the column labeled n in the table), estimation
performance generally became worse in both accuracy and
precision, but the variance control algorithm was still able to
keep RSD near the desired level, even when the sensor noise
variance was increased by a factor of 1000. The good estima-
tion performance translated to good prediction performance
since there was no uncertainy in the future inputs. Both
RA and RSD of the predictions were good and performance
decreased with increased noise, as expected.

The results for the PF are summarized in Table 2. The
PF used N = 500 particles and assumed the sensor noise
variance was 10 times the actual value (this is sometimes
called a “roughening penalty” and in this case improves
convergence and accuracy). Similar trends are observed
here, however, the accuracy is decreased and the variance
control algorithm has a more difficult time controlling RSD.
As sensor noise increases, the PF has a more difficult time
converging, and when the sensor noise variance is increased
by a factor of 1000, some experiments did not converge,
resulting in very poor estimation and prediction and bringing
the overall average down. The UKF, on the other hand, easily
converged with all noise levels considered. Performance of
the PF could possibly be improved by increasing the number
of particles and/or changing the parameters of the variance
control algorithm.

The performance of the two filters is easily compared visu-
ally. Here, we choose the case where wb0 = 2 × 10−3,

wt = 3 × 10−11, and wr = 1 × 10−11. Estimation
results for the UKF are shown in Fig. 3 and results for the
PF are shown in Fig. 4. We show the true values, denoted
with the ∗ superscript, the mean estimate, and the minimum
and maximum values of the samples. The spread of the
UKF estimate appears significantly smaller, but this is only
because the sigma points represent the distribution with a set
of sigma points whose minimum and maximum values are
very close to the mean, whereas with the PF, the samples
are stochastically selected, so the minimum and maximum
values may be far from the mean. In both cases the effects

7



0 5 10 15 20 25 30

0

2

4

6
x 10

−3

t (hours)

w
b
0
(s
/
m

4
)

 

 
w

∗

b0

Mean(ŵb0
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Figure 3. UKF estimation of pump wear parameters.
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Figure 4. PF estimation of pump wear parameters.

of the variance control algorithm are also observed, e.g., for
wr the initial estimate has a very large variance, but quickly
decreases to the desired level of relative spread. Convergence,
though, is clearly better with the UKF.
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Figure 5. α-λ performance with α = 0.1 and β = 0.5 for
the UKF.
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Figure 6. α-λ performance with α = 0.1 and β = 0.5 for
the PF.

The prediction results for these cases are shown in Fig. 5 for
the UKF and Fig. 6 for the PF using an α-λ plot [11]. With
the α-λ metric, we check at each prediction point whether
β of the distribution lies within α of the true RUL. In the
figure, the accuracy bound defined by α = 10% is shown
as a gray cone, and we select β = 50%. For the UKF, the
metric is satisfied at all prediction points, with about 70%
of the distribution falling within the accuracy bound, with
the mean always falling within the bound. For the PF, the
mean always falls within the bound, but the portion of the
distribution falling within the bound is consistently less than
with the UKF, and the metric fails at the third prediction point.

Overall, the UKF consistently performs better than the PF
for this case study. Further, it does this at a much reduced
computational cost. The complete state-parameter vector
has 11 variables, so the UKF with the symmetric transform
requires 2× 11 + 1 = 23 sigma points, whereas the PF used
500 particles. This also translates to computational savings
in the prediction algorithm, because (i) only 23 simulations
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have to be performed compared to 500, and (ii) the minimum
values are larger for the UKF than for the PF, and the time
to EOL (and thus the time to simulate to EOL) is inversely
proportional to the wear rate value. So, prediction using the
sigma points is more efficient than using the particles. Note,
however, that the unscented transform may be applied to the
particle distribution and the resulting sigma points can be
simulated forward instead as shown in [15].

Both filters require some degree of tuning. The UKF is
generally easier to tune because it has fewer free parameters.
The most difficult aspect can be selecting the parameters of
the unscented transform. In this case, we used κ = 3− nx =
3 − 11 = −8, as recommended in [6], which worked quite
well. With the PF, the number of particles and the roughening
penalties must be tuned, but some general heuristics are
available [7].

It is expected that the Daum filter, when applicable, can
improve performance over approximate filters like the UKF
and PF. However, its applicability for prognostics is appar-
ently limited, because many damage progression processes
are nonlinear and may not meet the rather strict requirements
on the model dynamics. This problem becomes more likely
when joint state-parameter estimation must be performed,
as introducing unknown parameters as states increases the
amount and types of nonlinearities. For example, in the dam-
age progression equation 45 for ṙt, we have effectively three
states when performing joint state-parameter estimation: rt,
wt, and ω. When taking ∂rt

∂rt
we end up with wtω

2 which

would violate equation 4. An approximate version of the
Daum filter is available, but still requires solving analytically
the PDE of equation 3. For the pump, a solution to this
PDE could not be found by Mathematica, as it is not able
to solve PDEs analytically for multi-dimensional systems. It
is questionable as to whether it is worth the effort to apply
the Daum filter when simpler approximate filters, like the
UKF, may be used, and whether the possible improvement
in accuracy over the UKF is significant enough to justify the
additional filter complexity.

6. CONCLUSIONS

In this paper, we reviewed nonlinear filtering approaches with
application to prognostics, including the Daum filter, the un-
scented Kalman filter, and the particle filter. In model-based
prognostics, joint state-parameter estimation determines the
current health state of the system, and this is followed by
a prediction algorithm that uses the estimated state as an
input. We adopted a centrifugal pump as a case study, and
in simulation demonstrated the application of the UKF and
PF to the pump. The Daum filter had requirements on the
model dynamics that were too strong in order to apply it
also to the pump, and seems to have limited applicability to
prognostics applications due to the constraints it puts on the
model. In this case study, we found the UKF to outperform
the PF in damage estimation, and, as a result, the predictions
obtained were also superior in both accuracy and precision.
The UKF was also easier to tune and had significantly lower
computational complexity.

In the future, we would like to further investigate the applica-
bility of the Daum filter and its related exact nonlinear filters
to prognostics applications. When applicable, it is important
to compare its performance to simpler algorithms like the
extended Kalman filter and the UKF relative to the effort in
applying the filter. Further, it remains to be seen whether the

approximate version of the Daum filter can outperform the
UKF, and, if so, if the performance gain is significant enough
to justify the increase in development effort of the filter.
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