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A COMPARISON OF FINITE-DIFFERENCE AND FOURIER METHOD 

CALCULATIONS OF SYNTHETIC SEISMOGRAMS 

BY C. R. DAUDT, L. W. BRAILE, R. L. NOWACK, AND C. S. CHIANG 

ABSTRACT 

The Fourier method, the second-order finite-difference method, and a fourth- 

order implicit finite-difference method have been tested using analytical phase 

and group velocity calculations, homogeneous velocity model calculations for 

disperson analysis, two-dimensional layered-interface calculations, comparisons 

with the Cagniard-de Hoop method, and calculations for a laterally heterogeneous 

model. Group velocity rather than phase velocity dispersion calculations are 

shown to be a more useful aid in predicting the frequency-dependent travel-time 

errors resulting from grid dispersion, and in establishing criteria for estimating 

equivalent accuracy between discrete grid methods. Comparison of the Fourier 

method with the Cagniard-de Hoop method showed that the Fourier method 

produced accurate seismic traces for a planar interface model even when a 

relatively coarse grid calculation was used. Computations using an IBM 3083 

showed that Fourier method calculations using fourth-order time derivatives can 

be performed using as little as one-fourth the CPU time of an equivalent second- 

order finite-difference calculation. The Fourier method required a factor of 20 

less computer storage than the equivalent second-order finite-difference calcu- 

lation. The fourth-order finite-difference method required two-thirds the CPU time 

and a factor of 4 less computer storage than the second-order calculation. For 

comparison purposes, equivalent runs were determined by allowing a group 

velocity error tolerance of 2.5 per cent numerical dispersion for the maximum 

seismic frequency in each calculation. The Fourier method was also applied to a 

laterally heterogeneous model consisting of random velocity variations in the 

lower half-space. Seismograms for the random velocity model resulted in antici- 

pated variations in amplitude with distance, particularly for refracted phases. 

INTRODUCTION 

Major advancements in the development of finite-difference and related synthetic 

seismogram modeling techniques over the past several years have significantly 

increased the ability to model heterogeneous structures of geophysical interest. The 

Fourier or pseudo-spectral method, introduced to the geophysical community by 

Kosloff and Baysal (1982), and higher-order finite-difference methods, for example, 

the fourth-order implicit method by Fairweather and Mitchell (1965), have been 

demonstrated to yield equivalent results to the standard second-order explicit finite- 

difference method while substantially reducing the use of computing resources 

(Daudt, 1983; Bayliss et al., 1986; Dablain, 1986; Fornberg, 1987). Traditionally, 

modeling techniques have been limited to lateral variations in two-dimensional 

media due to practical computing limitations. Recently, however, the Fourier 

method has been utilized in the development of three-dimensional modeling tech- 

niques (Johnson, 1984; Reshef et al., 1988a, b). These efficient methods have 

facilitated the quantitative investigation of lateral velocity and structural variations 

for models of full crustal scale and larger, beyond the realm of other modeling 

methods. 
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Both Fourier and high-order finite-difference methods use a much coarser grid 

than the second-order finite-difference counterpart, as few as two grid points per 

shortest seismic wavelength for the Fourier method and four or five points per 

wavelength for fourth or higher-order finite-difference methods. In contrast, the 

second-order explicit finite-difference method requires 10 or more grid points per 

wavelength (Alford et  al., 1974). The accuracies of the resulting calculations, 

however, are dependent upon parameters other than grid coarseness and are not 

clearly understood for heterogeneous models. Several studies have utilized phase 

velocity numerical dispersion curves as a measure of accuracy for homogeneous 

models (Alford et  al., 1974; Emerman et al., 1982; Daudt, 1983; Fornberg, 1987). 

Trefethen (1982) utilized both phase and group velocity calculations, noting that 

the latter provides a more accurate measure of error in travel time. 

Recently, attention has been focused on the ability of each method to accurately 

model inhomogeneous media (Marfurt, 1984; Fornberg, 1987, 1988). Reshef and 

Kosloff (1985) observed noise from diffractions from the grid points along a sloping 

fluid-solid interface. Trefethen (1982) discusses the occurrence of parasitic wave- 

forms caused at interfaces from even slight dispersion and warns that boundaries 

can still introduce instability. Fornberg (1987) performed some comparisons be- 

tween the Fourier method and fourth- and second-order explicit finite-difference 

methods with heterogeneous models and noted the Fourier method performed far 

better than present theory would suggest in many situations. In a more recent 

paper, Fornberg (1988) described a technique by which Fourier method calculations 

of heterogeneous models can be improved by calculating derivatives of time- 

invariant parameters separately using a smoothly varying grid and mapping the 

derivatives with the coarsely calculated time-dependent variables. 

In the present paper, we provide a further evaluation of finite-difference and 

Fourier method calculations for homogeneous and selected heterogeneous models 

using the acoustic-wave equation. The evaluation includes the following: 

1. Quantitative prediction of errors resulting from dispersion. The dispersion 

calculations presented here are based on wave propagation in homogeneous 

models, but provide a preliminary measure of accuracy for comparison between 

different methods. Phase and group velocity curves are presented for explicit 

finite difference, fourth-order implicit finite-difference and Fourier (both sec- 

ond and fourth-order time derivative) methods. 

2. Criteria for establishing equivalent-accuracy estimates. The group velocity 

calculations are utilized to provide a quantitative prediction of errors resulting 

from dispersion for given model and source parameters. The error estimates 

are subsequently used to establish equivalent-accuracy criteria for comparing 

finite-difference and Fourier methods. 

3. Comparison of Fourier and Cagniard-de Hoop calculations. A trace by trace 

comparison of Fourier and Cagniard-de Hoop methods is shown for a model 

consisting of two homogeneous half-spaces separated by a planar interface. 

4. Comparison of Fourier and finite-difference methods. A trace by trace com- 

parison and summary of computer requirements are presented for a model 

consisting of a free surface and layer over a half-space. 

5. Application of the Fourier method to a laterally heterogeneous model. Seis- 

mograms are presented for a layer over a half-space model consisting of random 

velocity variations in the basement, utilizing the Fourier method. 
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ANALYTICAL BACKGROUND: FINITE-DIFFERENCE METHODS 

Consider the homogeneous two-dimensional acoustic-wave equation 

°2u J 2u °2u  (1) 
ot =c  + oz2/ 

where U(x, z, t) is the acoustic potential and c is the velocity of the medium. 

Equations (2) and (3) below show second-order explicit and fourth-order implicit 

finite-difference representations for (1), respectively, the latter obtained from 

Fairweather and Mitchell (1965). 

n lTf~ -z = (p2(Dx2 + Dz 2) + 2)U u - uinj -1 (2) 
- - t J  

1 l - - p 2  \ [  . 1 - p 2  2'~.,,+~ + 

1-p 2 
= I + ~ D ~  1+ 12 Dz (2Uij-U~ -~) (3) 

1 ~ 2 \ n 
+ p2(  (Dx2 + Dz2) +-~ D~ Dz )Uij 

where 

At 
p - - t -  

Ax 

Subscripts i and j and superscript n represent the x, z and time coordinates, 

respectively, for a discrete grid of uniform spacing, Ax and time step size, At, and 

the delta operators repesent the second-order difference operators 

n _ _  n 

n __ i - - l j  D~2Ui j -  Ui+l.i 2Uii + U n 
Ax 2 

Dz2Ui~. = u i n ] + l -  2vi'n] "~- V i ' l - 1  (4) 
Az 2 

Notice the occurrence of the difference operators on the left hand side of the implicit 

representation (3) resulting in multiple unknown terms. A schematic representation 

of the grid points used in (2) and (3) is shown in Figure 1. 

Dispersion curves for (2) and (3), shown in Figures 2 and 3, respectively, provide 

a preliminary means of comparing the two finite-difference representations. The 

familiar phase velocity curves of Figure 2 are derived from Alford et al. (1974) and 

those of Figure 3 are from Daudt (1983). We have also calculated group velocity 

curves, shown in the same figures. The curves illustrate numerical dispersion as a 

function of the ratio of the smallest seismic wavelength to the grid spacing (hori- 

zontal axis), p (curves in Figs. 2A and 3A) and propagation angle with respect to 

the grid (curves in Figs. 2B and 3B). 
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Explicit Finite Difference 
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Implicit Finite Difference 
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FIe. l. Comparison of grid points used between explicit and implicit finite-difference forms. The 
stars represent the unknown terms being calculated and the asterisks represent grid points used which 
have known values from previous time step calculations or initial conditions. The open circles in the 
implicit schematic represent surrounding grid points used that  are also initially unknown, but are 
obtainable from boundary conditions and significantly enhance the accuracy of the calculation. 

Dispersion for the second-order explicit finite-difference method is commonly 

considered negligible if the grid density is at least ten points per wavelength (1/G 

= 0.1 in Fig. 2) and p is about 0.7 (Alford et al., 1974). The curves for Figure 3, 

however, are much flatter, suggesting an equivalent calculation of the same level of 

numerical dispersion can be obtained with the Fairweather and Mitchell formulation 

(3) using only four or five points per wavelength, and again usingp ~ 0.7. Therefore, 

based on a comparison of the curves in Figures 2 and 3, the fourth-order formulation 

is more efficient in grid storage by a factor of 4 for a two-dimensional model and 

uses half as many time steps. 

The dispersion curves (Figs. 2 and 3) indicate another significant but generally 

overlooked phenomenon, that group velocity dispersion is more sensitive to grid 

spacing than phase velocity dispersion. This observation has been previously dis- 

cussed by Trefethen (1982). Both sets of curves indicate less dispersion for the 

fourth-order implicit method. The group velocity curves that we calculated, however, 

provide a means of predicting dispersion resulting from coarse grid parameters. 

Later in this paper, we present experimental tests for dispersion prediction. 

A general form of the acoustic-wave equation in (1) allows for heterogeneous 

media, 

Ot 2 - \ O x \ p  ~ x  ÷ ~x p Oz / ]  (5) 
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where the velocity, c (x, z) and density, p (x, z) of the medium are functions of spatial 

coordinates. Fairweather and Mitchell's equation has been generalized to follow (5) 

(modified from McKee, 1973), 

pDx2p-I - P2D~2 1 + 

- p D . . . . .  
= 1 + pDx2p-1 P2Dx 1 + (zui~ Ui} -1) (6) 

12 i 2  - 

Equation (6) can be solved using an alternating direction implicit (ADI) approach 

(Fairweather and Mitchell, 1965) and is the basis for a heterogeneous calculation 

presented later in this paper. 

ANALYTICAL BACKGROUND: THE FOURIER METHOD 

Like the second-order finite-difference method of (2), the Fourier method com- 

monly uses a second-order or fourth-order difference approximation for the time 

derivative. The spatial derivatives, however, are each solved by multiplication in 

the wavenumber domain. Thus, 

OU c~ 1 N-1 
ax - ax N F~ U(k)e  2~ikx/N 

0 

1 N-1 2~ik 
= N ~-~o ~ O(k)e2~kx/N (7) 

where, 

N--1  

U(k)  = • U(x)e -2~ikx/N 
0 

is the Fourier transform of U(x). The spatial derivatives result in negligible 

dispersion and require only that the grid spacing be adequate to avoid problems 

associated with aliasing. Tadmor (1986) showed that the dispersion error in spatial 

derivatives decays to zero at an exponential rate. Therefore, any noticeable disper- 

sion produced by the Fourier method is anticipated to derive from errors in the 

time derivative alone. 

The phase and group velocity curves of Figure 4 indicate that the Fourier method 

surpasses the fourth-order implicit method in accuracy under certain conditions. 

The phase velocity curves in Figure 4A, which were based on a second-order time 

derivative calculation, were derived from Kosloff and Baysal (1982). We calculated 

the phase velocity curves in Figure 4B using fourth-order time derivative terms and 

also the group velocity curves in both Figures 4A and 4B. The curves show significant 

reverse dispersion for large values of p. However, if p <-- 0.1, the dispersion is 

negligible up to Nyquist conditions, i.e., as few as two points per wavelength in 

space (1/G -- 0.5), even for the second-order time derivative calculations. Typically, 
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p is allowed to approach 0.2 for the curves in Figure 4A (Kosloff et  al., 1984), and 

somewhat larger for the fourth-order time derivative curves of Figure 4B. Since 

dispersion for the Fourier method is independent of grid spacing, it is also inde- 

pendent of propagation angle through the model. The Fourier method is therefore 

isotropic, unlike finite-difference methods. 

The Fourier method as implemented above is therefore extremely efficient in grid 

requirements, better than the second-order explicit method by a factor of 25 for a 

two-dimensional model, but less efficient in total number of required time iterations. 

Even the time iteration efficiency is improved, however, by using the fourth-order 

time derivative terms, as recommended by Dablain (1986). Tal-ezer (1986) presents 

a modification that solves time derivatives as well as spatial derivatives using 

Fourier transforms. 

As with other finite-difference methods, the dispersion curves of Figure 4 indicate 

that group velocity dispersion is more sensitive to grid spacing than phase velocity 

dispersion. The curves for group velocity dispersion are in many respects a better 

measure of accuracy for a discrete grid method, although most geophysical studies 

have focused primarily on phase velocity calculations. In the following section, we 

will show how the group velocity curves in Figure 4A can be used to predict the 

effects of dispersion resulting from coarse grid parameters. 

EXPERIMENTAL COMPARISONS 

Computer programs have been implemented for second-order explicit and fourth- 

order implicit finite-difference methods and for the Fourier method. We have 

written computer codes for both the elastic- and acoustic-wave equations for the 

explicit and Fourier methods. The comparisons presented here were all based on 

the acoustic-wave equation. Absorbing boundary conditions have been effectively 

implemented using methods from Cerjan et  al. (1985) and Sochacki et al. (1987). 

The Cerjan et  al. method was chosen for the calculations presented in this paper. 

The source functions used here were the asymmetric and symmetric waveforms in 

Figure 5 (Ricker, 1977). In each calculation, the source function was applied at a 

single grid location over enough time steps to represent the waveform (generally 25 

to 40 time steps). The maximum frequency of the wavelets, used for determining 

grid and time step spacing requirements for a given model, was arbitrarily chosen 

to be three times the peak frequency, where the amplitude is 25 dB below peak level 

for the asymmetric wavelet and 50 dB below peak level for the symmetric wavelet. 

Calculations were either computed on one of several UNIX-based computers or 

an IBM 3083 computer. Models tested include one-dimensional free-space propa- 

gation through a uniform medium, two-dimensional propagation across a simple 

welded interface and two-dimensional propagation through a uniform layer with a 

free surface over a uniform half-space, from which equivalent-accuracy criteria were 

established and comparisons were performed between Fourier, Cagniard-de Hoop, 

and finite-difference calculations. A laterally heterogeneous model was calculated, 

which propagated waves through a layer over a half-space with random velocity 

variations. 

Dispersion is readily observed in one-dimensional calculations of homogeneous 

models, such as the Fourier method calculation illustrated in Figure 6. Seismograms 

located at the source and at four other distances are shown for a 5.0 km/sec medium 

corresponding to 0, 5, 10, 15, and 20 sec, elapsed travel time. The source wavelet, 

an asymmetric, 1.0 Hz peak frequency Ricker wavelet was propagated across 1024 
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FIG. 5. Frequency spectrums for first-derivative (asymmetric) and second-derivative (symmetric) 
Gaussian or Ricker velocity-type wavelets (Figures A and B, respectively). Finite-difference and Fourier 
method calculations presented in this paper were gridded for frequencies up to three times the peak 
frequency, where the amplitude is 25 dB below peak amplitude for Figure A and 50 dB below peak 
amplitude for Figure B. 

grid points and over 600 time steps with grid and time intervals of 416.7 m and 

41.67 msec, respectively. The method used was the one-dimensional Fourier method 

similar to that  used by Dablain (1986) with a second-order time derivative calcula- 

tion. Note that reverse dispersion of the higher frequencies, which is primarily due 

to the explicit calculation of the time derivative, progresses with each later seis- 

mogram. The vertical dashed line through each seismogram shows the correct 

horizontal placement of the wavelet center in absence of dispersion. The amount of 

dispersion can be reduced either be decreasing the size of the time step and/or, as 

is done for most calculations presented in this paper, implementing fourth-order 

time derivative calculations. 

Below each seismogram are five sine waveforms representing five frequencies 
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Numerical Dis)ersion as Predicted from Group Velocity Calculations 
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FIG. 6. Numerical dispersion as predicted from group velocity calculations. The top row of curves 
illustrate the effects of numerical dispersion of a 1.0 Hz peak frequency source wavelet with time for 
receivers up to 100 km (20 sec travel time in a 5.0 km/sec homogeneous medium) from the source. The 
calculation method was a one-dimensional implementation of the Fourier method using a second-order 
time derivative calculation. Grid parameters were 416.7 m and 41.67 ms for Ax and At, respectively, p = 
c A t / A x  = 0.5, 600 time step iterations and 1024 grid points. The vertical dashed line through each curve 
indicates the expected location of the center of the waveform when dispersion is absent. Below each 
seismogram are five sine waves representing five different frequencies contained within the source 
function. The vertical size of each sine wave is plotted proportional to the relative amplitude obtained 
from the frequency spectrum for the asymmetric wavelet in Figure 5A. The relative amplitudes for each 
sine wave are also indicated by a fractional amplitude factor and scale on the left side of the figure. The 
frequency, grid density, and relative amplitude for each sine wave are summarized in the table. More 
importantly, the horizontal position of each sine wave is precisely plotted based on calculations from the 
group velocity dispersion curves of Figure 4A. The horizontal locations of the sine waves therefore serve 
as schematic prediction of numerical dispersion. 

c o n t a i n e d  w i t h i n  the  source wavelet .  T h e  re la t ive  ver t ica l  size of the  waveforms  are 

in  accordance  wi th  the  amp l i t ude  s p e c t r u m  of the  a s y m m e t r i c  source wavele t  of 

F igure  5A. T h e  ho r i zon ta l  pos i t ion  of each waveform is based  on  the  group veloci ty 

ca lcu la t ions  f rom Figure  4A for the  curve p = c A t / A x  = 0.5. Schemat ica l ly ,  F igure  

6 i l lus t ra tes  the  u t i l i ty  of group veloci ty  d i spers ion  ca lcu la t ions  in  d e t e r m i n i n g  the  

r e su l t ing  d i s to r t i on  of the  p ropaga ted  waveform,  a n d  in  e s t ab l i sh ing  equ iva l en t  

accuracy  cr i te r ia  for c o m p a r i n g  discrete  grid methods .  

T h e  p red ic tab le  aspect  of d i spe rs ion  is fu r the r  i l l u s t r a t ed  more  precise ly  in  Figure  

7. Se i smograms  for th ree  d i f fe ren t  Four i e r  ca lcu la t ions  are d isp layed  for the  receiver  

a t  100 k m  in  F igure  6, except  t h a t  the  a s y m m e t r i c  source f u n c t i o n  has  b e e n  replaced 

in  each of the  th ree  ca lcu la t ions  by  d i f fe ren t  m o n o c h r o m a t i c  (s inusoidal)  source 

func t ions .  As in  Figure  6, the  ver t ica l  l ine r ep resen t s  the  correct  ho r i zon ta l  place-  

m e n t  of the  wavele t  cen te r  in  absence  of d ispers ion.  Each  wave packe t  is pos i t ioned  

hor i zon ta l ly  based  on  its ca lcu la ted  ar r iva l  t ime.  T h e  hor i zon ta l  p l a c e m e n t  of each 

ar row gives the  p red ic ted  loca t ion  of the  cen te r  of the  co r r e spond ing  wave packe t  
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Predicted & Calculated Numerical 

Dispersion for Three Frequencies 

freq = 2.5 hz 
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i l l l l f l l l l i l , , , I , l l l l  
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FIG. 7. Seismograms for three different Fourier calculations are displayed for the 100 km receiver in 
Figure 6 (20 sec), except that the asymmetric source function has been replaced in each of the three 
calculations by a different monochromatic (sinusoidal) source function. As in Figure 6, the vertical line 
represents the correct horizontal placement of the wavelet center in absence of dispersion. Each wave 
packet is accurately positioned horizontally based upon its calculated arrival time. The horizontal 
placement of each arrow precisely depicts the predicted location of the center of the corresponding wave 
packet based on group velocity calculations from Figure 4A. The visual alignment between the arrows 
and the actual wave packet are verification for Trefethen's (1982) observation that group velocity, rather 
than phase velocity, better predicts the effects of numerical dispersion in discrete grid methods. 

based  on  group veloci ty  ca lcu la t ions  f rom Figure  4A. T h e  v isual  a l i g n m e n t  be t w e e n  

the  arrows a n d  the  ac tua l  wave packe t  provides  ver i f i ca t ion  for T r e f e t h e n ' s  (1982) 

obse rva t i on  t h a t  group velocity,  r a the r  t h a n  phase  velocity,  be t t e r  predic ts  the  

effects of n u m e r i c a l  d i spe rs ion  in  discrete  grid methods .  

Whi l e  the  o n e - d i m e n s i o n a l  homogeneous  ca lcu la t ions  above were des igned  to 

i l lus t ra te  the  effects of d ispers ion ,  o the r  effects or l i m i t a t i ons  of a discrete  grid 

m e t h o d  requi re  ana lys i s  of t w o - d i m e n s i o n a l  he te rogeneous  models.  W e  begin  wi th  

an  e l e m e n t a r y  b u t  f u n d a m e n t a l l y  i m p o r t a n t  c o m p a r i s o n  of the  Four i e r  m e t h o d  wi th  
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the Cagniard-de Hoop method for a welded interface. The model used in the 

comparison consisted of a 2.5 km/sec half-space above a 4.0 km/sec half-space, and 

the source wavelet used was an 8.0 Hz peak frequency symmetric wavelet (Fig. 5B). 

Both the source and receivers were located 1.0 km above the interface. The Fourier 

calculation was performed using sample intervals of 62.5 m in space and 4.687 ms 

in time (p = 0.3) for a total of 256 by 128 grid points and 1600 time step iterations. 

A fourth-order time derivative calculation was used. The Cagniard-de Hoop calcu- 

lation was obtained using the method described by Aki and Richards (1980), 

modified for acoustic-wave propagation. Seismograms for the Fourier and Cagniard- 

de Hoop calculations, shown in Figure 8, show good overall agreement between the 

Velocity (km/s) 
Four ier  & " "  " " " " L ,  a g n l a r o - u e H o o p  S e c t i o n s  absorbing 2 4 

boundary [ -r " 'r"I '"r" '" 'T .... 

Welded Interface Model (No Free Surface) ~- 1 F 

Fourier Method ~ 3[ 
2.0 Amplitude x Distance (4 th OrderTime Derivative} 4 

1.5 - -  

---~1.0: 

~2 A - /  

o - V °'rect / / 
0 2 4 6 8 10 12 14 

2.0 Amplitude Distance Cagniard-DeHoop Method 

J L 
1 . 5  __ 

0 . 5 [  _ 

0 
0 2 4 6 8 10 12 4 

Distance (km) fpeak = 8 hz 

FIG. 8. Seismograms using the Fourier method and the Cagniard-de Hoop method tbr a model wtth 
a single interface. Nonreflecting boundary conditions were used with the Fourier method for all four 
boundaries. The source function was an 8.0 Hz peak frequency Ricker wavelet. The Fourier method was 
implemented with a fourth-order time derivative calculation and sampled at 62.5 m in space and 4.687 
ms in time using 256 by 128 grid points and 1600 time step iterations. The Cagniard-de Hoop method 
calculations were based on equations from Aki and Richards (1980, pp. 224-242), which were modified 
for acoustic-wave propagation. Amplitudes for traces on both the Cagniard-de Hoop and Fourier sections 
were multiplied times distance for scaling and plotted at a reducing velocity of 4.0 km/sec. Seismic 
arrivals include direct, reflected (labeled "A") and refracted (labeled "B") phases. Additionally, the 
Fourier method shows reflections from artificial boundaries at about 0.9 sec reduced time for traces at 
10.0 and 12.0 km. 
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two methods  for direct, reflected (labeled "A") and refracted (labeled "B") arrivals. 

A phase  advance observed th roughout  the section for the Fourier  me thod  is appar-  

ent ly caused by the m anne r  in which the source funct ion is implemented,  as 

described at  the beginning of this section. The  Fourier  calculation also shows 

reflections f rom artificial boundar ies  at  about  0.8 sec reduced t ime for t races  at  10.0 

and 12.0 km. 

Figure 9 shows a trace by t race compar is ion for two distances,  one near  the 

critical distance and the other  at  three t imes the critical distance. In addit ion to 

slight phase  differences, the Fourier  me thod  shows some low ampli tude noise in 

each trace following the refracted arrival. Considering the fundamenta l  differences 

between Fourier  and  Cagniard-de Hoop  methods,  the  overall ma tch  between seismic 

t races  is encouraging for the Fourier  me thod  in simple layered media. 

A compar ison  of the Fourier  method  was also conducted with the four th-order  

Fourier &.Cagniard-DeHoop Trace Comparison 
(Welded Interface) 

I ' ' ' ' I ' ' J J I , , , J I , , , , I , , , I I 

; ( ~  Distance = 2 km 

Fourier 

Cagniard-DeHoop 

D i s t a n c e  = 6 k m  

0 0.5 1.0 1.5 2.0 2.5 

T- X/4 (s) 

FIG. 9. Trace by trace comparison of sections in Figure 8 for two distances. Trace-normalized 
amplitudes are compared for Fourier and Cagniard-de Hoop methods for seismograms at about the 
critical distance (2.0 km) and three times the critical distance (6.0 km). Traces reveal a slight phase 
advance for the Fourier method, but are otherwise remarkably similar. 
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implicit and second-order {explicit) finite-difference methods. The velocity model 

was similar to the welded interface model of Figure 8, except the upper half-space 

was replaced with a 1.0 km layer and a free surface. Other model and source 

parameters remained unchanged. The grid parameters for each method were chosen 

based on a 2.5 per cent tolerance in group velocity as determined from Figures 2, 3, 

and 4. The 2.5 per cent tolerance criteria formed the basis for a somewhat stringent 

equivalent accuracy comparison between the methods, in that the shortest wave- 

lengths for each method were restricted by the tolerance. Longer wavelengths, which 

account for most of the amplitude in calculated synthetic traces, were therefore 

subjected to a much lower tolerance, depending on the shape of the applicable 

dispersion curve from Figures 2, 3, and 4. 

The grid for the second-order finite-difference method was sampled at 12.5 m in 

space and 2.188 ms in time for a total of 1280 by 320 grid points and 3430 time step 

iterations. The fourth-order finite-difference method used 25.0 m and 4.375 ms 

space and time step intervals respectively for a total of 640 by 160 grid points and 

1715 time step iterations. In contrast, the Fourier method, in this case using a 

second-order time derivative calculation, achieved the same calculation using 256 

by 64 grid points and 2400 time step iterations. As an additional comparison, the 

Fourier method seismograms were also recalculated, sampling the grid and time 

step sizes twice as dense for a total of 512 by 128 grid points and 4800 time step 

iterations. 

The normal and dense grid Fourier method seismic sections and the finite- 

difference method seismic sections are shown in Figure 10. Comparison of the four 

sections reveals differences in phase for later wide-angle and multiple arrivals and 

variations in amplitude for the head wave. The second-order finite-difference 

calculation shows more dispersion than the other calculations, in spite of the greater 

density of grid points. The dispersion is evidenced by both distortion of waveforms 

and delay of arrivals at far distances. The two finite-difference calculations also 

show reflections from artificial boundaries at about 0.9 sec reduced time at distances 

greater than 6.0 kin. The artificial reflections were not optimally absorbed and 

should not be considered for the present comparison. 

Figure 11 shows a trace by trace comparison of the Fourier and finite-difference 

calculations, similar to the Fourier and Cagniard-de Hoop comparison of Figure 9, 

with traces from near the critical distance and three times the critical distance. The 

finely sampled Fourier method calculation closely matches the coarse-grid calcula- 

tion in waveform shape, although some dispersion from the time derivative calcu- 

lations is evident from the slight phase shifts between the traces. Some amplitude 

variations are also observed between the two Fourier calculations in secondary 

phases. Somewhat more noticeable differences exist between the Fourier and finite- 

difference traces, especially the second-order calculation, primarily in headwave 

phase and relative amplitudes of later arrivals. 

Some of the discrepancies, which are not as apparent in the comparison between 

Fourier and Cagniard-de Hoop methods of Figures 8 and 9, may partly be due to 

variations in the source and receiver depth. The source and receivers are located 

two rows of grid points below the free surface for each calculation (one row for the 

coarse-grid Fourier calculation). The depth is dependent upon the grid spacing. 

Apart from the headwave and dispersion-related anomalies, the overall match 

between the Fourier and finite-difference calculations is close in waveform position, 

shape and amplitude. 

Figure 12 shows a comparison between finite-difference and Fourier methods 
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FIG. 10. Seismograms using the Fourier method, a fourth-order finite-difference method and the 
second-order finite-difference method for a model with a simple layer over a half-space. A free surface 
boundary condition was used for the top boundary and nonreflecting boundary conditions (Cerjan et al., 
1985) for the other three boundaries. The source function was an 8.0 Hz peak frequency Ricker wavelet. 
The Fourier method was implemented with a second-order time derivative calculation. The grid for the 
first Fourier section was sampled at 62.5 m in space and 3.125 ms in time using 256 by 64 grid points 
and 2400 time step iterations. The second Fourier section used halved space and time sample intervals 
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Fourier, Fourth Order & Second-Order Trace Comparison 
(Layer Over Half Space) 
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FIG. 11. Trace by trace comparison of sections in Figure 10 for two distances. Traces are compared 
for Fourier, dense-grid Fourier, fourth-order finite-difference and second-order finite-difference methods 
for seismograms at about the critical distance (2.0 kin) and three times the critical distance (6.0 km). 
Amplitudes are normalized with respect to the first arrival, i.e., the direct wave at 2.0 km and the head 
wave at 6.0 km. Traces reveal slight phase discrepancies due to dispersion errors and phase and amplitude 
differences in the head wave between Fourier and finite-difference methods. 

i nvo lv ing  C P U  t ime  as well as c o m p u t e r  storage. F in i t e -d i f fe rence  (second a n d  

four th -order )  a n d  Four i e r  me thods  are compared  for ac tua l  I B M  3083 c o m p u t e r  

r e q u i r e m e n t s  for ca lcu la t ing  the  model  in  Figure  10. T h e  he ight  of the  hollow 

ver t ica l  bars  show the  re la t ive  C P U  t ime  a n d  the  he ight  of the  solid ba r s  show the  

re la t ive  c o m p u t e r  s torage r e q u i r e m e n t s  for equ iva l en t  ( two-d imens iona l )  runs .  

W h e n  u s ing  a second-order  t ime  der iva t ive  ca lcu la t ion ,  the  Four ie r  m e t h o d  requi red  

app rox ima te ly  o n e - t h i r d  the  C P U  t ime  of a n  equ iva l en t  second-order  f ini te-dif fer-  

ence  run .  By u s ing  a fou r th -o rde r  t ime-de r iva t ive  ca lcula t ion ,  the  re la t ive  C P U  t ime  

of the  Four i e r  m e t h o d  was reduced  to abou t  one fourth .  T h e  four th -o rde r  f in i te-  

dif ference m e t h o d  requ i red  app rox ima te ly  two th i rds  the  C P U  t ime.  W i t h  regard to 

of 31.25 m and 1.5625 ms, respectively. The fourth-order finite-difference method was sampled at 25.0 
m in space and 4.375 ms in time using 640 by 160 grid points and 1715 time step iterations. The second- 
order finite-difference method was sampled at 12.5 m in space and 2.1875 ms in time using 1280 by 320 
grid points and 3430 time step iterations. Amplitudes for traces in all three sections were multiplied 
times distance for scaling and plotted at a reducing velocity of 4.0 km/sec. Seismic arrivals include direct, 
reflected (labeled "A"), refracted ("B") and multiply reflected and refracted ("AA" and "BB", respectively) 
phases. Reflections from artificial boundaries are also present at about 0.9 sec reduced time for distances 
greater than 6.0 km. 
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CPU Time and Storage Comparisons 
(Equivalent Runs Using an IBM 3083 Computer*) 

Fourier Method 
2nd-Order 4th-Order 2nd-Order 4th-Order 
Finite Diff Finite Diff Time Derivative Time Derivative 

Grid Size 1280 x 320 640 x 160 256 x 64 256 x 64 

Time Steps 3428 1714 3428 1500 

Points perX 10 I 5 - 2 2 
At ~ 

c - -  0.7 0.7 0.14 0.32 Ax 

Total CPU (min) 4 6 4 . .  330 108 R 104 

Relative CPU el.01 '01 07i i l  0.331111 0.23 II 
Relative Stora~ . 0 2 0.05 .. 0.06 m 

* Group Velocity Error of max frequency is 2.5 percent for each method 

FIG. 12. Actual CPU time and storage comparisons for second-order explicit, fourth-order implicit 
and Fourier methods for equivalent calculations of the two-dimensional layer over half-space model in 
Figure 10. The parameters for each method were determined from the group velocity curves of Figures 
2, 3, and 4 by arbitrarily using a group velocity error of 2.5 per cent for the maximum frequency (three 
times 8.0 Hz) for each method. The Fourier method calculations were performed using both a second- 
and fourth-order time derivative calculation. Computations were conducted on an IBM 3083 computer 
without using vector processing or virtual memory. The explicit time requirements were extrapolated 
from calculating and timing several time step iterations. Fourth-order and Fourier CPU times were 
recorded for calculations of Figure 10. The Fourier method calculations required about one-third or one- 
fourth the CPU time of the second-order explicit calculations, as shown by the height of the hollow 
vertical bar, depending which time derivative calculation method was used. The Fourier method required 
less computer storage by nearly a factor of 20. 

computer storage, the fourth-order finite-difference method required a factor of 4 

less computer storage than the second-order method. The storage requirements for 

the Fourier method was less by nearly a factor of 20. These efficiency factors, which 

apply to two-dimensional models, are not quite as dramatic as those stated by 

Fornberg (1987), who suggested a factor of 256 fewer grid points for the Fourier 

method. The stringent group velocity tolerance described previously and used by 

the calculations account for the somewhat more modest efficiency factors stated 

here, which are nevertheless significant. For three-dimensional models, the effi- 

ciency factors become even more significant and dramatic. 

The calculations shown above are for a simple model characterized by depth 

variations only. The primary advantage of discrete grid methods such as Fourier 

and finite-difference methods, howeever, is their ability to perform calculations on 

complicated laterally varying models. Figure 13 shows a layer over half-space similar 

to the velocity model for Figure 10, modified to include heterogeneities. The Fourier 

method calculation used the same model and source parameters as Figure 10 except 

that the lower half-space consisted of random velocity variations of up to 10 per 

cent. The variations in velocity were produced using a uniform distribution of 

random numbers and bandpass-filtered in two dimensions. The average wavelength 

of velocity variations after filtering was 0.5 km, or one seismic wavelength for the 

peak source energy. The importance of understanding random velocity variations 

is discussed by Frankel and Clayton (1986), who investigated scattering effects on 

amplitudes, travel times, spectra, and waveforms for short-period seismic waves 

(less than 1 sec). They used a fourth-order finite-difference method to show that 

scattering produced by such velocity variations can explain both travel-time anom- 

alies reported for teleseismic arrivals across large scale seismic arrays (e.g., LASA 
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Heterogeneous Model Section freVelocity (km/s) 
2 3 4 

surface 

Layer Over Random Velocity Half Space Model ~ 1 
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Amplitude x Distance Fourier Method ~ 4 

source 1 2 3 4 5 Distance(km) 8 9 10 11 12 13 

0 .............. ~ . . . . . . . . .  

1 0  

f peak = 8 hz 

FIG. 13. Seismograms for model with random velocity variations in the basement using the l~'ourmr 
method. The model and calculation parameters are identical to Figure 10 except for velocity variations 
of up to +10 per cent in the lower half-space. The velocity model for the half-space was formed using a 
uniform distribution random number generator and bandpass-filtered in both spatial dimensions passing 
wavelengths on the order of the 8.0 Hz source function. The arrow indicates the head wave of varying 
amplitude, which distinguishes this seismic section from the Fourier sections of Figure 10. 

and NORSAR) and the presence of seismic coda at frequencies above 30 Hz 

commonly observed in microearthquake waveforms. 

The wide-angle reflection and multiple reverberations in Figure 13 can be seen 

as well as the horizontal head wave and reverberation head waves. The important 

difference between calculations for Figures 10 and 13 is the variation of amplitudes 

along the wide-angle reflection and particularly the head wave indicated by the 

arrow in the latter figure. Complicated lateral heterogeneous models such as Figure 

13 can only be modeled using discrete grid methods such as finite-difference and 

Fourier methods. Detailed testing of the Fourier method for such models, which is 

beyond the scope of the present paper, is therefore restricted to comparison with 

other discrete grid methods. 

CONCLUSIONS 

The Fourier method and a fourth-order implicit finite-difference method for 

calculating synthetic seismograms in acoustic media are in many instances, includ- 

ing certain heterogeneous models, capable of performing calculations equivalent in 

accuracy to the second-order explicit finite-difference method using better than 

one-fourth and two-thirds the CPU time and using one-twentieth and one-fourth 

the computer storage, respectively. The seismogram errors for each of the discrete 

grid methods resulting from numerical dispersion can be predicted analytically by 

calculating both phase and group velocity curves, and utilizing group velocity 

calculations to determine errors in travel time as a function of frequency. Both 

phase and group velocity curves were calculated for all three methods, from which 

criteria were established for estimating equivalent accuracy of each method. The 

criteria used for the comparisons in this paper was stringent, a 2.5 per cent tolerance 

in group velocity for the shortest wavelength propagated. Conceivably, the efficiency 

factors quoted above for CPU time and storage ~mprovement could be even greater 
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without seriously degrading the accuracy of the calculations for wavelengths of 

significant amplitude. Comparisons of the Fourier method with the Cagniard-de 

Hoop method confirmed that the Fourier method was capable of performing equiv- 

alent calculations for simple layered media. 

The primary advantage of the coarse grid methods are their ability to model 

relatively large, laterally heterogeneous media, ultimately including three-dimen- 

sional variations in structure and even anisotropic features. Equally important is 

their ability to model complicated or rapidly varying velocity structures such as 

those in Figure 13. The Fourier method, in particular, has become a valuable tool 

in modeling velocity structures of deeper and longer extent than feasible with 

traditional finite-difference techniques. 
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