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S U M M A R Y

The numerical simulation of wave propagation in media with solid and fluid layers is essential

for marine seismic exploration data analysis. The numerical methods for wave propagation that

are applicable to this physical settings can be broadly classified as partitioned or monolithic:

The partitioned methods use separate simulations in the fluid and solid regions and explicitly

satisfy the interface conditions, whereas the monolithic methods use the same method in all

the domain without any special treatment of the fluid-solid interface. Despite the accuracy

of the partitioned methods, the monolithic methods are more common in practice because of

their convenience. In this paper, we analyse the accuracy of several monolithic methods for

wave propagation in the presence of a fluid-solid interface. The analysis is based on grid-

dispersion criteria and numerical examples. The methods studied here include: the classical

finite-difference method (FDM) based on the second-order displacement formulation of the

elastic wave equation (DFDM), the staggered-grid finite difference method (SGFDM), the

velocity-stress FDM with a standard grid (VSFDM) and the spectral-element method (SEM).

We observe that among these, DFDM and the first-order SEM have a large amount of grid

dispersion in the fluid region which renders them impractical for this application. On the other

hand, SGFDM, VSFDM and SEM of order greater or equal to 2 yield accurate results for

the body waves in the fluid and solid regions if a sufficient number of nodes per wavelength

is used. All of the considered methods yield limited accuracy for the surface waves because

the proper boundary conditions are not incorporated into the numerical scheme. Overall, we

demonstrate both by analytic treatment and numerical experiments, that a first-order velocity-

stress formulation can, in general, be used in dealing with fluid-solid interfaces without using

staggered grids necessarily.

Key words: Numerical solutions; Numerical approximations and analysis; Interface waves;

Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

The problem of modelling wave propagation in media that include

solid and fluid regions has many important applications in geo-

physics, engineering, medicine and other areas. For example, in

exploration geophysics, reflection-seismology experiments are rou-

tinely performed in marine environments, in which case the ocean

constitutes the fluid region and the crust the solid one (Carcione

& Helle 2004). There are many examples from engineering, one

of which is the dynamic evaluation of dams (Soares Jr. & Mansur

2006; Soares Jr. 2008). An interesting application arising from the

area of medicine is in clinical lithotripsy (Dahake & Gracewski

1997).

There are two types of numerical approaches that have been used

in the literature to perform simulations in this medium configuration

(using the classification introduced in Hou et al. 2012): (1) The par-

titioned approach, in which case a different equation is used in each

phase and the interface boundary conditions are explicitly satisfied,

and (2) the monolithic approach, in which case the same equation

and numerical method is used everywhere in the domain and the

interface boundary conditions are implicitly satisfied by letting the

medium parameters change arbitrarily. One advantage of the parti-

tioned approach is that it allows to reduce the number of degrees of

freedom in the fluid subdomain, it explicitly satisfies the interface

conditions and it even allows to use different numerical methods

in the different phases (Stephen 1983; Dahake & Gracewski 1997;
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Figure 1. S-wave dispersion of DFDM for ǫ = 0.

Komatitsch et al. 2000; Carcione & Helle 2004; Lombard & Piraux

2004; Soares Jr. & Mansur 2006; Käser & Dumbser 2008; Soares Jr.

2008; Madec et al. 2009; Wilcox et al. 2010; Komatitsch 2011; Qian

& Yamanaka 2012). The disadvantages are that it requires precise

knowledge of the location of the interface and it can be cumbersome

to use if the interface has a complicated geometry. The main sought

advantage of the monolithic approach is that it is easy to implement

and use even for arbitrarily heterogeneous models, but the accuracy

is constrained by dispersion and discretization errors (Virieux 1986;

Burns & Stephen 1990; Dougherty & Stephen 1991; Stephen 1996;

van Vossen et al. 2002). Despite the elegance and sophistication

of the methods based on the partitioned approach, the monolithic

approach is arguably the most common in exploration geophysics.

One clear example of the preference for the monolithic approach

is the popularity of the staggered-grid finite-difference method

(SGFDM), which has been known since its introduction to seismic

modelling to yield accurate results at fluid-solid interfaces. In his

seminal paper, Virieux (1986) demonstrated using a grid-dispersion

analysis and numerical experiments that SGFDM is suitable for nu-

merical wave propagation in media with fluid-solid interfaces with-

out any special treatment of the discontinuity. The main outcomes

of his analysis are that the P-wave dispersion is independent of the

S-wave velocity, and the numerical S-wave velocity is proportional

to the physical velocity, therefore the S wave vanishes in the sim-

ulations in the acoustic subdomain. This is a significant advantage

of SGFDM over the standard-grid finite difference method (FDM)

based on the elastic formulation of the wave equation (DFDM, Kelly

et al. 1976), which is known for having catastrophic dispersion at

this kind of interfaces (e.g. Cohen 2002).

The motivation of this paper is to study the accuracy of other

monolithic methods and determine if they have catastrophic disper-

sion or share the advantages of SGFDM at fluid-solid interfaces. We

find that a standard-grid formulation of the FDM has similar prop-

erties as SGFDM if it is based on the velocity-stress formulation

of the wave equation. Furthermore, the spectral-element method

(SEM) based on the displacement formulation of the wave equation

can also share the advantages if the basis functions are of order two

or higher.

In the next sections, we briefly introduce the numerical formu-

lations of the elastic wave equation, their grid dispersion for the

fluid-solid interface problem and the results of some numerical

simulations.

Figure 2. S-wave dispersion using ǫ = 0.01 and (a) DFDM, (b) SGFDM

and (c) VSFDM.

2 F O R M U L AT I O N S O F T H E E L A S T I C

WAV E E Q UAT I O N

The elastic wave equation is based on the equation of motion (Aki

& Richards 2002), which is given by

ρ∂2
t ui = τi j, j + fi , (1)

where ρ is the density, ui is the ith component of the displacement

field, τ ij is the i-j component of the stress tensor and fi is the ith
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280 J. D. De Basabe and M. K. Sen

Figure 3. S-wave dispersion of SEM using ǫ = 0.01 and (a) κ = 2, (b) κ = 3, (c) κ = 4 and (d) κ = 5.

component of the source. In the above equation and all of the

following we use Einstein’s summation convention unless other-

wise noted. In the isotropic case, the stress tensor is related to the

displacement by the generalized Hooke’s law:

τi j = λuk,kδi j + μ(ui, j + u j,i ), (2)

where δij is Kronecker’s delta and λ and μ are the Lamé parameters.

The displacement formulation of the wave equation is simply

obtained by substituting Hooke’s law, eq. (2), into the equation of

motion, eq. (1), to yield

ρ∂2
t ui = (λu j, j ),i + (μ(ui, j + u j,i )), j + fi . (3)

On the other hand, the velocity-stress formulation is given by writing

eq. (1) using the velocity field vi = ∂ tui and taking a time derivative

of eq. (2), to obtain

ρ∂tvi = τ j i, j + fi , (4)

∂tτi j = λvk,kδi j + μ(vi, j + v j,i ). (5)

The advantage of the displacement formulation, eq. (3), is that it

has a reduced number of degrees of freedom; for example, eq. (3)

requires 2 degrees of freedom in each node in 2-D whereas the

velocity-stress formulation of eqs (4) and (5) requires 5. Notice that

these equations are typically solved numerically in time using a leap-

frog scheme (regardless of the method used for the discretization in

space) and therefore eq. (3) requires a minimum of four memory

variables per node and eqs (4) and (5) require five per node. In 3-D

and considering a leap-frog time-stepping scheme eq. (3) requires

six memory variables per node and eqs (4) and (5) require nine. On

the other hand, the velocity-stress formulation has the advantage of

having first-order derivatives in space and in time and no derivatives

on the medium parameters, which can be advantageous for some

numerical methods.

The finite-element method (FEM) and related methods like SEM

use the weak formulation of the wave equation which is given by the

following statement: Find u ∈ H1(	) such that for all v ∈ H1(	)

(
ρ∂2

t u, v
)
	

+ B	 (u, v) = ( f , v)	 , (6)

where H1(	) is the first Sobolev space (Cohen 2002), 	 is the

domain, and

(u, v)	 =
∫

	

uivi dx dz, (7)

B	 (u, v) =
∫

	

(
λ(ui,iv j, j + μ(ui, j + u j,i )vi, j

)
dx dz. (8)

It can be shown that eq. (6) is equivalent to eq. (3) whenever a so-

lution to the latter exists (Cohen 2002). There are many advantages

of this formulation: (i) it does not have derivatives on the medium

parameters, (ii) it involves only first-order derivatives on the dis-

placement field, (iii) it has the same number of degrees of freedom

as the displacement formulation of the elastic wave equation and (iv)

the domain boundary conditions are implicitly satisfied. Notice that

for succinctness we have assumed homogeneous Neumann bound-

ary conditions in eq. (6) for the external boundary but other types

of boundary conditions can also be accommodated; in fact, another
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Figure 4. Snapshots of the displacement field at t = 0.4 s of the first numerical experiment. (a,b) VSFD2 using h = 1.25 m, (c,d) SGFD2 using h = 2.5 m, and

(e,f) SGFD4 using h = 2.5 m.

advantage is that this formulation can naturally accommodate any

type of boundary condition.

3 N U M E R I C A L M E T H O D S

3.1 Finite-difference methods

There are many possible ways to discretize the wave equation using

the FDM; for example, the classical standard-grid displacement

formulation (Kelly et al. 1976), the staggered-grid velocity-

stress formulation (Virieux 1984, 1986), the rotated staggered-grid

formulation (Saenger et al. 2000), the standard-grid velocity-stress

formulation (VSFDM, Lombard et al. 2008) and the implicit

staggered-grid formulation (Liu & Sen 2009). It is beyond the scope

of this paper to carry out an exhaustive comparison of all these for-

mulations. Among these, we wish to focus on VSFDM, which has

attracted relatively little attention despite its simplicity and accu-

racy. For comparison purposes, we will also give an overview of

DFDM and SGFDM, which are related to VSFDM in ways that will

become evident in the following subsections.

3.1.1 Standard-grid displacement formulation

The first attempt to generate synthetic seismograms using FDM

was carried out by Alterman & Karal (1968). They used the dis-

placement formulation of the wave equation in polar coordinates
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282 J. D. De Basabe and M. K. Sen

Figure 5. Snapshots of the displacement field at t = 0.4 s of the first numerical experiment using 37.67 nodes per wavelength and (a,b) SEM1, (c,d) SEM2

and (e,f) SEM4.

and discretized it using the classical second-order finite-difference

operator. This approach was later adapted by Alford et al. (1974)

to the acoustic wave equation and by Kelly et al. (1976) to the

elastic wave equation. It is interesting to note that, even though the

above mentioned papers present a straightforward implementation

of FDM, the formulation for the elastic case is not unique because

there are different ways to discretize the cross-derivative term (the

second term in the right-hand side in eq. (3) for i �= j; Klimeš 1996).

Since the comparison of the different methods will be based on

the spatial discretization, we will only include the semidiscrete form

of the equations. The discretization of the elastic wave equation by

DFDM is given by (Kelly et al. 1976):

∂2
t U x

m,n = α2h−2
(
U x

m+1,n − 2U x
m,n + U x

m−1,n

)

+ β2h−2
(
U x

m,n+1 − 2U x
m,n + U x

m,n−1

)

+
1

4
h−2(α2 − β2)

(
U z

m+1,n+1 − U z
m+1,n−1

− U z
m−1,n+1 + U z

m−1,n−1

)
, (9)
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Figure 6. Comparison of the synthetic seismograms with the analytic so-

lution (dashed line) for the first numerical experiment. The seismograms

were computed 10 m above the interface at a horizontal offset of 100 m.

(a) x component of displacement, (b) z component of displacement. All the

seismogram plots have been created with the aid of ObsPy (Beyreuther et al.

2010; Megies et al. 2011).

∂2
t U z

m,n = α2h−2
(
U z

m,n+1 − 2U z
m,n + U z

m,n−1

)

+ β2h−2
(
U z

m+1,n − 2U z
m,n + U z

m−1,n

)

+
1

4
h−2(α2 − β2)

(
U x

m+1,n+1 − U x
m+1,n−1

− U x
m−1,n+1 + U x

m−1,n−1

)
, (10)

Figure 7. Synthetic seismograms for the first numerical experiment com-

puted 10 m above the interface and at a horizontal offset of 700 m. (a) x

component of displacement, (b) z component of displacement.

where h is the spatial increment in the x and z directions, α =√
(λ + 2μ)/ρ and β =

√
μ/ρ are the P- and S-wave velocities, and

U x
m,n and U z

m,n are the x and z components of displacement at the

point (xm, zn).

3.1.2 Staggered-grid velocity-stress formulation

The SGFDM stencil takes advantage of the structure of the velocity-

stress formulation to evaluate the derivatives using a centred finite-

difference operator and obtain second-order accuracy in space. The
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284 J. D. De Basabe and M. K. Sen

Figure 8. Details of Fig. 7(a) for the windows between 0.38 and 0.47 s.

(a) x component of displacement, (b) z component of displacement.

method was originally developed by Yee (1966) for Maxwell’s equa-

tions and then used in seismic modelling by Madariaga (1976).

This method was successfully applied to elastic wave propagation

by Virieux (1984, 1986) and has been extended to higher-order ap-

proximations in Levander (1988) and to 3-D in Graves (1996) and

Minkoff (2002). See also Dougherty & Stephen (1991) and Stephen

(1996) for an application of this method to sea-surface scattering in

2-D and Burns & Stephen (1990) for an application to scattering in

the presence of 3-D sea-surface topography.

The semidiscrete version of the staggered-grid equations is given

by (Virieux 1986)

Figure 9. Details of Fig. 7(b) for the windows between 0.53 and 0.62 s.

(a) x component of displacement, (b) z component of displacement.

∂t V
x

m+1/2,n =
b̄m+1/2,n

h

(
T xx

m+1,n − T xx
m,n

+ T xz
m+1/2,n+1/2 − T xz

m+1/2,n−1/2

)
, (11)

∂t V
z

m,n+1/2 =
b̄m,n+1/2

h

(
T xz

m+1/2,n+1/2 − T xz
m−1/2,n+1/2

+ T zz
m,n+1 − T zz

m,n

)
, (12)

∂t T
xx

m,n =
λm,n + 2μm,n

h

(
V x

m+1/2,n − V x
m−1/2,n

)
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Table 1. Misfits of the synthetic seismo-

grams in Fig. 6 of the first numerical experi-

ment computed using the continuous wavelet

transform.

x z

Method EM PM EM PM

VSFD2 0.160 0.173 0.076 0.123

SGFD2 0.108 0.125 0.095 0.133

SGFD4 0.120 0.138 0.113 0.153

SEM1 0.078 0.086 0.107 0.074

SEM2 0.070 0.090 0.089 0.084

SEM4 0.081 0.081 0.094 0.081

Table 2. Misfits of the synthetic seismograms

in Fig. 7 of the first numerical experiment.

x z

Method EM PM EM PM

VSFD2 0.684 0.262 0.164 0.099

SGFD2 0.216 0.155 0.174 0.092

SGFD4 0.088 0.095 0.120 0.137

SEM1 0.146 0.027 0.092 0.054

SEM2 0.309 0.119 0.081 0.092

SEM4 0.423 0.175 0.088 0.080

+
λm,n

h

(
V z

m,n+1/2 − V z
m,n−1/2

)
, (13)

∂t T
zz

m,n =
λm,n

h

(
V x

m+1/2,n − V x
m−1/2,n

)

+
λm,n + 2μm,n

h

(
V z

m,n+1/2 − V z
m,n−1/2

)
, (14)

∂t T
xz

m+1/2,n+1/2 =
μ̄m+1/2,n+1/2

h

(
V x

m+1/2,n+1 − V x
m+1/2,n

+ V z
m+1,n+1/2 − V z

m,n+1/2

)
, (15)

where V x
m,n and V z

m,n are the x and z components of the velocity

field, and T xx
m,n , T zz

m,n and T xz
m,n are the components of the stress tensor,

b̄m+1/2,n is the average buoyancy between nodes (m, n) and (m + 1,

n), b̄m,n+1/2 is the average buoyancy between nodes (m, n) and (m,

n + 1), and μ̄m+1/2,n+1/2 is the average of μ at the centre of the cell

defined by the nodes (m, n), (m + 1, n), (m, n + 1) and (m + 1,

n + 1). Notice that eqs (11), (12) and (15) require to evaluate the

medium parameters at intermediate points between nodes, see van

Vossen et al. (2002), Mittet (2002) and references there in for some

proposed averaging strategies. The averaging adopted in this paper

is the one adopted by Graves (1996), which is given by

b̄m,n+1/2 =
1

2

(
ρ−1

m,n + ρ−1
m,n+1

)
, (16)

b̄m,n+1/2 =
1

2

(
ρ−1

m,n + ρ−1
m+1,n

)
, (17)

μ̄m+1/2,n+1/2 = 4
(
μ−1

m,n + μ−1
m+1,n + μ−1

m,n+1 + μ−1
m+1,n+1

)−1
. (18)

The discretization in time is usually also implemented in a stag-

gered fashion such that the method is second-order accurate in the

time domain. The above equations can be easily modified for higher-

order differentiation, see for example Levander (1988) and Mittet

(2002). One of the advantages of this approach is that it effectively

doubles the sampling ratio because of the staggering (Carcione et al.

2002). Another advantage is that the grid dispersion is significantly

improved with respect to DFDM (this property will be reviewed in

the next section). The disadvantages are that the number of degrees

of freedom is larger than that of DFDM and that it is impossible to

match the medium discontinuities with a staggered grid, even for

simple models with straight interfaces, and therefore the error as-

sociated with the misalignment is unavoidable (Symes & Vdovina

2009). Furthermore, Lombard et al. (2008) summarized the diffi-

culties and accuracy limitations of imposing free-surface boundary

conditions and proposed an alternative strategy that is incompatible

with a staggered grid.

3.1.3 Standard-grid velocity-stress formulation

The above equations for SGFDM can also be adapted in a standard

grid using second-order operators as follows:

∂t V
x

m,n =
1

2hρ

(
T xx

m+1,n − T xx
m−1,n + T xz

m,n+1 − T xz
m,n−1

)
, (19)

∂t V
z

m,n =
1

2hρ

(
T xz

m+1,n − T xz
m−1,n + T zz

m,n+1 − T zz
m,n−1

)
, (20)

∂t T
xx

m,n =
λ + 2μ

2h

(
V x

m+1,n − V x
m−1,n

)
(21)

+
λ

h

(
V z

m,n+1 − V z
m,n−1

)
, (22)

∂t T
zz

m,n =
λ

2h

(
V x

m+1,n − V x
m−1,n

)
(23)

+
λ + 2μ

h

(
V z

m,n+1 − V z
m,n−1

)
, (24)

∂t T
xz

m,n =
μ

2h

(
V x

m,n+1 − V x
m,n−1 + V z

m+1,n − V z
m−1,n

)
. (25)

Besides the obvious simplification of the equations, there can

be numerical advantages of this approach; for example, the inter-

face error can be minimized using averaging strategies (Symes &

Vdovina 2009) and the stability condition allows for times steps

two times larger than in SGFDM (see Appendix C). Also, Lombard

et al. (2008) have used this scheme coupled with the ADER method

for time stepping to accurately impose free-surface boundary

conditions.

3.2 Spectral-element method

SEM is a special case of FEM that uses high-order basis functions.

For seismic modelling, it is usually implemented using the Gauss-

Lobatto-Legendre (GLL) nodes and quadrature rules and Lagrange

basis functions (Komatitsch & Vilotte 1998; Komatitsch & Tromp

1999, 2002a,b; Cohen 2002) because these yield an explicit time-

marching scheme.

We can use the weak formulation of the elastic wave equation, eq.

(6), to obtain a system of ODEs by introducing the finite dimensional

subspace Xh = Xh × Xh ⊂ H1(	), where Xh = span{φi} and φi,

i = 1, . . . , n, are the polynomial basis functions. Substituting for u

the approximation uh ∈ Xh given by the linear combination

uh(x, z, t) =
(
U x

j (t)φ j (x, z) , U z
j (t)φ j (x, z)

)T
, (26)

where U x
j and U z

j are the coefficients of the FEM approximations

to the horizontal and vertical displacement, respectively, and sub-

stituting v = (φi , 0)T yields the following system of equations

Mi j∂t tU
x
j + K 1

i j U
x
j + K 2

i j U
z
j = F x

i . (27)

Similarly, substituting v = (0, φi )
T , yields

Mi j∂t tU
z
j + K 3

i j U
x
j + K 4

i j U
z
j = F z

i , (28)
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286 J. D. De Basabe and M. K. Sen

Figure 10. Snapshots of the displacement field at t = 0.8 s for the second numerical experiment using (a,b) VSFD2 with h = 1 m, (c,d) SGFD2 with h = 2 m,

and (e,f) SGFD4 with h = 2 m.

where the matrices in eqs (27) and (28) are given by

Mi j = (ρφi , φ j )	, (29)

K 1
i j = B	

(
(φ j , 0)T , (φi , 0)T

)
, (30)

K 2
i j = B	

(
(0, φ j )

T , (φi , 0)T
)
, (31)

K 3
i j = B	

(
(φ j , 0)T , (0, φi )

T
)
, (32)

K 4
i j = B	

(
(0, φ j )

T , (0, φi )
T
)
, (33)

F x
i = ( fx , φi )	, (34)

F z
i = ( fz, φi )	, (35)

and fx and fz are the x and z components of f . Besides the ad-

vantages mentioned on eq. (6), this method has the following ad-

vantages: (i) It can minimize the discretization error by matching
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Figure 11. Snapshots of the displacement field at t = 0.8 s for the second numerical experiment using 34.8 nodes per wavelength and (a,b) SEM2,

and (c,d) SEM4.

the medium discontinuities and topography with the finite-element

mesh, and (ii) the grid-dispersion error and numerical anisotropy

can be minimized by choosing a suitable polynomial order of the

basis functions.

4 G R I D - D I S P E R S I O N A NA LY S I S

We now proceed to study the accuracy of the above mentioned

methods in a domain with a fluid-solid interface. In order to do this,

we study the grid dispersion of the S-wave in the fluid subdomain.

The analyses are based on the von Neumann method (Mitchell &

Griffiths 1980; Hughes 2000), which assumes a plane wave prop-

agating through the discretized domain. Since the goal of these

analyses is to derive the grid-dispersion relations, to have a man-

ageable set of parameters we make several assumptions about the

medium; we assume that the medium is isotropic, homogeneous,

unbounded and source free. These are ubiquitous assumptions in

plane-wave analyses, see for example Alford et al. (1974), Mullen

& Belytschko (1982), Marfurt (1984), Cohen (2002), Ainsworth

(2004a,b), Ainsworth et al. (2006), Zyserman et al. (2003), Zy-

serman & Gauzellino (2004, 2005), Zyserman & Santos (2007),

Seriani & Oliveira (2008) and Gabriel et al. (2010). These assump-

tions are not expected to be satisfied in practice, nevertheless the

results from an analysis based on these assumptions can provide

valuable information to determine the discretization parameters for

a numerical experiment.

4.1 Grid dispersion of the FDM

The grid dispersion of many FDMs has been analysed in the liter-

ature (e.g. Alford et al. 1974; Marfurt 1984; Virieux 1986; Moczo

et al. 2000; Saenger et al. 2000; Cohen 2002; Liu & Sen 2009).

We summarize in Appendix A the analysis for DFDM and in Ap-

pendix B the analysis of SGFDM. Also, in Appendix C we derive

the grid-dispersion relations for VSFDM, which closely resemble

the ones for SGFDM.

As shown in Appendix A, the S-wave dispersion using DFDM is

given by

βh

α
=

1

πδs

(
ǫ2

(
sin2 (πδs cos θ ) + sin2 (πδs sin θ )

)

+ (1 − ǫ2) sin2 (πδs cos θ ) sin2 (πδs sin θ )
)1/2

, (36)

where δs is the S-wave sampling ratio (the reciprocal of the number

of nodes per wavelength), ǫ = β/α is the S- to P-wave velocity ratio,

βh is the velocity at which the S-wave travels in the discretized do-

main and θ is the angle between the plane-wave propagation direc-

tion and the z axis. In this case, we normalize the discretized S-wave

velocity βh with the P-wave velocity, instead of the S-wave velocity,

because we wish to consider the case with vanishing S-wave veloc-

ity (notice that the ratio βh/β would converge to an undetermined

value when β tends to zero). In this modified dispersion relation the

absence of grid dispersion is given by βh/α = ǫ.
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Figure 12. Synthetic seismograms for the second numerical experiment

computed 10 m above the interface and at a horizontal offset of 100 m.

The dashed line is the analytic solution. (a) x component of displacement,

(b) z component of displacement.

Setting ǫ = 0 in the above equation yields

βh

α
=

1

πδs

| sin (πδs cos θ ) sin (πδs sin θ ) |, (37)

which is not identically zero unless θ = 0 or θ = π/2, but it

does converge to zero for δs → 0 and δs → ∞. Fig. 1 show the

dispersion curves for different incidence angles using eq. (37); it

can be observed in this figure that the maximum dispersion error is

obtained at θ = π/4.

The S-wave dispersion of SGFDM and VSFDM is given by (see

Appendices B and C, respectively)

(SGFDM)
βh

α
=

ǫ

πδs

√
sin2 (πδs cos θ ) + sin2 (πδs sin θ ), (38)

(VSFDM)
βh

α
=

ǫ

2πδs

√
sin2 (2πδs cos θ ) + sin2 (2πδs sin θ ).

(39)

Figure 13. Synthetic seismograms for the second numerical experiment

computed 10 m above the interface and at a horizontal offset of 700 m. (a)

x component of displacement, (b) z component of displacement.

Table 3. Misfits of the synthetic seismograms

in Fig. 12 of the second numerical experiment.

x z

Method EM PM EM PM

VSFD2 0.091 0.055 0.123 0.050

SGFD2 0.029 0.052 0.061 0.053

SGFD4 0.034 0.052 0.050 0.074

SEM2 0.209 0.135 0.259 0.093

SEM4 0.054 0.049 0.096 0.015

Notice that the above equations are identically zero whenever ǫ = 0.

Furthermore, comparing eqs (38) and (39), it is evident that in

VSFDM the effective sampling ratio is double than that of SGFDM

and therefore VSFDM requires the double of the nodes in each

direction to yield the same accuracy as SGFDM.

In order to compare the grid dispersion of these three methods

we can set a small S- to P-wave velocity ratio. Furthermore, since

in practice in a medium with vanishing S-wave velocity we are
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Table 4. Misfits of the synthetic seismograms

in Fig. 13 of the second numerical experiment.

x z

Method EM PM EM PM

VSFD2 0.216 0.221 0.171 0.080

SGFD2 0.098 0.084 0.234 0.154

SGFD4 0.065 0.052 0.055 0.101

SEM2 0.296 0.069 0.170 0.094

SEM4 0.222 0.081 0.091 0.028

Figure 14. Details of Fig. 13 for the time window between 0.5 and 0.65 s.

(a) x component of displacement, (b) z component of displacement.

interested in the P-wave, we assume that the sampling ratio is set

according to the P-wave velocity therefore the S-wave is under

sampled and δs is large. Fig. 2 shows the grid-dispersion curves for

DFDM, SGFDM and VSFDM using ǫ = 0.01. This figure shows

that the dispersion of SGFDM and VSFDM is smaller than ǫ, but

that of DFDM is approximately 50 times larger. Furthermore, the

dispersion converges to 0 for a large sampling ratio, which is the

case if we set the sampling ratio according to the P-wave velocity

and the S-wave velocity tends to zero.

Figure 15. Details of Fig. 13 for the time window between 1.55 and 1.8 s.

(a) x component of displacement, (b) z component of displacement.

4.2 Grid dispersion of the SEM

The grid dispersion of SEM for the elastic case was analysed in De

Basabe & Sen (2007); the procedure is summarized in Appendix D

for completeness (see also Zyserman et al. 2003; Seriani & Oliveira

2008, for different approaches). As mentioned in the above refer-

ences, it is impractical to get explicit dispersion relations for the

high-order methods, but the grid-dispersion curves can be com-

puted numerically.

Introducing the plane-wave assumptions into the discrete system

yields an eigenvalue problem of order 2κ2, where κ is the polynomial

order of the method. For the first-order method there are exactly

two eigenvalues, which correspond to the P and S waves, and it is

possible to get explicit grid-dispersion relations. For higher values

of κ it is not feasible to solve the eigenvalue problem analytically

and we have to solve it numerically for each set of parameters.

The grid-dispersion relations for the first-order case are exactly

those for DFDM since this method is the special case of SEM

for κ = 1 and quadrilateral elements with sides parallel to the
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290 J. D. De Basabe and M. K. Sen

Figure 16. Snapshots of the displacement field at t = 1 s of the third numerical experiment using (a,b) VSFD2 with h = 2.5 m, (c,d) SGFD2 with h = 5 m and

(e,f) SGFD4 with h = 5 m.

coordinate axes. For the same reason, the first-order SEM suffers

from the catastrophic dispersion of DFDM shown in Fig. 1.

The higher-order cases have better approximation properties, as

shown for example, in Cohen (2002), Ainsworth (2004a), De Basabe

& Sen (2007) and Seriani & Oliveira (2008). For the vanishing

S-wave problem, the S-wave dispersion is identically equal to zero

whenever κ ≥ 2 for all incidence angles and sampling ratios, as

in the SGFDM and VSFDM cases (this has been determined nu-

merically for a large range of parameters since there are no explicit

grid-dispersion relations). For comparison purposes, we can use a

small value of ǫ and plot the grid-dispersion curves for different

incidence angles and degrees. In Fig. 3, we show the S-wave dis-

persion for ǫ = 0.01, κ = 2, . . . , 5 and different incidence angles.

The second-order method (Fig. 3a) exhibits some visible disper-

sion and anisotropy, with hastened wavefronts (βh/α > ǫ) for small

sampling ratios (δs < 0.5) and delayed wavefronts (βh/α < ǫ) for

larger sampling ratios (δs > 0.7). Comparing Figs 2(b) and 3(a), we

conclude that the amount of dispersion for κ = 2 is similar to that
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Figure 17. Snapshots of the displacement field at t = 1 s for the third numerical experiment using 40 nodes per wavelength and (a,b) SEM2, and (c,d) SEM4.

of SGFDM but with a different anisotropy pattern. Comparing now

with Figs 3(b)–(d), for κ =3, 4 and 5, respectively, we conclude that

the higher order methods yield less dispersion and anisotropy. The

grid-dispersion curves for larger values of κ (not shown) exhibit a

similar pattern.

5 N U M E R I C A L R E S U LT S F O R A

H O R I Z O N TA L F LU I D - S O L I D

I N T E R FA C E

In this section, we compare SGFDM, VSFDM and SEM using three

numerical examples that include a fluid-solid interface. We will re-

fer to the second-order VSFDM as VSFD2, and to the second- and

fourth-order SGFDM as SGFD2 and SGFD4, also SEMκ will re-

fer to SEM using basis functions of κth polynomial degree. In the

following discussion, the reported sampling ratios are based on the

wavelength of the S-wave at the peak frequency for convenience.

Notice that shorter wavelengths are also present in the model be-

cause the source wavelength contains a range of frequencies and

also the interface waves travel at a velocity smaller than that of

the S-wave. Furthermore, all the considered methods are coupled

with a second-order leap-frog scheme for the discretizations in time.

The size of the time step is selected using the CFL stability con-

ditions since using a smaller time step does not guarantee more

accurate results (Alford et al. 1974; Moczo et al. 2000; De Basabe

& Sen 2010). The numerical error of the time-stepping scheme is

not negligible but it is assumed to equally affect all the considered

methods.

5.1 First numerical experiment

The model for the first numerical example is divided into two hor-

izontal layers, the top layer represents a fluid with α = 1.5 km s−1

and ρ = 1 g cm−3, and the bottom one represents a solid with

α = 2.7 km s−1, β = 1.4 km s−1 and ρ = 1.2 g cm−3 (taken

from Zhu & Popovics 2006). There is an explosive source in the

pressure field located in the fluid layer 0.1 km above the interface

at the point (0 km, −0.1 km). The source wavelet is the second

derivative of a Gaussian function (a Ricker wavelet) with a peak

frequency of 30 Hz. The snapshots at t = 0.4 s are shown in Figs 4

and 5. Figs 4(a) and (b) show the snapshots of the x and z compo-

nents of displacement using VSFD2 and 37.67 nodes per wavelength

(h = 1.25 m), and Figs 4(c) to (f) corresponds to SGFD2 and SGFD4

using h = 2.5 m for an effective sampling ratio of δs = 1/37.67

(37.67 nodes per wavelength). The only small difference among

the VSFD2, SGFD2 and SGFD4 snapshots is that the refracted

wave using VSFD2 has a slightly larger amplitude. Fig. 5 shows the

snapshots of the x and z components of displacement using SEM1,

SEM2 and SEM4 and 37.67 nodes per wavelength. In this figure,

we observe that there is a random pattern of dispersion in the fluid

layer in Figs 5(a) and (b) that corresponds to the S-wave dispersion,

nevertheless this dispersion significantly diminishes for the second-

order method (Figs 5c and d) and the fourth-order method does not
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exhibit any observable dispersion in Figs 5(e) and (f), in agreement

with the grid-dispersion analysis of the previous section.

In order to make a more precise comparison of the accuracy

of each of the methods, we show in Figs 6 to 9 the synthetic

seismograms using the above mentioned numerical methods and

the exact solution computed using the Cagniard-de Hoop method.

For a detailed description of this method see Cagniard (1962), chap-

ter 6 of Aki & Richards (2002) and chapter 13 of Diaz (2005); see

also Zhu & Popovics (2006) for an analytical study of the interface

waves in this physical settings. We have used a source code to com-

pute the analytic solution available from the SPICE website.1 Fig. 6

shows the x and z components of displacement of the synthetic seis-

mograms recorded 10 m above the interface with a horizontal offset

of 100 m. Comparing the synthetic seismograms with the analytic

solution reveals that SEM accurately predicts the arrival time, wave-

form and amplitude. Fig. 7 shows the x and z components of dis-

placement of the synthetic seismograms recorded at the larger offset

of 700 m. All the considered methods yield good approximations

of the arrival times, but there are significant errors in the waveform

and amplitude, particularly for the x component. We show in Figs 8

and 9 two time windows for 0.38–0.47 s and 0.53–0.62 s in order to

be able to see the two main arrivals. The first arrival corresponds to

the head wave associated with the transmitted P wave and the sec-

ond arrival is a combination of the direct wave and the Scholte wave.

All of the methods except VSFD2 simulate with good accuracy the

first arrival, but for the second arrival (Fig. 9) some of the methods

fail to reproduce the waveform. In particular for the x component,

notice in Fig. 9(a) that VSFD2 approximates poorly the waveform,

and SEM2 and SEM4 underestimate the amplitude. Also, notice

in Fig. 9(b) that VSFD2 and SGFD2 exhibit some dispersion. In

order to make a precise comparison, we have estimated the misfit

of the synthetic seismograms using an approach based on the con-

tinuous wavelet transform as proposed in Kristeková et al. (2006)

and further developed in Kristeková et al. (2009). This approach

allows us to separately evaluate phase and amplitude errors and it is

therefore more adequate for time-series comparisons; it yields two

single-valued measures of error, the envelope misfit (EM) quantifies

amplitude errors and the phase misfit (PM) quantifies errors related

to time or phase shifting. In order to make a qualitative evaluation

of these error measures, they have proposed ranges of these values

and categorized them as excellent, good, fair and poor, see fig. 1 in

Kristeková et al. (2009). EM and PM of the simulated seismograms

are shown in Tables 1 and 2. Notice that, at the short offset (Table 1),

all the methods yield excellent results according to the verbal value

of the goodness of fit criteria of Kristeková et al. (2009), however

VSFD2 yields the largest misfits for the x component and SGFD4

yields the largest misfits for the z component. Furthermore, SEM

yields overall low misfits for the x and z components, nevertheless

SEM1 has large dispersion errors that are not reflected in the com-

puted misfits because the dispersed waves are very slow and are not

visible in the seismograms, but are clearly present in the snapshots

of Figs 5(a) and (b). Having shown analytically and numerically that

SEM1 produces a spurious S-wave in the fluid, we will not consider

this method in the other numerical simulations. Table 2 shows the

misfits of the seismograms for the larger offset. It can be observed

in this table that SEM yields excellent approximations for the z

component but the amplitude of the x component is approximated

poorly by the high-order methods. Overall, SGFD4 yields the best

1
Seismic Wave Propagation and Imaging in Complex media: an European

network (SPICE). http://www.spice-rtn.org.

approximations at the large offset except that the phase misfit of the

z component is comparatively large.

5.2 Second numerical experiment

In the second numerical example, we replaced the medium param-

eters of the elastic layer with α = 1.5 km s−1, β = 0.522 km s−1

and ρ = 1.6 gr cm−3 to represent a soft sediment (modified from

Carcione & Helle 2004). For this numerical experiment the source

is placed 0.01 km above the interface and has a peak frequency of

15 Hz. Figs 10 and 11 show the snapshots at 0.8 s for the x and

z components of displacement, all of the methods use 34.8 nodes

per wavelength for the peak frequency of the S wave. Notice in all

the snapshots that since the source is very close to the interface,

the direct and reflected waves are indistinguishable. Furthermore,

wavefronts of the transmitted P and S waves are clearly visible in

the solid layer. The head wave is clearly visible in the VSFD2 snap-

shots but it has a very small amplitude in all the other snapshots.

In addition to that, all the methods show in the snapshots a surface

wave that propagates at a velocity slightly slower than that of the

S wave, this is identified as the Scholte wave in Zhu & Popovics

(2006) or as the Stoneley wave in Carcione & Helle (2004). Finally,

the SEM snapshots (Fig. 11) show a spurious surface wave that

propagates at a velocity smaller than that of the P wave but larger

than that of the S wave. This spurious mode has a larger amplitude

in the x component, it has a slower velocity in SEM2 than in SEM4

and generates a head wave in the solid layer and a dispersed wave

in the fluid layer.

The synthetic seismograms for this experiment are shown in

Figs 12 and 13. The seismograms in Fig. 12 are taken 10 m above

the interface at a horizontal offset of 100 m and the corresponding

envelope and phase misfits are shown in Table 3. Notice in the

seismograms and in the misfits that all the methods except SEM2

accurately simulate the waveform and amplitudes of the x and z

components. Translating the misfits to verbal values, all the results

are in the excellent range except for those of SEM2, which can be

qualified as good (see fig. 1 of Kristeková et al. 2009). We show

also the seismograms taken at an offset of 700 m in Fig. 13 and the

respective misfits in Table 4. The spurious surface wave is clearly

visible in the SEM2 and SEM4 seismograms and this is reflected in

the large values of EM for the x component of SEM2 and SEM4.

Figs 14 and 15 show the same seismograms but focusing on the 0.5–

0.65 s and 1.55–1.8 s time windows. Notice in Fig. 14 that all the

methods were able to accurately simulate the direct arrival except

SEM2 because of the contamination by the spurious surface wave.

The second arrival is dominated by the Scholte wave and it is shown

in Fig. 15. In this figure it is evident that VSFD2 and SGFD2 fail to

simulate the waveform, specially for the x component. Comparing

the misfits of each of the methods in Table 4, SGFD4 yields overall

the most accurate results and SEM4, despite the spurious surface

wave, has an excellent accuracy except for the amplitude of the x

component.

5.3 Third numerical experiment

Finally, we considered a third numerical example in which we

used the following parameters for the elastic layer: α = 4 km s−1,

β = 2.3 km s−1 and ρ = 2.4 gr cm−3 (Zhu & Popovics 2006). The

source has a peak frequency of 15 Hz and is placed 150 m above

the interface to enhance the amplitude of the leaky Rayleigh mode
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Figure 18. Comparison of the synthetic seismograms with the analytic solu-

tion (dashed line) for the third numerical experiment. The seismograms were

computed 10 m above the interface and at a horizontal offset of 1.3 km from

the source. (a) x component displacement, (b) z component displacement.

(Zhu & Popovics 2006). For this numerical experiment we use 40

nodes per wavelength for all the numerical methods.

The displacement field computed using the various methods at

t = 1 s are shown in Figs 16 and 17. These snapshots are heavily

clipped for visualization purposes, in order to better appreciate the

head waves. There is significant dispersion at the interface in the

VSFD2 snapshots, Figs 16(a) and (b). Also, there is dispersion in

the fluid layer in the SEM2 and SEM4 snapshots that concentrates

vertically and horizontally from the source point. Fig. 18 shows the

synthetic seismograms computed 10 m above the interface with a

horizontal offset of 1.3 km. This figure shows that VSFD2, SEM2

and SEM4 fail to reproduce the waveform of the x component; on

the other hand, the waveform of the z component is simulated by

all the methods. Notice in Table 5 that SGFD4 produces the best

approximation to the x component but SEM4 yields the most accu-

rate results for the z component. Similar conclusions can be drawn

from the seismograms computed at a horizontal offset of 2.1 km,

see Fig. 19 and Table 6. Notice from the table that VSFD2, SEM2

and SEM4 yield poor values for the x component. Fig. 20 shows a

Table 5. Misfits of the synthetic seismograms

in Fig. 18 of the third numerical experiment.

x z

Method EM PM EM PM

VSFD2 0.761 0.407 0.138 0.090

SGFD2 0.245 0.098 0.220 0.076

SGFD4 0.136 0.117 0.195 0.148

SEM2 0.672 0.313 0.402 0.060

SEM4 0.685 0.397 0.092 0.046

Figure 19. Comparison of the synthetic seismograms with the analytic so-

lution for the third numerical experiment. The seismograms were computed

10 m above the interface and at a horizontal offset of 2.1 km from the source.

(a) x component displacement, (b) z component displacement.

time window between 0.65 and 1.3 s in order to better appreciate

the waveform of the first two arrivals in Fig. 19. The first arrival

corresponds to the head wave associated to the transmitted P wave,

and the second one is a combination of the head wave associated

to the transmitted S wave and the leaky Rayleigh wave. These ar-

rivals are accurately simulated by all the methods, except that the x

component of the VSFD2 seismogram shows significant dispersion

in the second arrival. Fig. 21 shows a time window between 1.4
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Table 6. Misfits of the synthetic seismograms

in Fig. 19 of the third numerical experiment.

x z

Method EM PM EM PM

VSFD2 0.811 0.500 0.121 0.070

SGFD2 0.241 0.112 0.218 0.078

SGFD4 0.181 0.174 0.219 0.205

SEM2 0.504 0.407 0.351 0.083

SEM4 0.571 0.436 0.132 0.057

Figure 20. Details of Fig. 19 for the time window between 0.65 and 1.3 s.

(a) x component of displacement, (b) z component of displacement.

and 1.7 s in order to better appreciate the waveform of the third

arrival, which is a combination of the direct wave, reflected wave

and Scholte wave. We observe from Fig. 21(a) that only SGFD4 can

simulate the x component of this arrival with good accuracy. The

z component, Fig. 21(b), is simulated by all the methods but with

various degrees of accuracy: the SGFD4 waveform does not have

any visible dispersion but has the largest phase error; on the other

hand, SEM4 accurately reproduces the waveform but introduces a

small amount of dispersion after the wavefront.

Figure 21. Details of Fig. 19 for the time window between 1.4 and 1.7 s.

(a) x component of displacement, (b) z component of displacement.

6 D I S C U S S I O N

We have focused in this analysis on the monolithic methods, which

are very common in practice because of their availability. Never-

theless, we emphasize that these methods offer limited accuracy,

not only because the interface conditions are not incorporated into

the numerical scheme, but also because an elastic formulation is

used in the fluid subdomain. The analysis shows that some of the

considered methods have spurious modes in the fluid subdomain

that can be explained by the inadequacy of the elastic formulation

in this subdomain; see for example Figs 5(a), (b), 11 and 17. In

the numerical experiments that we have performed, we have not ob-

served any spurious modes in the results obtained using the methods

based on the velocity-stress formulation, their main hindrances are

the simulation of the surface waves and the discretization of the

interface.

It is beyond the scope of this paper to analyse other methods that

circumvent the above mentioned limitations, see for example the

approaches in Komatitsch et al. (2000), Madec et al. (2009) and

Komatitsch (2011). In the context of FDM, see for example Dahake

& Gracewski (1997). There are also the following approaches based
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on the discontinuous Galerkin method: Käser & Dumbser (2008)

and Wilcox et al. (2010).

7 C O N C LU S I O N S

We have compared the accuracy of DFDM, SGFDM, VSFDM and

SEM in models that include a fluid-solid interface using a mono-

lithic approach. The comparison is based on grid-dispersion analy-

ses of each method and numerical experiments. In order to be able

to make a precise comparison, we have computed synthetic seis-

mograms using an analytic approach and calculated the envelope

and phase misfits of the seismograms computed using the numerical

approaches.

The grid-dispersion analysis of FDM shows that the methods

based on the velocity-stress formulation of the wave equation, not

necessarily with staggered grids, yield more accurate results at fluid-

solid interfaces. VSFDM can yield results almost as accurate as

SGFDM but requires twice as many nodes in each direction (the

additional computational cost can be partially offset by taking larger

time steps since the stability condition of VSFDM allows for time

steps two times larger than those required by SGFDM). In contrast,

DFDM exhibits significant S-wave dispersion even when the phys-

ical S-wave velocity is zero, which would produce spurious S-wave

arrivals in the synthetic seismograms.

The analysis of SEM shows that the first-order SEM has the

same dispersion as DFDM and it is therefore not suitable for wave

propagation in models with fluid-solid interfaces. This phenomenon

is alleviated by using higher-order basis functions, which in fact

reduces the amount of dispersion error and numerical anisotropy to

a minimum.

The numerical experiments confirm the analytic results and also

show that the monolithic methods are able to simulate the interface

waves with varying degrees of accuracy (Stephen 1991; Stephen &

Swift 1994). Although the interface waves are clearly visible in the

synthetic seismograms, the amplitude and phase are not accurately

simulated by all the methods. We conjecture that this is a limitation

of the monolithic approaches, since the specific boundary condi-

tions are not explicitly incorporated into the numerical methods. In

particular, all the considered monolithic methods struggle to accu-

rately simulate the tangential displacement since it is assumed to

be continuous in these numerical methods whereas the boundary

conditions at this type of interface dictate that it should be discon-

tinuous. Among the methods compared, VSFD2 yields the largest

errors for the tangential component in most of the considered ex-

periments. SGFD4 reproduces both components of the waveform

in most of the cases with good or excellent accuracy, whereas SEM

introduced a spurious surface wave in the soft-sediment model, but

produced accurate results in the other considered models, in partic-

ular the 4th order method.

One limitation of the analytical comparison is that we have con-

sidered the grid dispersion of the body waves but, as shown in the

numerical experiment, the interface waves are part of the physical

model. Furthermore, in the analysis we consider only the mismatch

of the grid velocity compared to the physical velocity, but the am-

plitude of the dispersed waves is not considered.
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A P P E N D I X A : G R I D D I S P E R S I O N

A NA LY S I S O F T H E D I S P L A C E M E N T

F O R M U L AT I O N O F F D M

The grid dispersion of the classical FDM of Kelly et al. (1976) has

been analysed, for example, in Cohen (2002); We summarize the

analysis here for completeness. Assuming a plane wave solution for

the x and z components of displacement, then U x
m,n = A1 Em,n and

U z
m,n = A2 Em,n , where

Em,n = exp {i (kx mh + kznh − ωh t)}, (A1)

ωh is the grid angular frequency, h is the spatial increment in the

x and z directions, (kx, kz)
T is the wavenumber, and A1 and A2 are

arbitrary constants. Substituting the plane wave solution into eqs

(9) and (10) yields the following eigenvalue problem

�

[
A1

A2

]
=

[
Ŵ �

� ϒ

] [
A1

A2

]
, (A2)

where

� = h2ω2
h, (A3)
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Ŵ = 4α2 sin2

(
kx h

2

)
+ 4β2 sin2

(
kzh

2

)
, (A4)

ϒ = 4α2 sin2

(
kzh

2

)
+ 4β2 sin2

(
kx h

2

)
, (A5)

� = (α2 − β2) sin (kx h) sin (kzh) . (A6)

The system has non-trivial solutions if � = �1 or � = �2, where

�1 = α2

[
sin2

(
kx h

2

)
+ sin2

(
kzh

2

)]

− (α2 − β2) sin2

(
kx h

2

)
sin2

(
kzh

2

)
, (A7)

�2 = β2

[
sin2

(
kx h

2

)
+ sin2

(
kzh

2

)]

+ (α2 − β2) sin2

(
kx h

2

)
sin2

(
kzh

2

)
. (A8)

From eqs (A3) and (A7), the grid dispersion relation of the P-

wave is given by

αh

α
=

1

πδp

(
sin2(πδp cos θ ) + sin2(πδp sin θ )

− (1 − ǫ2) sin2(πδp cos θ ) sin2(πδp sin θ )
)1/2

, (A9)

and using eq. (A8), the grid dispersion of the S wave is given by

βh

α
=

1

πδs

(
ǫ2

(
sin2 (πδs cos θ ) + sin2 (πδs sin θ )

)

+ (1 − ǫ2) sin2 (πδs cos θ ) sin2 (πδs sin θ )
)1/2

, (A10)

where ǫ = β/α is the S- to P-wave velocity ratio, δp = h/L is the P-

wave sampling ratio, δs = δp/ǫ is the S-wave sampling ratio, L is the

wavelength of the P wave and θ is the angle between the plane-wave

propagation direction and the z axis. Similar expressions using a

finite-differences discretization in time were given in Cohen (2002),

page 81. Note that both dispersion relations are functions of the P-

and S-wave velocities.

A P P E N D I X B : G R I D D I S P E R S I O N

A NA LY S I S O F T H E S TA G G E R E D - G R I D

F O R M U L AT I O N O F F D M

The grid dispersion relations for the second- and fourth-order

staggered-grid finite-difference schemes where derived in Moczo

et al. (2000); We develop the grid-dispersion relations here for

completeness. Using the plane-wave solution for the velocity and

stress, then

U x
m,n = A1 Em,n, U z

m,n = A2 Em,n, (B1)

T xx
m,n = B1 Em,n, T zz

m,n = B2 Em,n, T xz
m,n = B3 Em,n . (B2)

where Em,n was defined in eq. (A1) and A1, A2, B1, B2 and B3

are arbitrary constants. Substituting in the staggered-grid scheme

yields

− hωh a = �b, (B3)

− hωh b = �a, (B4)

where a = (A1, A2)T , b = (B1, B2, B3)T ,

� =
2

ρ

[
sin

(
kx h

2

)
0 sin

(
kz h

2

)

0 sin
(

kz h

2

)
sin

(
kx h

2

)
]

, (B5)

and

� = 2

⎡
⎢⎢⎣

ρα2 sin
(

kx h

2

)
λ sin

(
kz h

2

)

λ sin
(

kx h

2

)
ρα2 sin

(
kz h

2

)

ρβ2 sin
(

kz h

2

)
ρβ2 sin

(
kx h

2

)

⎤
⎥⎥⎦ . (B6)

Substituting eqs (B4) in (B3) yields the following 2 × 2 system

�

[
A1

A2

]
=

[
Ŵ �

� ϒ

] [
A1

A2

]
, (B7)

where

� = h2ω2
h (B8)

Ŵ = 4α2 sin2

(
kx h

2

)
+ 4β2 sin2

(
kzh

2

)
(B9)

ϒ = 4α2 sin2

(
kzh

2

)
+ 4β2 sin2

(
kx h

2

)
(B10)

� = 4(α2 − β2) sin

(
kx h

2

)
sin

(
kzh

2

)
. (B11)

The system has non-trivial solutions if � = �1 or � = �2, where

�1 = 4α2

[
sin2

(
kx h

2

)
+ sin2

(
kzh

2

)]
, (B12)

�2 = 4β2

[
sin2

(
kx h

2

)
+ sin2

(
kzh

2

)]
. (B13)

The grid dispersion relation for the P-wave is related to �1, and is

given by

αh

α
=

1

πδp

√
sin2(πδp cos θ ) + sin2(πδp sin θ ), (B14)

and from �2, the dispersion relation for the S wave is

βh

α
=

ǫ

πδs

√
sin2 (πδs cos θ ) + sin2 (πδs sin θ ). (B15)

A P P E N D I X C : G R I D D I S P E R S I O N

A NA LY S I S O F T H E S TA N DA R D - G R I D

V E L O C I T Y- S T R E S S F O R M U L AT I O N O F

F D M

In this appendix, we develop the grid-dispersion relations for the

standard-grid velocity-stress formulation (VSFDM). The analysis

is similar to that of SGFDM in the previous appendix. Using the

plane-wave solution, the velocity and stress at the node (xm, zn) are

given by eqs (B1) and (B2). Substituting in eqs (19) to (25) yields

eqs (B3) and (B4) but with the matrices � and � given by

� =
1

ρ

[
sin (kx h) 0 sin (kzh)

0 sin (kzh) sin (kx h)

]
(C1)

and

� =

⎡
⎢⎣

ρα2 sin (kx h) λ sin (kzh)

λ sin (kx h) ρα2 sin (kzh)

ρβ2 sin (kzh) ρβ2 sin (kx h)

⎤
⎥⎦ . (C2)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
0
/1

/2
7
8
/7

4
7
3
4
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



298 J. D. De Basabe and M. K. Sen

As in the previous appendix, the system is reduced to the second-

order eigenvalue problem of eq. (B7), with

Ŵ = α2 sin2 (kx h) + β2 sin2 (kzh) , (C3)

ϒ = α2 sin2 (kzh) + β2 sin2 (kx h) , (C4)

� = (α2 − β2) sin (kx h) sin (kzh) . (C5)

The eigenvalues are given by

�1 = α2
[
sin2 (kx h) + sin2 (kzh)

]
, (C6)

�2 = β2
[
sin2 (kx h) + sin2 (kzh)

]
. (C7)

Finally, the grid dispersion relations are given by

αh

α
=

1

2πδp

√
sin2

(
2πδp cos θ

)
+ sin2

(
2πδp sin θ

)
, (C8)

βh

α
=

ǫ

2πδs

√
sin2 (2πδs cos θ ) + sin2 (2πδs sin θ ). (C9)

Comparing these grid-dispersion relations with those of SGFDM,

eqs (B14) and (B15), it is clear that these two sets of equations are

equivalent whenever the sampling ratios of SGFDM are double than

those of VSFDM. Incidentally, the stability condition of VSFDM is

precisely double than that of SGFDM; namely, the stability condi-

tion of VSFDM using a second-order finite-difference scheme for

time stepping, is given by

�t ≤
√

2
h

α
, (C10)

where �t is the size of the time step.

A P P E N D I X D : G R I D - D I S P E R S I O N

A NA LY S I S O F T H E

S P E C T R A L - E L E M E N T M E T H O D

The grid dispersion of SEM for the acoustic and elastic cases has

been analysed in De Basabe & Sen (2007) for up to order 10 basis

functions, the analysis is summarized here for completeness. Their

approach is an extension of the analysis developed in Cohen (2002),

where the acoustic version of SEM is considered for basis functions

up to order 3.

The analysis is based on the plane wave assumptions as in the

finite-differences case. Furthermore, it will be assumed that the

finite-element mesh is periodic, and that the elements are square

with sides parallel to the coordinate axis and with tensor product

basis functions; these are common assumptions whenever a FEM is

analysed, see for example Marfurt (1984); Cohen (2002); Zyserman

et al. (2003); Zyserman & Gauzellino (2004, 2005); Zyserman

& Santos (2007); Ainsworth (2004a,b); Ainsworth et al. (2006);

Seriani & Oliveira (2008); Gabriel et al. (2010). Introducing the

assumption that the medium is homogeneous into the definitions of

the mass and stiffness matrices (eqs 29–33) yields

Mi j =
1

α2

∫

	

φiφ j dx dz, (D1)

K1
i j =

∫

	

φi,xφ j,x dx dz + ǫ2

∫

	

φi,zφ j,z dx dz, (D2)

K2
i j = (1 − ǫ2)

∫

	

φi,xφ j,z dx dz, (D3)
K3

i j = K2
j i , (D4)

K4
i j = ǫ2

∫

	

φi,xφ j,x dx dz +
∫

	

φi,zφ j,z dx dz. (D5)

Assuming that the solution is a plane wave then U x
j and U z

j have

the form (no summation over j)

U x
j (t) = A j e

i(k · x j −ωt) and U z
j (t) = B j e

i(k · x j −ωt). (D6)

Substituting in eqs (27) and (28), and neglecting the source term,

yields

�Mi j U
x
j = K1

i j U
x
j + K2

i j U
z
j and (D7)

�Mi j U
z
j = K3

i j U
x
j + K4

i j U
z
j , (D8)

where the eigenvalues are given by � = ω2
h . The above equa-

tions represent a generalized eigenvalue problem; It can be shown

that the eigenvalues of the above system are real and positive

(De Basabe & Sen 2007).

The order of the above eigenvalue problem can be very large

since it includes all the nodes in the discretized domain, but it can

be reduced to an eigenvalue problem of order proportional to the

degrees of freedom in one element, this process is described in detail

in Cohen (2002) and De Basabe & Sen (2007) (see also De Basabe &

Sen 2010). The reduced-order eigenvalue problem uses the so-called

dynamic mass and stiffness matrices which are computed using the

wavenumber and are intrinsically related to plane-wave analysis.

The procedure to compute these matrices takes full advantage of

the structure of the tensor product basis functions and in order to do

that the following notation is introduced to split the indexes of the

matrices:

Mi j = M(i)( j1, j2) (D9)

where j = κj2 + j1, 0 ≤ j1 < κ and κ is the polynomial degree of the

basis functions on the sides of the elements. Notice that for every j

there is a unique pair (j1, j2) and vice versa.

The dynamic mass and stiffness matrices are given by

M̃(i)(l1,l2) = M(i)(κq1+l1,κq2+l2)e
kx hq1+kz hq2 , (D10)

K̃ ν
(i)(l1,l2) = K ν

(i)(κq1+l1,κq2+l2)e
kx hq1+kz hq2 , (D11)

for 0 ≤ i < κ2 and ν = 1, . . . , 4, where 0 ≤ l1, l2 < κ . Note

that summation is implied in the right-hand side over q1 and q2. The

resulting eigenvalue problem is of order 2κ2. Using matrix notation,

it is given by

�

[
M̃ 0

0 M̃

] [
U x

U z

]
=

⎡
⎣ K̃

1
K̃

2

K̃
3

K̃
4

⎤
⎦

[
U x

U z

]
. (D12)

For high-order basis functions, the number of eigenvalues is large,

but there are only two eigenvalues of interest for the grid-dispersion

analysis, namely the ones corresponding to the P- and S-waves.

In De Basabe & Sen (2007) we hypothesize that the eigenvalue

corresponding to the S-wave is the smallest one, and the one cor-

responding to the P-wave is the second smallest and corroborate

this hypothesis numerically. Finally, the grid-dispersion relations

are given by

αh

α
=

1

2πδp

√
λp, (D13)

βh

α
=

1

2πδs

√
λs . (D14)
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