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Abstract

Background: Genomic selection (GS) uses molecular breeding values (MBV) derived from dense

markers across the entire genome for selection of young animals. The accuracy of MBV prediction is

important for a successful application of GS. Recently, several methods have been proposed to estimate

MBV. Initial simulation studies have shown that these methods can accurately predict MBV. In this study

we compared the accuracies and possible bias of five different regression methods in an empirical

application in dairy cattle.

Methods: Genotypes of 7,372 SNP and highly accurate EBV of 1,945 dairy bulls were used to predict MBV

for protein percentage (PPT) and a profit index (Australian Selection Index, ASI). Marker effects were

estimated by least squares regression (FR-LS), Bayesian regression (Bayes-R), random regression best

linear unbiased prediction (RR-BLUP), partial least squares regression (PLSR) and nonparametric support

vector regression (SVR) in a training set of 1,239 bulls. Accuracy and bias of MBV prediction were

calculated from cross-validation of the training set and tested against a test team of 706 young bulls.

Results: For both traits, FR-LS using a subset of SNP was significantly less accurate than all other methods

which used all SNP. Accuracies obtained by Bayes-R, RR-BLUP, PLSR and SVR were very similar for ASI

(0.39-0.45) and for PPT (0.55-0.61). Overall, SVR gave the highest accuracy.

All methods resulted in biased MBV predictions for ASI, for PPT only RR-BLUP and SVR predictions were

unbiased. A significant decrease in accuracy of prediction of ASI was seen in young test cohorts of bulls

compared to the accuracy derived from cross-validation of the training set. This reduction was not

apparent for PPT. Combining MBV predictions with pedigree based predictions gave 1.05 - 1.34 times

higher accuracies compared to predictions based on pedigree alone. Some methods have largely different

computational requirements, with PLSR and RR-BLUP requiring the least computing time.

Conclusions: The four methods which use information from all SNP namely RR-BLUP, Bayes-R, PLSR

and SVR generate similar accuracies of MBV prediction for genomic selection, and their use in the selection

of immediate future generations in dairy cattle will be comparable. The use of FR-LS in genomic selection

is not recommended.
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Background
Until recently, the use of molecular genetics in commer-
cial applications of marker-assisted selection (MAS) have
focused on the use of individual genes or a few quantita-
tive trait loci (QTL) linked to markers [1,2]. With the
exception of a few genes with relatively large effects such
as DGAT [3] or FECB [4] most candidate genes or QTL
capture only a very small proportion of the total genetic
variance. Recent empirical genome-wide association
(GWAS) studies using a high-density SNP technology in
humans, (e.g. [5-7], mice [8] and cattle [9] suggest that
complex traits are most likely affected by many genes with
a small effect.

A dramatic change in terms of the use of genomic infor-
mation to estimate the total genetic value for breeding
animals, known as genomic selection (GS) or Genome
Wide Selection (GWS) was predicted by Meuwissen et al.
[10]. Using simulations, they showed that with a dense
marker map covering all the chromosomes, it is possible
to accurately estimate the breeding value of animals with-
out information about their phenotype or that of close rel-
atives. Genomic estimated breeding values (GEBV) can be
calculated for both sexes at an early stage in life, and there-
fore GS can increase the profitability and accelerate
genetic gain of dairy cattle breeding by reducing the gen-
eration interval and cost of proving bulls [11,12]. This is
projected to restructure dairy cattle breeding schemes,
many of which rely on progeny testing sires and the
recording of hundreds of thousands and often millions of
cows [12].

Whole-genome analyses require methods that are capable
of handling cases where the number of marker variables
greatly exceeds the number of individuals, and models are
at risk of being over parameterized. Furthermore, inclu-
sion of complex pedigrees in large animal breeding data
sets may lead to population stratification and confound-
ing of relatedness with gene or SNP effects [13]. A variety
of methods have been suggested for the estimation of
genomic breeding values. Meuwissen et al. [10] have com-
pared a joint least squares estimation of individually sig-
nificant haplotype effects with best linear unbiased
prediction (BLUP) including all haplotypes and two Baye-
sian approaches similar to BLUP, but allowing for varia-
tion in the genetic variance accounted for by individual
haplotype effects. Xu [14] has used a similar Bayesian
approach but has estimated additive and dominance
effects attributed to individual marker loci rather than
haplotype effects. As pointed out by Gianola et al. [15]
Bayesian regression methods, such as those by Meuwissen
et al. [10], require some strong a priori assumptions. These
authors have proposed non-parametric kernel regression
with a BLUP model accounting for the residual polygenes.
Initially, these methods for computation of genomic

breeding values have been investigated by simulation
studies which may not be realistic in empirical situations
and it is unlikely that the models underlying these simu-
lations reflect the complexity of biological systems.
Recently, other methods have been attempted in GWS
analyses, e.g. principal component regression [16], partial
least squares regression [17,18], LARS [19], LASSO
[20,21], and BLUP including a genomic relationship
matrix [22].

In this study we compared the accuracies of five different
regression methods for the computation of genomic pre-
diction of genetic merit in an empirical application. The
selection of methods was based on their inherent differ-
ences in the underlying assumptions and previous appli-
cation in GS. We analyzed a data set of 7,372 SNP markers
genotyped on 1,945 Australian Holstein Friesian dairy
bulls with highly reliable estimated breeding values (EBV)
derived from phenotypic records of large groups of prog-
eny.

Methods
Statistical models

Five regression methods were used to estimate SNP
effects: fixed regression using least squares (FR-LS), ran-
dom regression BLUP (RR-BLUP), Bayesian regression
(Bayes-R), partial least squares regression (PLSR); and
support vector regression (SVR). Other than the require-
ment that markers are located across the genome, no addi-
tional information, such as marker location or pedigree, is
required by the methods. The basic model can be denoted
as

where yi is the estimated breeding value (EBV) of sire i (i =
1, 2,..., n) and xi is a 1 × p vector of SNP genotypes on bull
i, and g(xi) is a function relating genotypes to EBVs and
can be considered as a molecular breeding value (MBV)
and ei is a residual term. The SNP genotypes are coded as
variates according to the number of copies of one SNP
allele, i.e. 0, 1 or 2. We denote with X the matrix contain-
ing the column vectors xk of SNP genotypes at locus k (k =
1, 2, ..., p).

Fixed regression-least squares (FR-LS)

In linear regression on SNP, g(xi) is modeled as

where βk is the regression of EBV on the additive effect of
SNP k, and q the number of SNP fitted in the model. The
multicollinearity between SNP, i.e. two or more SNP in
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high but not complete LD, is addressed by selecting a lim-
ited number of 'important' SNP. A stepwise procedure in
which markers are considered for inclusion in the model
one at a time was used, as applied by Habier et al. [13].
Each marker that is not already in the model is tested for
inclusion in the model. In each step the most significant
SNP which had a P-value below a predefined threshold α
was added to the model. P-values of all markers in the cur-
rent model were then checked and the marker with the
highest P-value above α was dropped from the model. The
procedure stopped when no further addition or deletion
was possible. The optimal P-value was found by cross-val-
idation.

Random regression-BLUP (RR-BLUP)

In RR-BLUP, SNP effects are assumed random [10], with
g(xi) having the form

where βk is the effect associated with SNP k, xk is set up as
described above for additive effects. The regression coeffi-
cients are found by solving the normal equations,

where λ is constant for all SNPs. Differences in shrinkage

between SNP still arise as a result of variation in allele fre-

quency. Meuwissen et al. [10] and Habier et al. [13] have

calculated λ for their simulated data from known genetic

and residual variances. With no knowledge of these vari-

ance components and analyzing EBV data, an appropriate

value for the shrinkage parameter can be obtained by

cross-validation. When EBV have a variety of reliabilities

then the regression can be weighted accordingly so that

, where R is a diagonal

matrix of weights. In this case most reliabilities exceeded

0.85 so they were treated as homogeneous, i.e. R = I.

Bayesian regression (Bayes-R)

Bayesian regression on additive SNP effects was per-
formed as proposed by Meuwissen et al. [10] for their
method BayesA using a Gibbs Sampler. It differs from the
RR-BLUP model in that each SNP effect has its own poste-
rior distribution. This model allows each marker to have
its own variance, resulting in different shrinkage of SNP
effects. The prior of Meuwissen et al. [10] was used for SNP
effects.

Support vector regression (SVR)

Support vector machines are algorithms developed from
statistical learning theory. Support vector regression (SVR,
Vapnik [23]) uses linear models to implement non-linear
regression by mapping the input space to a higher dimen-
sional feature space using kernel functions. A feature of
SVR is that it simultaneously minimizes an objective func-
tion which includes both model complexity and the error
on the training data. SVR can be considered as a specific
learning algorithm for reproducing kernel Hilbert spaces
(RKHS) regression, first proposed for whole-genome anal-
ysis of quantitative traits by Gianola et al. [15]. A precise
account of the theory of RKHS and details of SVR is
beyond the scope of this article, so only a brief description
is given here. For essential theoretical details and term def-
initions we refer the reader to Gianola et al. [15], Gianola
and van Kaam [24]), Gianola and de Los Campos [25]
and de Los Campos et al. [26]. An application of the RKHS
regression approach to estimate genetic merit for early
mortality in broilers from SNP data is described in [27]. A
more detailed introduction to SVR is given in [28].

RKHS regression estimation is based on minimization of
the following functional (e.g. equation 2 in [26]):

where V(yi, g(xi)) is some loss (error) function, the second
term in the equation acts as an penalty, and λ is a fixed
positive real number that somehow controls the trade-off
between the two terms and ||||2 denotes the norm under a
Hilbert space. Several choices of the loss function V in (1)
are possible [28]. In their application of RKHS regression
[27], used V(yi, g(xi)) = (yi - g(xi))2 (equation (1) in [27])
as the loss function, which corresponds to the conven-
tional least squares error criterion. In SVR the quadratic
error function is replaced by a function called epsilon-
insensitive loss proposed by Vapnik [23]:

It can be shown that the minimizer of (1) using epsilon-
insensitive loss can be written as:

j = 1, 2,..., n, where K = (xi, xj) is the kernel involving the
genotypes of sires i and j. The coefficients αi and αi* are
the solution of a system of nonlinear equations. The loss
function assigns zero loss to errors less than ε, thus safe-
guarding against overfitting. The parameter ε also pro-
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vides a sparse representation of the data as only a fraction
of the coefficients αi, αi* are nonzero. Data points associ-
ated with non-zero coefficients are called support vectors
and a detailed interpretation of support vectors is given in
[23]. Unlike the case of the quadratic loss function, where
the coefficients αi are found by solving a linear system,
using epsilon-insensitive loss the coefficients αi are the
solutions to a quadratic programming problem.

In our implementation of SVR we used a Gaussian kernel.
In order to solve the SVR regression problem three meta-
parameters must be specified; the insensitivity zone ε, a
penalty parameter C > 0 that determines the trade-off
between approximation error and the amount up to
which deviations larger than ε are tolerated and the band-
width of the kernel function. Cross validation employing
a grid search was used to tune the meta-parameters.

Partial least squares regression (PLSR)

A dimension reduction procedure, partial least squares
regression (PLSR, [29]), was used for modeling without
imposing strong assumptions. The main idea of PLSR is to
build orthogonal components (called 'latent compo-
nents') from the original predictor matrix X and use them
for prediction in place of the original variables. Thus, g(xi)
can be expressed as:

where ta is latent component a (a = 1, 2..., h) and generally
h <<p. PLSR is similar to the well-known principal compo-
nent regression (PCR), both methods construct a matrix
of latent components T as a linear transformation of X, T
= XW, where W is a matrix of weights. The difference is
that PCR extracts components that explain the variance of
X, whereas PLSR extracts components that have a large
covariance with y, i.e. the columns of weight matrix W are
defined such that the squared sample covariance matrix
between y and the latent components is maximized under
the constraint that the latent components are mutually
uncorrelated.

Different techniques to extract the latent components
exist, and each gives rise to a variant of PLSR. We imple-
mented PLSR using an algorithm by Dayal and MacGregor
[30], which does not require the calculation of the sample
covariance matrix of X and which we have used previously
[17]. A different PLS algorithm was used by Solberg et al.
[18] to predict genomic breeding values in their simula-
tion study. The optimal model complexity (i.e. number of
latent components) was estimated by cross-validation.

Animals and SNP data

A total of 1,945 progeny tested Holstein Friesian dairy
bulls born between 1955 and 2002 were used in the study.
The phenotypes used were Australian breeding values
(EBV) taken from the August 2007 Australian Dairy Herd
Improvement Scheme (ADHIS; http://
www.adhis.com.au/) evaluation. The traits analyzed
included protein percentage (PPT) and Australian Selec-
tion Index (ASI). ASI is a production based index that
combines protein yield, fat yield and milk yield EBV and
is weighted in relation to the value of the milk compo-
nents: (ASI = 3.8 × protein EBV + 0.9 × fat EBV - 0.048 ×
milk EBV). The mean reliability of the EBV for both ASI
and PPT was 0.89, with corresponding distribution of var-
iation in range of reliability shown in Figure 1c. The dis-
tribution of EBV for both ASI and PPT for all 1,945 bulls
is shown in Figure 1a and 1b, respectively.

The genotypic data belonged to a panel of 1,546 bulls gen-
otyped for a 15K SNP chip and of 441 bulls for a Gene-
Chip® Bovine Mapping 25K SNP chip http://
www.affymetrix.com/. There were 9,217 SNP and 44 bulls
in common between these two datasets. A combined data
set on 7,372 common SNP were extracted for the present
study after removing SNP with low minor allele frequency
(< 0.01), with low call rates (<80%), that deviated from
Hardy-Weinberg equilibrium (P ≤ 0.0001) or which
showed inconsistent inheritance [31]. The proportion of
missing SNP genotypes was less than 1%. We performed
genotype imputation using the NIPALS (nonlinear itera-
tive partial least squares, [32]) algorithm, which performs
principal component analysis in the presence of missing
data.

Partitioning the data in training and test data sets

To assess the ability to predict breeding values of young
bulls based on SNP data before progeny data were availa-
ble, animals born before 1998 (N = 1,239) were included
in the training set. Bulls born between 1998 and 2002 rep-
resented five single year cohorts and were allocated to test
sets according to their year of birth.

Model optimization

Applying FR-LS, RR-BLUP, SVR and PLSR requires the
selection of appropriate meta-parameters. Model optimi-
zation was performed by 5-fold cross-validation. The
complete training set (N = 1,239) was partitioned in K = 5
folds. For a given value of the meta-parameter(s) θ the
prediction model is estimated using K-1 folds, and the
predictive capacity of the model is assessed by applying
the estimated model to the individuals in the left-out fold
and this process is repeated K times so that every fold is
left out once. The value of θ which minimized the average
mean squared error of prediction (MSEP) in the K test sets
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was then used in the model to estimate the SNP effects
from the full training set.

Accuracy and bias of MBV prediction

The correlation coefficient between the realized EBV and
the predicted MBV (rEBV,MBV) was used as a measure of the
accuracy of MBV prediction. The realized EBV were line-
arly regressed on the predicted MBV, where the regression
coefficient bEBV,MBV reflects the degree of bias of the MBV
prediction. The interest here is the comparisons between
bulls and therefore the constant estimated in the regres-
sion of EBV on MBV is of less interest and is not reported.
The bias relates to the size of the absolute differences
between MBV among cohorts, i.e. the estimate of the dif-
ference between a pair of bulls is greater (bEBV,MBV < 1) or
less (bEBV,MBV > 1) than the difference between their EBV.
A regression coefficient of one indicates no bias.

The MBV predictions of young bulls were combined with

pedigree based predictions into an estimate of genomic

estimated breeding values (GEBV) as GEBV = (w1 MBV +

w2 SMGS)/(w1 + w2), where SMGS are predictions based

on the sire maternal-grandsire pathway and

 with i = 1 for MBV and i = 2 for SMGS.

For MBV, R2 was calculated as the squared correlation

between realized EBVs and MBV predictions (rEBV,MBV)

from cross-validation of the training data. For SMGS, R2

was calculated as the squared correlation between the

realized EBV and SMGS predictions calculated at the time

of the birth of the bull calves (rEBV,SMGS). As a measure of

the accuracy of GEBV prediction we calculated the correla-

tion between realized EBVs and GEBV predictions

(rEBV,GEBV).

An analysis of variance was performed to investigate the
effect of trait, method and test year on the accuracy and
bias of MBV prediction. The regression coefficient was
loge-transformed to account for non-normality and unsta-

w R Ri i
2

i= / ( )1 2−

Distribution of EBVs for Australian Selection Index (ASI, a) and protein percentage (PPT, b), distribution of reliabilities of EBVs (c), and number of bulls within year of birth (d)Figure 1
Distribution of EBVs for Australian Selection Index (ASI, a) and protein percentage (PPT, b), distribution of 
reliabilities of EBVs (c), and number of bulls within year of birth (d).
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ble variance. A single linear model was fitted to each of the
metrics,

where y is either rEBV,MBV or logebEBV,MBV, μ is a mean, trait
is the effect of trait (PPT, ASI), year is the effect of test
cohort (1998, 1999,...2002) including the 5-fold cross-
validation set as a level of year; method is the effect of
method (FR-LS, RR-BLUP, Bayes-R, PLSR, SVR),
trait.method, method.year, and trait.year are two-way inter-
actions between main effects; and ε is a random error.

Implementation

For Bayes-R, the MCMC chain was run for 200,000 cycles
with the first 50,000 samples discarded as burn in. Poste-
rior estimates of SNP effects are based on 15,000 samples,
drawing every 10th sample after burn-in. The Gauss-Seidel
algorithm with residual uptake suggested by Legarra and
Misztal [33] was used in Bayes-R. FR-LS, PLSR, RR-BLUP
and Bayes-R were implemented in Fortran, for SVR analy-
ses we used the C++ library LIBSVM [34].

Results
Summary statistic on phenotypes

Despite the fact that most sires were pre-selected as young
bulls on the basis of pedigree information, the distribu-
tion for both ASI and PPT is fairly symmetric (Figure 1a
and 1b). One would not expect a noticeable genetic trend
for PPT which was not part of the selection goal in the
past. ASI was introduced in 1997 such that 63% of ani-
mals were born before the first ASI EBVs became available,
ASI and was incorporated into a new profit-centered
breeding objective in 2003.

The majority of the sires were test mated at approximately
one year of age and their daughters subsequently brought
into milk and performance tested. The body responsible
for the genetic evaluation of dairy cattle in Australia pub-
lishes a single reliability value for all production traits and
ASI. The published reliabilities of the EBV for ASI and PPT
had an average of 0.89, with over 84% of animals having
reliabilities of 0.85 or higher (Figure 1c). The age distribu-
tion of the genotyped bulls is shown in Figure 1d. Around
50% of the bulls were born after 1995, with a greater
number of animals in the more recent cohorts.

Model optimization, accuracy and bias of MBV prediction 

obtained by cross-validation

The use of PLSR for genomic prediction has been
described before [17,18] but we briefly illustrate the
method by showing the cross-validation results for the
analysis of ASI (Figure 2). A series of models with increas-
ing numbers of latent components from 1 to 20 was fitted.
The proportion of variance explained in the training sam-
ples shows that a small number of latent components pro-

vided an adequate fit of the data, with the first eight latent
components explaining more than 90% of the EBV vari-
ance and the first latent component accounting for 34%
alone. The prediction error in the corresponding test sets
(MSEPCV) identified the first five latent components as
having the lowest MSEP (Figure 2). The model with five
latent components used only 8% of the SNP variance in
the training set, suggesting a high degree of multicolline-
arity among SNP loci.

Table 1 provides a summary statistic of optimizing the
threshold parameter α used to select SNP for the FR-LS
prediction model by cross-validation. Shown are the
mean accuracies obtained by predicting the five cross-val-
idation samples, standard errors of accuracy and bias of
prediction were computed from the variance of the means
of the five cross-validation samples. As expected, the
number of markers selected in the prediction model
decreased with more stringent threshold values of α. The
optimal model for ASI with the lowest MSEP was
obtained with α = 0.001 including 33 markers, resulting
in an accuracy of MBV prediction of 0.53. Similarly the
best model for PPT was obtained at α = 0.001 (based on
30 SNP on average) with accuracy of prediction of 0.43,
whereas the worst model was obtained at α = 0.1 (with
inclusion of 215.6 SNP on average) with an accuracy of
prediction of 0.35. In general the differences in accuracy
of prediction between models including different number
of SNP are small, and are small compared to their stand-
ard error. The degree of bias is assessed by comparing the
regression coefficient of EBV on MBV with the value 1. The
results show that for all α values predictions had a large
bias as shown by a regression coefficient markedly less
than 1 and bias decreased with decreasing number of
SNPs.

Table 2 summarizes the results for the various methods
obtained from cross-validation of the training set. Accura-
cies of prediction ranged from 0.53 to 0.72 for ASI and
0.43 to 0.58 for PPT, respectively. All methods that used
the information of all 7,372 SNP outperformed FR-LS.
Accuracies of prediction and prediction errors for meth-
ods that estimate effects of all markers were essentially the
same, although for ASI and PPT, SVR had the lowest
MSEP, and the highest accuracy of prediction of 0.72 and
0.58, respectively. For both traits predictions obtained by
FR-LS and PLSR had the largest bias, whereas for RR-
BLUP, SVR and Bayes-R the regression of EBV on MBV was
close to one.

Accuracies in young bull cohorts

Table 3 shows the accuracy of MBV prediction of young
bulls according to their year of birth and of the total test
sample containing 706 animals. Marker effects were esti-
mated using all animals in the training set with the best

y trait method year trait method method year trait year= + + + + + + +μ . . . εε ,
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model of each method obtained by cross-validation. The
FR-LS models included 48 SNP for ASI and 29 SNP for
PPT. For ASI, accuracies of prediction (rEBV,MBV) of all
young bulls were 0.45, 0.42, 0.41, 0.39, 0.27 for SVR,
PLSR, Bayes-R, RR-BLUP and FR-LS, respectively. As for
ASI, accuracies of MBV prediction of PPT were very similar
between methods that used all SNP information (rEBV,MBV

= 0.55-0.61), whereas FR-LS was the least accurate method
(rEBV,MBV = 0.47).

In general the MBV predictions of PPT showed lower bias
compared to those of ASI. MBV predictions of ASI
obtained by all methods resulted in inflated differences in
the relative rankings of bulls compared to relative rank-

Partial least squares regression model optimization for Australian Selection Index using cross-validationFigure 2
Partial least squares regression model optimization for Australian Selection Index using cross-validation. 
Shown is the mean prediction error (MSEP) in the training (MSEPtraining) data set, the average MSEP in the 5-fold cross-valida-
tion samples (MSEPCV), the proportion of EBV (VarEBV) and SNP variance (VarSNP) explained in the training data for models 
with an increasing number of latent components; the optimal prediction model includes the first 5 latent components, identi-
fied by the smallest MSEPCV.
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Table 1: Cross-validation results for method fixed regression-least squares at different threshold values

Trait α† nSNP MSEP rEBV,MBV bEBV,MBV

ASI 0.1 197.2 (31.6) 1464 (139.2) 0.52 (0.031) 0.49 (0.059)

0.01 98.2 (7.1) 1235 (62.1) 0.54 (0.043) 0.58 (0.045)

0.001 33.0 (5.4) 1090 (124.4) 0.53 (0.036) 0.71 (0.048)

0.0001 15.0 (1.9) 1108 (136.8) 0.50 (0.043) 0.76 (0.084)

PPT 0.1 215.6 (29.3) 0.0214 (0.0023) 0.35 (0.056) 0.32 (0.059)

0.01 81.6 (5.0) 0.0156 (0.0016) 0.42 (0.059) 0.48 (0.075)

0.001 30.0 (4.2) 0.0135 (0.0023) 0.43 (0.089) 0.62 (0.155)

0.0001 15.4 (2.1) 0.0136 (0.0016) 0.39 (0.076) 0.67 (0.173)

Average number of SNP (nSNP) in the model, mean square error (MSEP), correlation (rEBV,MBV) between EBV and MBV, and regression coefficient 
(bEBV,MBV) of EBV on MBV for different threshold levels (α) in five cross-validation samples of the training data set, standard error in parentheses; 
ASI: Australian Selection Index; PPT: protein percentage; † P-value used to select SNPs in or out of model.
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ings based on EBV. For PPT, predictions obtained by RR-
BLUP and SVR were close to being unbiased compared to
predictions of MBV obtained by PLSR and Bayes-R.

Figure 3 shows fits relating MBV predictions and realized
EBVs of ASI and PPT in a single cross-validation sample,
and in a young bull cohort 1998 for each of the five meth-
ods. FR-LS showed a larger dispersion of MBV across the
range of EBV in cohort 1998 for both traits compared to
the other methods, which is consistent with the lower
accuracy seen with this method.

Accuracies of MBV prediction of ASI in young bull cohorts
were considerably lower compared to the accuracy
obtained by cross-validation of the training set, whereas
for PPT predictions of the test data set were as accurate as
the predictions obtained from cross-validation. As
depicted in Figure 3, the EBV variance for ASI in the test
sample is much lower relative to the cross-validation sam-
ple, which can partly explain the decrease in accuracy of
predictions of ASI in young bull cohorts.

Comparison of methods for MBV prediction

Correlations between MBV predictions obtained by cross-
validation of the training data set and the test data set of
young bulls are shown in Table 4. Predictions obtained by
FR-LS were considerably less similar (r = 0.72-0.83) to all
other methods. Thus using a smaller number of SNP as
fixed effects produces somewhat different predictions to
methods which use all SNP. The correlations between
methods that used all SNP information were very high
(r>0.9) for both ASI and PPT.

Figure 4 shows the distribution of SNP effects along the
genome estimated in the training data set for four meth-
ods for ASI and PPT. Relatively few SNP are used by the
FR-LS method for both traits. The other methods assign
relatively small effects to most of the SNP. However, the
distribution for PPT depicts a small number of SNP with
relatively large effects. All methods displayed very similar
clustering of SNP with large effects along the genome.

Increasing the number of bulls in the training data set

The accuracy of genomic predictions depends on the
number of animals that are used to estimate the SNP
effects [35]. The accuracy of MBV prediction estimated by
PLSR from training data sets of increasing size are shown
in Table 5. Larger training data sets did not result in signif-
icant gains in accuracy of MBV prediction in year cohorts
of young bulls. In all cases predictions of PPT were more
accurate than of ASI.

Combining MBV and SMGS predictions

GEBV predictions for bulls born between 1998 and 2002
were calculated by combining the MBV predictions with
the sire maternal-grandsire pathway predictions, which
were calculated at the time of birth of the young bull
calves (Table 6). The accuracy of GEBV prediction of ASI
was 1.06 - 1.34 times higher than the accuracy of the ped-
igree based prediction, and 1.16 - 1.27 times higher for
PPT. Among the methods FR-LS had the lowest accuracy
and the differences between the other methods were
small.

Variability in accuracy and bias of MBV prediction

Abridged analysis of variance tables for the accuracy and
bias of MBV prediction are shown in Table 7. The method
and the interaction between trait and year showed signif-
icant effects on the accuracy of MBV prediction. Accuracies
of prediction by FR-LS and SVR were significantly different
from other methods, with SVR being the most and FR-LS
the least accurate method (additional file 1). Accuracy of
prediction obtained by cross-validation of the training
data was significantly higher than the accuracy of predic-
tion in cohort 2002. The interactions between method
and trait and between trait and year showed significant
effects on the regression of EBV on MBV.

Computing time

Computing time is important, particularly for cross-vali-
dation and implementation in practice which requires fre-
quent re-estimation of breeding values. The
computational demand of the various methods is shown
in Table 8. The machine used for all calculations had a
dual core Intel D 3.2 GHz CPU. The PLSR and RR-BLUP
methods, took less than 1 min to calculate the marker
effects for a single replicate of the training data. The
requirements of Bayes-R are several orders of magnitude

Table 2: Summary of MBV prediction in the training data for five 

methods obtained by cross-validation

Trait Method MSEP rEBV,MBV bEBV,MBV

ASI FR-LS 1,090 (124.4) 0.53 (0.036) 0.71 (0.048)

RR-BLUP 712 (93.5) 0.71 (0.017) 1.07 (0.076)

Bayes-R 714 (95.3) 0.71 (0.016) 1.09 (0.071)

SVR 700 (92.2) 0.72 (0.017) 1.06 (0.079)

PLSR 735 (95.4) 0.70 (0.022) 0.93 (0.069)

PPT FR-LS 0.0135 (0.0023) 0.43 (0.089) 0.62 (0.155)

RR-BLUP 0.0104 (0.0018) 0.56 (0.067) 1.01 (0.104)

Bayes-R 0.0104 (0.0010) 0.56 (0.067) 1.06 (0.117)

SVR 0.0100 (0.0010) 0.58 (0.064) 1.01 (0.100)

PLSR 0.0109 (0.0012) 0.55 (0.061) 0.81 (0.078)

Mean square error (MSEP), correlation (rEBV,MBV) between EBV and 
MBV, and regression coefficient (bEBV,MBV) of EBV on MBV derived by 
5-fold cross-validation of the training data set, standard errors in 
parentheses; ASI: Australian Selection Index; PPT: protein percentage; 
FR-LS: fixed regression-least squares; RR-BLUP: random regression-
BLUP; Bayes-R: Bayesian regression; SVR: support vector regression; 
PLSR: partial least squares regression.
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higher (~421 min). The computational burden for SVR
lies in the grid search for the meta-parameters and also
requires the computation of the kernel matrix in the pre-
diction step. PLSR, RR-BLUP and SVR all scale well to
larger number of SNPs.

Discussion
The concept of genomic selection was first raised over
eight years ago [10], but it was not until the advent of high
capacity genotyping platforms that empirical data sets
became available in dairy cattle [36-40]. Initial reports on
efficiencies and pros and cons of different statistical
approaches for genomic selection have been conducted
largely on simulated data sets (e.g. [10,13,15,18,41-44])
and to a lesser extent in real data (e.g. [19,35,45,46]. Sim-
ulation studies, although informative, are strongly
dependent on the underlying assumptions, some of
which may be biologically unrealistic or limited in their
complexity. This paper describes the performance of five

statistical approaches for the prediction of molecular and
genomic breeding values using empirical data.

Comparison of methods

The choice of methods evaluated here represent a range of
methods proposed previously for the potential use in
genomic selection including variable selection methods
(FR-LS, [10,13,47], shrinkage methods (Bayes-R and
BLUP, [10,13,14]); support vector learning methods
(SVR, [15,43]) and dimension reduction methods (PLSR,
[17,18]).

Methods for calculating genomic breeding values have to
deal with the problem of multicollinearity and over-
parameterization resulting from fitting many parameters
to relatively small data sets. The FR-LS regression method,
which exploits a reduced subset of selected SNP consist-
ently had lower accuracy and a larger bias of prediction
than the other methods. Bayes-R, RR-BLUP, SVR and PLSR
which use all available SNP information performed

Table 3: Correlation (rEBV,MBV) between EBV and MBV and regression coefficient (bEBV,MBV) of EBV on MBV in cohorts of young bulls 

for five methods

Trait Method Year of birth

1998 1999 2000 2001 2002 1998-2002

rEBV,MBV

ASI FR-LS 0.22 0.23 0.33 0.26 0.12 0.27

RR-BLUP 0.35 0.39 0.40 0.32 0.28 0.39

Bayes-R 0.38 0.38 0.42 0.33 0.29 0.41

SVR 0.42 0.40 0.46 0.40 0.35 0.45

PLSR 0.39 0.38 0.40 0.35 0.34 0.42

PPT FR-LS 0.48 0.52 0.41 0.46 0.43 0.47

RR-BLUP 0.53 0.58 0.53 0.56 0.49 0.55

Bayes-R 0.63 0.60 0.55 0.63 0.51 0.60

SVR 0.64 0.61 0.57 0.63 0.52 0.61

PLSR 0.63 0.55 0.50 0.62 0.43 0.56

bEBV,MBV

ASI FR-LS 0.18 0.25 0.29 0.26 0.11 0.26

RR-BLUP 0.59 0.72 0.82 0.72 0.60 0.72

Bayes-R 0.59 0.71 0.81 0.71 0.59 0.76

SVR 0.61 0.65 0.76 0.77 0.66 0.74

PLSR 0.45 0.49 0.55 0.51 0.48 0.55

PPT FR-LS 0.58 0.62 0.45 0.59 0.40 0.55

RR-BLUP 1.09 0.93 0.98 1.10 0.72 1.08

Bayes-R 1.24 1.10 1.15 1.29 0.81 1.16

SVR 1.13 0.99 1.07 1.17 0.72 1.05

PLSR 0.88 0.73 0.74 0.93 0.50 0.80

Number of bulls

144 189 173 137 63 706

The training data set included animals born before 1998; ASI: Australian Selection Index; PPT: protein percentage; FR-LS: fixed regression-least 
squares; RR-BLUP: random regression-BLUP; Bayes-R: Bayesian regression; SVR: support vector regression; PLSR: partial least squares regression.



Genetics Selection Evolution 2009, 41:56 http://www.gsejournal.org/content/41/1/56

Page 10 of 16

(page number not for citation purposes)

Fit of models relating EBVs and predicted MBVs in the training data and in young bullsFigure 3
Fit of models relating EBVs and predicted MBVs in the training data and in young bulls. To avoid cluttering predic-
tions are plotted for a single fold of the cross-validation (CV) of the training data set and young bull cohort 1998; ASI: Austral-
ian Selection Index; PPT: protein percentage; FR-LS: fixed regression-least squares; RR-BLUP: random regression-BLUP; Bayes-
R: Bayesian regression; SVR: support vector regression; PLSR: partial least squares regression.
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remarkably similarly; even though these methods are very
different from each other. The performance of all methods
depends on one or more meta-parameters. For RR-BLUP,
SVR and PLSR optimal values of the meta-parameters are
found by minimizing the prediction error using cross-val-
idation, potentially leading to more robust predictions
than Bayes-R where the posterior estimates of SNP effects
are greatly affected by the choice of the parameters in the
prior distributions. Using the same priors as in [10] Bayes-
R performed similar to the optimized models of RR-BLUP,
SVR and PLSR. One reason why these priors performed
well might be that the frequency distribution of estimated
SNP effects for ASI and PPT somewhat resembles the fre-
quency distribution of SNP effects underlying the simula-
tion in [10] which was derived from published estimated
QTL effects [48].

It appears that the gain in accuracy of RR-BLUP, Bayes-R,

SVR and PLSR over FR-LS is related to the increased

number of SNP included in the model. FR-LS fitted only

48 SNP for ASI and 29 SNP for PPT in the prediction equa-

tions and including more SNP did not result in higher

accuracies in the cross-validation set (Table 1). It is well

known that FR-LS estimates of a subset of SNP effects or

QTL are biased upwards and that SNP selection methods

perform poorly on multicollinear markers [49]. An advan-

tage of the use of multicollinear SNP is that it can increase

the accuracy of estimates of effects. SNPs in high LD

define a larger segment of genome and the standard devi-

ation of the estimated effect of the segment is reduced by

a factor of  when the average of n SNP is used instead

of a single SNP. This averaging takes place when many

SNP in high linkage disequilibrium are used to construct

a model. An analogy is encountered in QTL mapping,

when QTL inference is related to the peak area of a QTL,

rather than the peak height at a given position. In general,

prediction is not seriously affected by multicollinearity as

long as the correlational structure observed in the training

sample persists in the prediction population, e.g. [50].

With close genetic relationships between bulls in the

training and tests set, as was the case here, methods that

fit more SNPs capture more of the genetic relationships

which can in fact lead to an increase in accuracies as

shown by Habier et al. [13]. For example, sons and grand-

sons of the 10 most popular ancestors accounted for

37.6% of bulls in the training data set and 32.7% of young

bulls in the test data set.

As technology platforms advance it is possible to extend
the density to many thousands of SNP genotypes per indi-
vidual, possibly capturing all sources of genomic variation
with entire genomes being sequenced per individual.
Such technology platforms will only exacerbate the curse
of dimensionality and computational burden of a method
will become more important. In particular, PLSR and RR-
BLUP are very fast methods. The use of methods based on
Bayesian regression on the other hand, such as BayesA,
might be prohibitive when the number of SNP is large.
For SVR computing time does not depend on the number
of SNP but rather on the animals that are genotyped.

The relevance of methods which focus on identifying a
subset of the available SNP will remain high while the cost
of dense chips is high. Although subset selection by FR-LS
performed poorly in our study and therefore cannot be
recommended, some authors reported similar or
improved accuracy when using a pre-selected subset of
SNP. In the study of Moser et al. [17] the selection was per-
formed within the PLSR and in Gonzalez-Recio et al. [45]
within a kernel regression framework. The use of SNP sub-
set selection in genomic selection needs further testing. In
the end, it may be of limited use if multiple traits require
so many SNP that the cost of genotyping them is similar
to the cost of a high density chip.

Application of GS and variability in accuracy of prediction

A key issue in genomic selection is predicting genetic
merit in young animals across a wide range of traits. In the
case of dairy cattle breeding, this is particularly advanta-

n

Table 4: Pearson correlations of MBV predictions in the training data (above diagonal) and in cohorts of young bulls (below diagonal) 

between five methods

ASI PPT

Method FR-LS RR-BLUP Bayes-R SVR PLSR FR-LS RR-BLUP Bayes-R SVR PLSR

FR-LS 0.73 0.74 0.73 0.71 0.66 0.67 0.66 0.64

RR-BLUP 0.57 1 0.99 0.97 0.59 1 0.98 0.97

Bayes-R 0.58 0.96 0.99 0.97 0.63 0.95 0.98 0.96

SVR 0.59 0.93 0.96 0.96 0.63 0.91 0.97 0.95

PLSR 0.55 0.93 0.97 0.95 0.60 0.92 0.97 0.93

ASI: Australian Selection Index; PPT: protein percentage; FR-LS: fixed regression-least squares; RR-BLUP: random regression-BLUP; Bayes-R: 
Bayesian regression; SVR: support vector regression; PLSR: partial least squares regression.
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Distribution of 7,372 SNP effects along the genome estimated by four methodsFigure 4
Distribution of 7,372 SNP effects along the genome estimated by four methods. The right most 772 SNPs are unas-
signed to chromosomes; ASI: Australian Selection Index; PPT: protein percentage; FR-LS: fixed regression-least squares; RR-
BLUP: random regression-BLUP; Bayes-R: Bayesian regression.
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geous given the sex limited expression of most traits and
the long generation interval due to relying on progeny
testing to select superior replacement sires. The potential
advantages of using genomic selection in breeding pro-
grams of dairy cattle have been demonstrated by Schaeffer
[11] and König et al. [12]. Although the assumptions may
not be met by the currently achieved accuracies of GEBV,
the principles of reduced generation interval and
increased accuracy of selection of young bulls at time of
entry into progeny test all show substantial benefits from
increase in genetic gain and reduced costs.

Genomic breeding values that combined the marker-
based MBV with a pedigree based polygenic effect had
higher accuracies than MBV or polygenic component
alone, which is consistent with reports in dairy cattle
[35,46], wheat and mice [21]. We show here that accura-

cies of GEBV were approximately 1.3 times larger than
accuracies of sire maternal-grandsire pathway breeding
values, which are currently used to select bull calves to
enter progeny testing. Most of the bulls in our study
belong to the same breeding program as the population
used to estimate GEBV by Hayes et al. [35], but there was
no overlap between the training sets between studies as
their training set included animals born between 1998
and 2002, some of which are presumably part of our test
sets. Although direct comparison of both studies is diffi-
cult since there were differences in the number of bulls in
the training data and in the method used to calculate
accuracies of GEBV, Hayes et al. [35] reported higher accu-
racies of GEBV for ASI than for PPT. It remains uncertain
to what extent MBV predictions of the same trait derived
from different populations, or even different reference
populations within the same breed, are robust and war-
rants further examination.

Improvement of accuracies of genomic predictions are
likely to benefit from substantially increased training sets
as individual SNP effects are estimated with greater accu-
racy [35,46]. In contrast with observations by VanRaden et
al. [46], an increase in accuracy of MBV was not apparent
with an increased number of bulls in the training set
(Table 5). This discrepancy may rest with the smaller
range in the number of bulls in the training set in our data
(1,239-1,882) compared with 1,151 to 3,576 used in [46].

Table 5: Correlation (rEBV,MBV) between EBV and MBV in cohorts 

of young bulls with increasing size of the training data

Training rEBV,MBV

Year 1998 1999 2000 2001 2002

Trait N 144 189 173 137 63

ASI ≤1997 1,239 0.39 0.38 0.40 0.35 0.34

≤1998 1,383 0.37 0.38 0.29 0.26

≤1999 1,572 0.45 0.35 0.30

≤2000 1,745 0.39 0.34

≤2001 1,882 0.32

PPT ≤1997 1,239 0.63 0.55 0.50 0.62 0.43

≤1998 1,383 0.55 0.51 0.64 0.41

≤1999 1,572 0.52 0.66 0.43

≤2000 1,745 0.68 0.46

≤2001 1,882 0.47

Results were obtained by cross-validation using partial least squares 
regression; ASI: Australian Selection Index; PPT: protein percentage

Table 6: Correlation (rEBV,SMGS) between EBV and pre-progeny 

test sire maternal-grandsire EBV prediction and correlation 

(rEBV,GEBV) between EBV and GEBV in young bulls for five 

methods

rEBV,GEBV

Trait rEBV,SMGS FR-LS RR-BLUP Bayes-R SVR PLSR

ASI 0.35 0.37 0.45 0.45 0.47 0.45

PPT 0.49 0.57 0.60 0.62 0.60 0.62

GEBV predictions for bulls born between 1998 and 2002 were 
calculated by combining the MBV predictions with the sire maternal-
grandsire pathway predictions, which were calculated at the time of 
birth of the young bull calves; ASI: Australian Selection Index; PPT: 
protein percentage; FR-LS: fixed regression-least squares; RR-BLUP: 
random regression-BLUP; Bayes-R: Bayesian regression; SVR: support 
vector regression; PLSR: partial least squares regression.

Table 7: Summary of ANOVA of factors affecting correlation 

(rEBV,MBV) between EBV and MBV and regression coefficient 

(logebEBV,MBV) of EBV on MBV

rEBV,MBV logebEBV,MBV

Model Term P-value† F-value P-value† F-value

Method < 0.001 48.88 n.t. 88.09

Trait n.t. 350.84 n.t. 131.35

Year n.t. 61.68 n.t. 20.44

Method.Trait 0.198 1.66 0.002 6.18

Method.Year 0.827 0.65 0.346 1.20

Trait.Year < 0.001 60.19 <0.001 10.73

Shown are the significance level (P-value) and F-value of each model 
term; the regression coefficient was loge-transformed to account for 
non-normality and unstable variance; † n.t. non-testable.

Table 8: Computation times for estimation of SNP effects for 

five methods

FR-LS RR-BLUP Bayes-R SVR PLSR

~3 min ~22 s ~421 min ~4 min ~8 s

Results were obtained by calculating SNP effects for a single replicate 
of the training data; FR-LS: fixed regression-least squares; RR-BLUP: 
random regression-BLUP; Bayes-R: Bayesian regression; SVR: support 
vector regression; PLSR: partial least squares regression.
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Gains in accuracy are expected from increased SNP densi-
ties, as a larger proportion of the QTL variance is
explained by markers and effects of QTL can be predicted
across generations as shown in simulated data sets
[10,51]. VanRaden et al. [46] have shown a consistent but
small increase in the coefficient of determination for
genomic prediction for North American Holstein bulls
from 0.39 to 0.43 when the map density increased from
9,604 to 38,416 SNP. We would expect a similar relatively
small increase of the accuracy of MBV prediction with
greater SNP densities here. The reason is that many ani-
mals in our training and test data share DNA segments
from a small number of sires and relatively few markers
are required to trace the chromosome segments shared
between related animals separated by only a few genera-
tions. To what extent increasing SNP densities improves
the accuracy of genomic prediction in populations with
low effective population size remains to be seen. Greater
SNP densities may be required in more divergent popula-
tions or when individual animal phenotypes are analyzed
instead of EBVs derived from progeny test data.

As noted above, markers used in the statistical model not
only estimate QTL effects but also capture genetic rela-
tionships between individuals in the training data [13].
Habier et al. [13,41] and Zhong et al. [44] have demon-
strated differences in the contribution of LD between
marker and QTL and marker-based relatedness for differ-
ent statistical methods. They show a gradual decline of
accuracy of prediction for individuals which are removed
several generations from the training data set. Habier et al.
[13] have found that RR-BLUP is affected by genetic rela-
tionships to a larger degree than FR-LS, predicting a
steeper decline in the accuracy for RR-BLUP in generations
following training. Here, we did not observe a gradual
decline in accuracy of prediction, in fact for ASI correla-
tions for all methods were higher in animals born in year
2000 compared to animals born in year 1998. Small rank
changes in the performance of the methods between test
years did occur, but there was no strong evidence for dif-
ferent rates of decline of accuracies in later test years
between methods. This is supported by the non-signifi-
cant interaction between method and year from the
ANOVA. In practice, it will be difficult to differentiate
between improvements in the accuracy of prediction
resulting from modelling relationships via SNP or from
LD between SNP and QTL. It is still likely that a significant
component of the gains of GS will reside with predicting
relationships more accurately on the genome level either
within families [41] or even across families. For industry
applications it is feasible and most likely that prediction
equations can be updated as information on new animals
becomes available, and this will ensure a minimal lag
between animals in the training set and the test set.

In practice, the accuracy of predictions of future outcomes
needs to be assessed. The partitioning of the data depicts
this situation with older bulls in the training data and
younger bulls in the test data. Care must be taken when
the accuracy of future predictions is evaluated by cross-
validation of random subsets of the training data set. A
significant decrease in accuracy of prediction of young
bull cohorts was observed for ASI relative to the accuracy
obtained by cross-validation of the training data set,
whereas for PPT the reduction in accuracy was negligible
(Tables 2 and 3). In general a decrease in the accuracy of
MBV in young bull cohorts might be expected, since accu-
racies of realized EBV for early proofs are likely to be lower
than the accuracies of realized EBV of the older bulls in the
training data set. Initially, this would not explain the dif-
ferences in accuracy of MBV of young bulls seen between
ASI and PPT, as the body responsible for the genetic eval-
uation of dairy cattle in Australia publishes a single relia-
bility value for all production traits and ASI. However,
heritabilities for the ASI component traits (0.25) are lower
than for PPT (0.40) and more training animals may be
required to obtain accurate prediction equations for traits
with lower heritability.

Another reason for a decrease in accuracy of prediction of
younger bull cohorts may be a reduction in EBV variance
in pre-selected bull teams. As shown in Figure 3, the vari-
ance of PPT and ASI (column 1 and 2, respectively) of the
training animals is greater compared to the variance in
one of the young bull cohorts (column 3 and 4, respec-
tively). This is likely to have affected the accuracy of ASI,
since ASI is a strong component of the multi-trait profit
index on which young bulls are currently selected,
whereas no pre-selection is likely to have occurred on PPT.
Finally the genetic architecture underlying traits may also
affect the robustness of accuracy of prediction from SNP
data, since for PPT compared to ASI, fewer individual SNP
with relatively large effect contributed to the prediction
equations.

Conclusions
Five regression methods proposed to calculate genomic
breeding values have been empirically evaluated using
data of 1,945 dairy bulls typed for 7,373 genome-wide
SNP markers. From our evaluations a number of impor-
tant observations can be made. Firstly, FR-LS based mod-
els included a small number of markers and had poor
accuracy and large bias of prediction. Secondly, accuracies
of MBV prediction obtained by methods that estimate
effects of all SNP were remarkably similar, despite the dif-
ferent assumptions underlying the models. Thirdly, accu-
racies derived by cross-validation with random subsets of
the training data are likely to overestimate the realized
accuracies of future predictions for some traits in young
bull cohorts. Combining marker and pedigree informa-
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tion increased the accuracy of prediction but the gain was
different for the two traits investigated. Computational
demand of a method is potentially important in imple-
menting genomic selection in practice and was lowest for
PLSR and RR-BLUP, and highest for Bayes-R.
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