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Abstract

A common need in machine vision is to compute the 3-D rigid transfor-
mation that exists between two sets of points for which corresponding
pairs have been determined. In this paper a comparative analysis of
four popular and efficient algorithms is given. Each computes the trans-
lational and rotational components of the transform in closed-form as the
solution to a least squares formulation of the problem. They differ in
terms of the representation of the transform and the method of solution,
using respectively: singular value decomposition of a matrix, orthonor-
mal matrices, unit quaternions and dual quaternions. This comparison
presents results of several experiments designed to determine the (1) ac-
curacy in the presence of noise, (2) stability with respect to degenerate
data sets, and (3) relative computation time of each approach.

1 Introduction

Determining the relationship between two coordinate systems using sets of corre-
sponded features is known as the absolute orientation problem. It has numerous
applications in the areas of photogrammetry, robotics [constructing world models),
object motion analysis, computing the hand-eye transform for cameras, as well as
object pose estimation following recognition.

A recent survey by Sabata and Aggarwal [1] lists a large number of algorithms
developed to compute the 3-D rigid transformation between two sets of corre-
sponded features (e.g., surfaces, lines and points). However, it does not provide a
quantitative comparison of these techniques. In this paper a commonly used subset
of these approaches is analyzed; closed-form solutions using corresponded points.

The four popular closed-form solutions compared here differ with respect to
the transformation representation and alternative ways of minimizing a criterion
function. The first was developed by Arun, Huang and Blostein [2], and is based
on computing the singular value decomposition (SVD) of a derived matrix. A
similar approach based on orthonormal matrices, but computing the eigensystem of
a derived matrix was presented by Horn, Hilden and Negahdaripour [3]. The third
algorithm, also due to Horn [4], involves representing the rotational component
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using a unit quaternion. The use of dual quaternions to represent both transform
components is the basis of the fourth technique of Walker, Shao and Volz [5].

The comparison presented here consists of three parts. First, the accuracy of
each algorithm is examined as the coordinates of corresponding points are cor-
rupted with increasing amounts of noise. Second, the stability is determined as
original 3-D point sets degenerate into such forms as a plane, line and single point.
Lastly, the relative efficiency, in terms of actual execution time, is reported for the
above situations. Conclusions based on these results should make the choice of an
appropriate algorithm for a given application simpler and more reliable.

2 Description of Algorithms

Each of the four algorithms computes the solution to a similar problem which can
be described as follows. Assume there exist two corresponded point sets {m,} and
{di}, i — 1 .. .N, such that they are related by rf,- = R rrn + T -f Vi, where R is a
standard 3 x 3 rotation matrix, T is a 3-D translation vector and Vi a noise vector.
Solving for the optimal transformation [R , T] that maps the set {mi} onto {di}

typically requires minimizing the least squares error criterion:

N

II d
i -Rmi-f ||2 (1)

For the exact details of the four algorithms we must refer the reader to the origi-
nal papers. However, in the following subsections the characteristics of each that
are relevant to the comparison are described; namely, transformation represen-
tation, minimization method and special cases. All of the solutions are in closed
form, which are typically more efficient than iterative techniques (e.g., the extended
Kalman filter approach of Zhang [6]).

2.1 A solution involving the SVD of a matrix

This first method was developed by Arun, Huang and Blostein [2]. The transfor-
mation rotation is represented using a standard 3 x 3 orthonormal matrix, while
translation is a 3-D vector, as in the equations above.

The solution method can be described as follows. By noticing that the point
sets should have the same centroid at the correct solution, the rotation component
is found first by analyzing point sets after their translation to the origin. A 3 x 3
correlation matrix given by

H = JT mc>l dc
T

{ (2)
i=i

is computed based on these new centered point sets. Its singular value decomposi-
tion, H — UAV

 T, is determined. The optimal rotation matrix is then R = VU
 T

 •

(Note, this computation of R is also known as the orthogonal Procrustes problem,

the SVD-based solution of which has been known for some time [7].) The opti-
mal translation is found as that which aligns the centroid of the set {di} with the
centroid of the optimally rotated set {m,}, that is T = d — R fh.
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A special case occurs for planar data sets or in the presence of large amounts of
noise. If the determinant of R is — 1, a reflection rather than a rotation has been
found. This is corrected by setting R = V U

 T
, where V = [ t>i,i>2,—1>3 ] and

V3 is the third column of V corresponding to the zero singular value of H. This
special case has also been handled in alternative derivations by Umeyama [8] and
Kanatani [9]. The algorithm is not designed for linear or singular point data sets.

2.2 A solution involving orthonormal matrices

The second algorithm is similar in nature to the first, but was developed indepen-
dently by Horn, Hilden and Negahdaripour [3]. The same representation for R and
T is used. Again the point sets are translated to the origin, and the correlation ma-
trix H in equation (2) calculated. However, rather than compute the SVD of this
matrix, a polar decomposition [9] is used, such that H = RS, where S = (HH

 T ) 1 / 2 .
Here, R = H

 T("7f= u i u
\ + 77^

 u
i
 u

? + ~^= U3 U3T)> where {A,} and {«,-} are
the eigenvalues and corresponding eigenvectors of the matrix HH

 T
. The optimal

translation T is computed as in the first algorithm, after calculating R.

Planar point sets again give rise to a special case, since the equation for R does
not hold as A3 gets small. Unfortunately, the proposed correction in [3] is not valid
in all cases. An alternate solution is: R= H

 T
S

 + ± , x , where the sign is
y/\ Trace(X) \

chosen such that the determinant of R is positive, S +
 = -7= «i u'i + - T = U2 W2

T,

X = [ (H
 T
 S

 + ) (H
 T
 S

 + ) T
 — I ] W3 w3

T and W3 is the eigenvector associated
with the smallest eigenvalue of S. Neither derivation can be applied to linear or
singular point data sets.

2.3 A solution involving unit quaternions

The third method is also due to Horn [4], but in this case a different representation
of the transformation is used. Rather than have the standard 3 x 3 orthonormal
matrix represent rotation, a unit quaternion is employed. When a rotation is
considered as a movement through an angle 6 about an axis a = [ ax,ay,az ]
going through the origin, the equivalent unit quaternion is defined as a 4-D vector
q = [ cos(6/2), sin(6/2) ax, sin(0/2) ay, sin(6/2) az ]. Translation is still
represented using a 3-D vector.

By rewriting the minimization problem in the quaternion framework (see [4]) a
new 4 x 4 matrix can be constructed from the correlation matrix H in (2) as:

P =

The optimal rotation, represented in quaternion form, is the eigenvector corre-
sponding to the largest positive eigenvalue of P. This rotation quaternion can then
be converted into standard matrix form. Following this, the optimal translation
can be computed as in the other two methods. The above technique does not need
to be modified to handle planar point sets, but as with the others, will not work
for linear or singular point data sets.
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2.4 A solution involving dual quaternions

The fourth algorithm is due to Walker, Shao and Volz [5], and is the most signifi-
cantly different of the group, originally designed to minimize the equation:
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where {ni,-} and {n2i}
 a r e two sets of L corresponding unit normal vectors, and

{at}, {/?,•} are weighting factors reflecting data reliability. This equation can be
simplified to that of equation (1) by setting a, — 0 and # = 1.

In this method the rotation and translation are represented together using a
dual quaternion, qa = [r,s]. Here, motion is modelled as a simultaneous rotation
around and translation along a particular line, with direction n = [ nx,ny,nz ],
passing through a point p = [ px,Py,Pz ]• The amount of motion is given by an
angle 9 and a distance t, defining the components of q^ as:

[ sin(0/2) n ] - [ § cos(0/2) n + sin(0/2) (p x n)
r ~ L cos(0/2) J S

 ~ [ - f sin(0/2)

Again the minimization equation can be rewritten in this new framework (see
[5]), resulting in an equation involving r and s. The optimal component r for
this new equation is found as the eigenvector corresponding to the largest positive
eigenvalue of a 4 x 4 matrix, A = -^ C^ C\ — C2, where C\ and C2 are matrices
whose elements are functions of the point coordinates. From f the standard rotation
matrix can be computed as R = (f3

2 - f0
T
2 r0 2) 1 + 2 fo..2 rj2 + 2 r3 K(f),

where T-Q 2 is the first three elements of f and K is a matrix that is a function
of the components of f. The optimal value of s can also be computed from f as
s = — 27v Ci >̂ from which the optimal translation follows as T = W(r)

 T
 s,

where W is another matrix of quaternion components. As in the unit quaternion
approach planar sets are processed fine, but linear and singular point sets are not
handled.

3 Experimental Comparison

Each of the four algorithms was implemented in C++ with efficiency in mind
(compiled using gcc, version 2.6.3, using -03 optimization). To provide a source of
commonality, routines from the Eispack linear algebra package [10] (converted from
Fortran to C) were used for all SVD (routine svd) and eigensystem (routines tred2
and tql2) calculations. These are known for their stability and rapid convergence,
and behaved properly during the series of experiments described below. More
detailed versions of these experiments can be found in [11].

3.1 The accuracy experiment

In this experiment, the absolute accuracy of each of the algorithms was tested
under varying levels of noise. Non-degenerately arranged 3-D point sets of size
N = 4 to N = 10,000 were used. The points {m;} were chosen randomly from a
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Curve index: SVD - Unit quaternion - Orthonormal matrix Dual quaternion-
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(a) Translation error: All algorithms vs. True (noisy) (b) Rotation error: All algorithms vs. True (noisy)

Figure 1: Errors between computed translation and rotation from algorithms and

known transformation. Graphs (log-log scale) are translation error, \\faig -Ttrue\\,

and rotation error, \\qaig — 9true||, v s- data set size, N.

uniform distribution within a cube of size 2 x 2 x 2 centered about the origin. The
corresponding set {d{} was formed by first adding uncorrelated, isotropic Gaussian
noise with zero mean and variable standard deviation to each point, and then
transforming to a new location. The translation components of the transform
were randomly selected from a uniform distribution in the range [—10 .. 10]. The
rotation matrix was calculated via a random selection from a uniform distribution
of unit quaternions representing valid rotations.

For each data set size and noise level one hundred trials were run and the
average response recorded. A trial consisted of new point, transform and noise
values. Two error statistics were computed for the calculated transforms. These
are the norm of the difference between the true and estimated translation vectors,
as well as the norm of the difference between true and estimated unit quaternions
representing the rotation.

Figure 1 shows the accuracy of the four algorithms for changes in noise level
with respect to the error in computed translation and rotation. As expected, as
the number of points grows, the error in the computed transformation approaches
a value dependent on the noise level. The exception is the zero noise case. Here
the dual quaternion (DQ) algorithm appears less accurate than the others, which
are all very similar except on small data sets. However, these differences are really
minimal, the largest difference being 10~13.

From these results, one can conclude that the difference in accuracy between
the algorithms is many orders of magnitude below normal noise levels, almost at
the level of machine precision (2 * 10~16). The unit quaternion (UQ) and SVD
results are most similar, deviating from that of the orthonormal matrix (OM) only
for small data sets, where these three perform better than the DQ method.
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3.2 The stability experiments

In this section the stability of the algorithms is tested, in terms of how well they
compute a correct transformation for degenerate data forms (plane, line and point).
Here a sequence of data sets is needed to monitor the breakdown of the algorithms.
Successive sets in the sequence are taken from a volume whose dimensions are
steadily reduced from that of an original 2 x 2 x 2 cube to approach those of a
plane, a line, or a single point.

Given this data sequence, two noise perturbations are applied to the points. The
first is isotropic, as in the accuracy experiment. This models the case where data
is gathered and no prior uncertainty model is known. The second is anisotropic
noise, which models higher data accuracy in some dimensions, but less in others.
The more accurate dimension here is the direction of degeneracy (for instance,
perpendicular to a plane). Noise added in this direction is reduced proportional to
the changing volume's dimensions.

The error criterion for these experiments is the root mean square (RMS) error of
a control point set, which is necessary for measuring any error in the unconstrained
degrees of freedom of the degeneracy. The points of this set (again within a 2 x 2 x 2
cube) undergo both the true and computed motions, and then the distances between
the resulting sets are measured. The error plots in Figure 2 are for the SVD
algorithm. Except where noted below these responses are typical of the others.

3-D to 2-D degeneracy In this experiment the degeneracy ratio (ratio of orig-
inal cube Z dimension to new reduced Z dimension) is increased until the data
set closely resembles the X — Y plane. RMS error responses were computed for
several different data set sizes, noise levels and types. Typical values are basically
independent of the degeneracy level, as shown in Figures 2.a and 2.b. Also, RMS
values for data sets of increasing size converge to v o a for isotropic noise and V2 <x
in the anisotropic case.

The individual responses of the algorithms are virtually identical, except in
the zero noise case depicted in Figure 3.a. Here, the response from OM is less
numerically stable than the others (perhaps suggesting the correction provided
here is not the best alternative), and that of DQ is slightly less accurate than
either the SVD or UQ results.

3-D to 1-D degeneracy In this experiment the data set degenerates into a line,
namely the Z axis. The SVD error responses are shown in Figures 2.c and 2.d.
Since the algorithms are not designed for linear data sets, the graphs indicate the
degeneracy level necessary for breakdown. Under isotropic noise the error steadily
rises as the diameter of the line decreases, completely breaking down in the best
cases when the line diameter reaches the level of the noise, and in most other cases
earlier than that. Under anisotropic noise the error remains at the original noise
level until numeric instability occurs, thereafter it breaks down steadily.

The largest difference in breakdown position is observed in the zero noise case,
as graphed in Figure 3.b. Results for the UQ algorithm are very similar to those
of SVD, breaking down slightly earlier. The DQ algorithm breaks down first in all
cases, while the OM algorithm's performance is highly dependent on the data set
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Figure 2: Graphs (log-log scale) of RMS errors of SVD algorithm for (a-b) 2-D,
(c-d) 1-D, and (e-f) 0-D degenerate data sets of changing size under isotropic and
anisotropic noise of varying levels.
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Curve index: SVD Unit quaternion OrthorrormaI matrix Dualquater

Degeneracy ralio

(a) RMS error N=1000, o = 0.0,2-D case

Figure 3: Graphs (log-log scale) of RMS errors of algorithms for N = 1000 and
<r = 0. Cases are for degeneracy to (a) plane, (b) line, and (c) singular point.

size. It actually performs the best for large data sets as shown in Figure 3.b, but
does worse than the SVD and UQ responses for small data sets.

3-D to 0-D degeneracy In this experiment the data set degenerates into a
point (the origin). Figures 2.e and 2.f show typical response curves which are
very similar for all but the DQ algorithm. Breakdown trends similar to those in
the linear degeneracy case can be seen, with the point of breakdown generally
occurring later. Once again, DQ always falls apart sooner (see Figure 3.c), even
earlier than in the previous experiment.

3.3 Efficiency experiments

From a theoretical standpoint, each of the algorithms examined has a time com-
plexity of O(N). In this section the actual coefficients of the linear time functions
are compared by measuring the execution times of the previous four experiments.
All timings were performed on a 50 MHz Sun Sparc Station 10 with a 1MB cache
memory. The graphs in Figure 4 represent the zero noise case for nondegenerate
3-D data sets. The changes in timings due to different levels of noise were minimal,
but there was some increase in speed noticed for degenerate data sets.

First consider the coefficient of the linear term of the time equation. All but
the DQ algorithm initially spend time computing the same set of sums for the
correlation matrix. Therefore the linear terms, which are dependent on the num-
ber of data points, should be identical for these three. The different set of sums
computed by the DQ algorithm is larger in number but requires fewer references
to the data values. In looking at the curves in Figure 4 the relative slopes are
different for small and large data sets. The change occurs when the data's memory
requirements exceed the machine's cache size. Prior to the transition point, the
greater number of computations of the DQ algorithm are evident, but as cache
misses become more frequent the roles are reversed.

Next consider the constant terms of the time equations, which are unique for
each algorithm. SVD computes the singular value decomposition of a 3 x 3 matrix,
followed by matrix multiplication and determinant operations. The OM algorithm
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Curve index: SVD

(a) ExecutkJn time for 3-D data set: N = 0 . . 250

500 1000 1500 2000 2500 3000 3500 4000 4500

N

(b) Execution time for 3-D data set: U = 250 .. 5000 (c) Execution time for 3-D data set: N = 0 . . 100,000

Figure 4: Execution times (in seconds) of algorithms on nondegenerate data sets.

determines the eigensystem of a 3 x 3 matrix, in addition to a greater number of
matrix operations. The UQ algorithm computes the eigensystem of a 4 x 4 matrix,
followed by a minimal amount of computation for representation conversion. Lastly,
the DQ algorithm also computes the eigensystem of a 4 x 4, and does more matrix
calculations. Similar work is done by all to compute the translation.

The relative times of these calculations are best seen in Figure 4.a. Here, the
SVD computations seem least efficient, while the smaller eigensystem calculation
of OM is quickest. But this is not true for all data set sizes, as shown in Figures 4.b
and 4.c. Because the SVD and eigensystem computations are actually iterative,
their relative timings can change somewhat based on data complexity, which causes
the observed curve crossovers. With degenerate data sets (see [11]) the calculation
times are reduced in general and similar crossovers still occur.

So, when N < 100, the OM algorithm is quickest, by as much as 15%. For
large data sets the relative difference of the SVD, UQ and OM methods becomes
negligible, about 1%. Prior to data size exceeding the cache (N < 10, 000) the DQ
technique is slower, but then it becomes more efficient as N increases.

4 Conclusions

A comparison has been made between four algorithms that compute a rigid 3-D
transformation between two sets of corresponding points in closed form: SVD, UQ,
OM and DQ. As with most comparisons, no one algorithm was found to be superior
in all cases, but some general conclusions can be made.

The difference in accuracy on nondegenerate 3-D point sets, even for various
noise levels, is almost insignificant. This is perhaps not unexpected since they were
designed to solve the same problem. But, this conclusion is not in agreement with
earlier findings of Walker, et al. which stated "the two algorithms produce the
same rotation errors ... for the translation errors, the DQ algorithm exhibits better
performance than the SVD algorithm ..." [5, pg. 364]. This conclusion is certainly
not supported by the data here.

There does appear to be a greater separation in algorithm stability. Here, in
most cases, the SVD and UQ methods were very similar and usually the most
stable. The OM method was not as stable for planar data sets, but was superior
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for certain large degenerate data sets. The DQ algorithm was never the most
stable, and usually broke down before the others.

In terms of efficiency, for small data set sizes the OM algorithm was quicker
(this conclusion depends heavily on the numerical package used, see [11]). On
larger data sets the memory configuration of the computer must be considered to
determine if the relative speed of the DQ algorithm is superior.

So, in conclusion, it appears that the SVD algorithm provides the best overall
accuracy and stability, but may not be as efficient as DQ for large data sets.
Otherwise, on smaller data sets, the UQ technique can be chosen for slightly better
speed performance than SVD with little loss in accuracy and stability.
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