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Abstract—A comparison between different modern population based
optimization methods applied to the design of scannable circular
antenna arrays is presented in this paper. This design of scannable
circular arrays considers the optimization of the amplitude and phase
excitations across the antenna elements to operate with optimal
performance in the whole azimuth plane (360◦). Simulation results
for scannable circular arrays with the amplitude and phase excitation
optimized by genetic algorithms, particle swarm optimization and the
differential evolution method are provided. Furthermore, in order to
set which design case could provide a better performance in terms of
the side lobe level and the directivity, a comparative analysis of the
performance of the optimized designs with the case of conventional
progressive phase excitation is achieved. Simulation results show that
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differential evolution and particle swarm optimization have similar
performances and both of them had better performance compared to
genetic algorithms when all algorithms are allowed equal computation
time.

1. INTRODUCTION

Modern optimization techniques have aroused great interest among the
scientific and technical community in a wide variety of fields recently,
because of their ability to solve problems with a non-linear and non-
convex dependence of design parameters.

Several new optimization techniques have emerged in the past two
decades that mimic biological evolution, or the way biological entities
communicate in nature. Some of these algorithms have been used
successfully in many electromagnetism and antenna problems with
many constraints and non-linear processes. The most representative
algorithms include Genetic Algorithms (GA) [1–5], Particle Swarm
Optimization (PSO) [11–13], and the method of Differential Evolution
(DE) [19–21]. In the electromagnetism research area, the use of these
optimizers is most popular for antenna synthesis. To date, different
GA, PSO and DE algorithms have been successfully applied to different
problems including antenna design [1, 13, 19] and the array synthesis.

In this paper, a comparison of GA, PSO and DE for the design
of scannable circular antenna arrays is presented. The purpose and
contribution of this paper is to present a comparative evaluation of
GA, PSO, and DE in the performance to design scannable circular
antenna arrays. In this case, we study the behavior of the array factor
for the design of scannable circular arrays considering the optimization
of the amplitude and phase excitations across the antenna elements,
for a maximum performance in terms of the side lobe level and the
directivity in a scanning range of [0◦, 360◦].

To the best of the authors knowledge no performance comparison
of GA, PSO, and DE applied to design of scannable circular arrays, has
been presented previously. The performance of a circular array could
be improved substantially, with respect to the circular array with the
conventional progressive phase excitation, if the amplitude and phase
excitations are set or optimized in an adequate way. Depending on
the performance improvement that we could get (in terms of the side
lobe level and the directivity), this information could be of interest to
antenna designers.

The remainder of the paper is organized as follows. Section 2
states the problem of designing scannable circular arrays and a
description of the objective function used by the evolutionary
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algorithms. A short description of the evolutionary algorithms is
included in Section 3, and in Section 4 a performance comparison
between the algorithms for the design of scannable circular arrays is
illustrated. Finally, the summary and conclusions of this work are
presented in Section 5.

2. DESIGN OF SCANNABLE CIRCULAR ANTENNA
ARRAYS

In the application of evolutionary optimization techniques for designing
antenna arrays, it has been considered the design of different phased
array structures. Among antenna array configurations, the phased
linear array is the most common form employed in cellular and personal
communication systems (PCS) [22]. However, 360◦ scanning of the
radiation beam can be obtained by combining a few linear arrays whose
sector scans add to give the desired 360◦ scan. This could result in
objectionably high costs, i.e., the array cost, the control complexity,
and the data processing load are increased. Unlike the linear array, the
performance of the circular array has not been extensively studied.

In the study of circular arrays, it has been considered the pattern
analysis [23], and the pattern synthesis [24–26] of arrays with uniform
separation. The design of non-uniform circular arrays optimizing a
single objective for side lobe reduction is dealt with in [27]. A closely
related work is the one proposed by Su and Ling [28] where the array
beamforming problem in the presence of obstacles is dealt with using
a genetic algorithm. They solve the design problem by optimizing
the current excitation and the array’s elements positions. Here we
optimize the excitation current amplitude and phase perturbations. In
their approach they need to fix a desired radiation pattern where as
our approach does not need to provide such a desired pattern since it
searches for the optimum unknown one. Next, the problem of designing
scannable circular arrays is formulated.

Consider a circular antenna array of N antenna elements
uniformly spaced on a circle of radius a in the x-y plane. The array
factor for the circular array shown in Figure 1, considering the center
of the circle as the phase reference, is given by [29]

AF (φ, I) =
N∑

n=1

In exp [jka (cos (φ−∆φn)− cos (φ0 −∆φn))] (1)

where ∆φn = 2π(n − 1)/N for n = 1, 2, . . . , N is the angular position
of the nth element on the x-y plane, ka = Nd, i.e., a = Ndλ/(2π),
I = [I1, I2, . . . , IN ], In represents the amplitude excitation of the nth
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Figure 1. Array geometry for an N element uniform circular array
with inter-element spacing d.

element of the array, φ0 is the direction of maximum radiation and φ
is the angle of incidence of the plane wave.

In this case, the array factor with phase excitation is created by
adding in the appropriate element phase perturbations, P = [δβ1,
δβ2, . . . , δβN ], δβi represents the phase perturbation of the ith element
of the array, such that

AF (φ, I,P) =
N∑

n=1

In exp {j [ϕn + δβn]} (2)

where ϕn = ka[cos(φ−∆φn)− cos(φ0 −∆φn)].
The idea of adding perturbations in the conventional array factor

is that the optimization algorithm searches possible optimal phase
excitations in angles near the direction of desired maximum gain. The
optimization process developed in this paper for generating arrays that
have radiation patterns with maximum performance in terms of the
side lobe level and the directivity will be based on (2).

It is important to mention that as the center of the circle is
taken as the phase reference in the array factor, it is considered a
symmetrical excitation for the optimization process, i.e., the excitation
would be given in the next way I1δβ1, . . . , IN/2δβN/2, IN/2+1δβN/2+1 =
conj(I1δβ1), . . . , INδβN = conj(IN/2δβN/2). Note that we will have
N/2 amplitude and phase excitations.
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The design problem is formulated as to minimize the next
objective function

Of = (|AF (φSLL, φ0, I,P)| /max |AF (φ, φ0, I,P)|)
+(1/DIR(φ, φ0, I,P)) +

∣∣∣φ0 − φind
0

∣∣∣ (3)

where φSLL is the angle where the maximum side lobe is attained,
i.e., the first component evaluates the side lobe level (SLL) of the
array factor generated, DIR the directivity of the array factor, φind

0
is the direction of the main beam for the array factor generated by
an individual or a possible solution, and φ0 could be considered as
the desired direction of maximum radiation for the array factor. In
this case, it is considered the behavior of the array factor for the
scanning range of −180◦ ≤ φ0 ≤ 180◦ with an angular step of 30◦.
It must be noted that if we select the number of antenna elements
as N = 12 and there is a constant angular separation of 30◦ between
different beam steering angles, the optimal excitation for a particular
beam steering angle should also apply to other beam steering angles,
by simply substituting (In, δβn) into (In+1, δβn+1) when the beam
steering angle is increased by 30◦. As a result, only one optimization
is needed for all beam steering angles instead of the 12 trials to cover
360◦. The rationale behind the use of metaheuristics to solve this
optimization problem has to do with the nonlinearity and the many
local optima of the objective function given by (3). Furthermore these
approaches do not have any restriction in cases where we need to
increase the complexity of this objective function.

The next section presents the evolutionary optimization algo-
rithms to be evaluated when they are applied to this design problem.

3. THE EVOLUTIONARY OPTIMIZATION
ALGORITHMS

As already being pointed out, the objective of this paper is to present
a comparative evaluation of GA, PSO, and DE for the design of
scannable circular arrays. Therefore, the main characteristics and the
procedure for each algorithm are described in the next subsections.

3.1. Genetic Algorithms

By analogy with natural selection and evolution, in classical GA the
set of parameters to be optimized (genes) defines an individual or
potential solution X (chromosome) and a set of individuals makes up
the population, which is evolved by means of the selection, crossover,
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and mutation genetic operators. The optimization process used by the
GA follows the next steps.

The genetic algorithm generates individuals (amplitude excita-
tions and phase perturbations of the antenna elements). The indi-
viduals are encoded in a vector of real numbers, that represents the
amplitudes, and a vector of real numbers restrained on the range (0,
2π), that represents the phase perturbations of the antenna elements.

Each individual generates an array factor of certain characteristics
of the side lobe level and the directivity. Then, the genetic mechanisms
of crossover, survival and mutation are used to obtain better and better
solutions. The genetic algorithm evolves the individuals to a global
solution that generates an array factor with minimum side lobe level
and maximum directivity in the steering direction.

3.2. Particle Swarm

One of the main drawbacks of the previous evolutionary algorithm is
their lack of memory, which limits the search and convergence ability
of the algorithms. In GA, the concept of memory relies on elitism, but
there is no stronger operator to propagate accurate solutions in a faster
way. However, the PSO algorithm emerges as a powerful stochastic
optimization method inspired by the social behavior of organisms such
as bird flocking or fish schooling, in which individuals have memory
and cooperate to move towards a region containing the global or a
near-optimal solution.

Particles within the swarm move influenced by its current position,
its memory and by the cooperation or social knowledge of the
swarm [30], using only one operator, the so-called velocity operator.
Let us suppose a swarm of K particles, in which each particle XK =
(xk1, . . . , xkD) representing a potential solution (amplitude excitations
and phase perturbations of the antenna elements) is defined as a point
in a D-dimensional space. The limits of the parameters xkd to be
optimized define the search space in D-dimensions. Iteratively, each
particle k within the swarm flies over the solution space to a new
position XK with a velocity VK = (vk1, . . . , vkD), both updated along
each dimension d, by the following:

vkd = wvkd+c1r1 (pbestk,d−xkd)+c2r2 (gbestd−xkd) , vk≤vd,max∀d(4)
xkd = xkd + vkd∆t (5)

where w is known as the inertial weight, c1 and c2 are the acceleration
constants and determine how much the particle is influenced by its
best location (usually referred as memory, nostalgia or self-knowledge)
and by the best position ever found by the swarm (often called shared



Progress In Electromagnetics Research B, Vol. 13, 2009 177

information, cooperation or social knowledge), respectively. Moreover,
r1 and r2 represent two separate calls to a random number function
U[0, 1], vd,max is the maximum allowed velocity for each particle used
as a constraint to control the exploration ability of the swarm and
usually set to the dynamic range of each dimension [31], and ∆t is
a time-step usually chosen to be one. The detailed interpretations of
these step terms may be found in [30].

In short, the PSO algorithm requires fewer lines of code than GA
and is easier to implement. Another advantage of PSO against GA is
the small number of parameters to be tuned. In PSO, the population
size, the inertial weight and the acceleration constants summarize the
parameters to be selected and tuned, whereas in GA the population
size, the selection, crossover and mutation strategies, as well as the
crossover and mutation rates influence the results.

3.3. Differential Evolution

One of the latest evolutionary computational techniques apart from
the PSO is the differential evolution (DE) algorithm, in which, some
individuals are randomly extracted from the solution population and
geometrically manipulated [20], avoiding the destructive mutation of
GA. The most prominent advantage of DE is its low computation time
compared to that of GA, particularly in large antenna arrays. DE is an
alternative to speed up the GA. Instead of small alterations of genes
in GA mutation, DE mutation is performed by means of combinations
of individuals [20].

First an initial population is formed in which the chromosomes
have a Gaussian distribution. For each vector or solutions of the
population (Np)Xi, i = 1, 2, . . . , Np of the Gth iteration, two new trial
members, εt1 and εt2, are generated as follows:

εt1 = ε
(G)
r1 + F

(
X

(G)
i − ε

(G)
r2

)
(6)

εt2 = ε
(G)
r1 + F

(
X

(G)
i − ε

(G)
r3

)
(7)

where F ∈ [0, 2] is a real constant factor range suggested in [21],
which controls the amplification of the differential variation, and the
integers r1, r2, r3 ∈ [1, Np] are randomly chosen such that r1 6= r2 6= r3.
After the objective function evaluation, the best solution in the set
{εi, εt1, εt2} becomes the new member for the next iteration, εG+1

i .
Some chromosomes in the new population occasionally generate array
factors which are not physically realizable, and an adjusting process
is needed [32]. Taking the best solution into account, a termination
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criterion is proposed by fixing a number of iterations without an
improvement over this solution. Storn and Prince [33] explain the
procedures involved at each step of this algorithm in detail.

The results of using these evolutionary algorithms for the design
of scannable circular arrays are described in the next section.

4. EXPERIMENTAL SETUP AND RESULTS

The methods of GA, PSO and DE were implemented to study the
behavior of the array factor for the scanning range of 0◦ ≤ φ0 ≤ 360◦
with an angular step of 30◦. The number of antenna elements was set
as N = 12, for a uniform separation of d = 0.5λ. In this case, we
follow the literature and our previous results to set the parameters for
each algorithm in attempt to make a fair comparison. We also give
all algorithms the same computation time with equal computational
resources.

In the case of PSO, we have set c1 = c2 = 2.0 suggested
by [34] and [35] for the sake of convergence. To further accelerate
the convergence, a time-varying inertial weight, w, is utilized and varies
from 0.9 at the beginning to 0.4 toward the end of the optimization [36].
Researchers have found [34–36] that for an n-dimensional problem, the
number of agents or particles should be at least comparable to n. In
our case n is 24, 12 excitation amplitudes and 12 phase perturbations.
In this case, the optimization is executed using a number of 150 agents
for 1000 iterations to provide a better sampling of the solution space.
The value of vd,max in (4) is set as 0.9r where r is the difference between
the maximum and minimum each decision variable can achieve.

For the case of GA and DE, we have set the proposed
parameters based mainly on our previous experience in solving similar
problems [37, 38]. The population size for DE is set to 50 while that
of GA was set to 148 in order to have similar computation time to
those of PSO and DE. Two point crossover along with standard single
point mutation and ranking selection are used. In the DE the value
of F in (6) and (7) is set to 0.5. The stopping criterion is, in both
algorithms, 1000 iterations.

Now, the comparison of GA, PSO and DE is conducted in a
statistical manner. Since the distribution of the best objective function
values do not follow a normal distribution the Wilcoxon two-sided rank
sum test [39] was used to compare the objective function mean values.
Each algorithm was executed 50 times and the best result for each run
is considered.

Tables 1–2 show the comparison results among the means of
solution’s quality for each pair of algorithms, we can say that at a
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99% confidence level the means of PSO and GA as well as those of
GA and DE are statistically different. However, PSO and DE are
not. Based on these results we can conjecture that the standard GA
performs poorly incomparison to newer approaches like PSO or DE.

Figure 2 illustrates the best array factor obtained in the 50 trials
by a) GA, b) PSO and c) DE. The numerical values of the side lobe
level, directivity, amplitude and phase perturbation distributions for
the array factor shown in Figure 2 are presented in the Table 3.

As illustrated in the Figure 2 and the Table 3, the methods of
particle swarm optimization and differential evolution presents a better
performance in terms of the side lobe level with respect to genetic
algorithms, maintaining very similar values for the directivity in the

Table 1. Mean value of the objective function for each algorithm
obtained with 50 trials.

Algorithm
Objective function

mean value
GA
PSO
DE

0.8076
0.7557
0.7601

Table 2. P value for the Wilcoxon two-sided rank sum test for the
comparison of means.

Comparison pair P -value
PSO/DE
PSO/GA
GA/DE

0.7854
2.09 EXP-7

7.4477 EXP-10

Table 3. Numerical values of the side lobe level (SLL), directivity
(DIR), amplitude and phase perturbation distribution for the array
factor illustrated in Figure 2.

Design case SLL

(dB)

DIR

(dB)

Amplitude

Distribution

Phase perturbation

distribution (deg)

GA −14.22 11.48 9.0210, 6.8639, 6.3014,

6.7600, 8.5353, 13.9554

19.7432, −85.164, 5.3822,

79.2396, −23.966, 28.7819

PSO −18.19 11.27 8.2588, 10.3593, 7.8372,

12.3624, 8.7257, 9.6441 

−159.3256, 96.52, −177.3974,

−99.7824, 160.56, −150.6

DE −18.91 11.26 7.3104, 12.0239, 8.4663,

8.2479, 11.0431, 8.7574 

−20.7692, 81.3383, 0.3238,

−81.6377, 20.5736, −29.2867

Conventional case −7.167 10.65 1, 1, 1, 1, 1, 1 0, 0, 0, 0, 0, 0 
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performance of these three optimization methods. In this case, it is
observed a reduction in the side lobe level for DE and PSO of 4.6 dB
and 4.0 dB with respect to GA.

Now, if the optimization results of the three methods are compared
with the conventional case of progressive phase excitation, the results
of the side lobe level and the directivity for the optimized designs are
really surprising. Figure 3 shows a comparison of the array factor
for the conventional case and the optimized designs by GA, PSO and
DE in the cut of φ0 = 180◦. Observing the results, the conventional
case of progressive phase excitation provides a SLL = −7.16 dB, and
DIR = 10.6 dB. For the case of the optimized designs, it is obtained a

(a) GA

(b) PSO
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(c) DE

Figure 2. The best array factor obtained in the 50 trials by GA, PSO
and DE.

SLL = −14.22 dB and DIR = 11.48 dB for GA, a SLL = −18.19 dB
and DIR = 11.27 dB for PSO, and a SLL = −18.91 dB and DIR =
11.26 dB for DE.

These values mean a substantial improvement in the performance
of the array for the designs optimized by the methods of GA, PSO
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and DE, with respect to the conventional case of progressive phase
excitation, i.e., a substantial improvement was obtained in the sense of
the side lobe level and an improvement of about 1 dB in the directivity,
maintaining the same scanning range and the same aperture. The
three evolutionary optimization methods efficiently computes a set of
antenna element amplitude and phase excitations in order to provide
a radiation pattern with maximum performance in the side lobe level
and the directivity in the entire scanning range.

Notice that the results from the different methods are not
the same, this is mainly because the algorithms do not guarantee
convergence to the global optimum in finite time.

5. CONCLUSIONS

This paper illustrates how to model the design of scannable circular
arrays with the optimization of the amplitude and phase excitations
for improving the performance of the array in the sense of the side
lobe level and the directivity considering a scanning range of [0◦,
360◦]. In this design problem, a performance comparison of three
evolutionary optimization algorithms was achieved. The obtained
results illustrates that the methods of differential evolution and particle
swarm optimization present a better performance in terms of the
side lobe level with respect to the genetic algorithms under equal
computation time. Furthermore, the results illustrated that the
optimization of the array could provide a substantial improvement in
the side lobe level and an improvement of about 1 dB in the directivity,
with respect to the conventional case of progressive phase excitation.
These improvements in the performance of the array are achieved
maintaining the same scanning range, i.e., in all azimuth plane (360◦),
and the same aperture.

Future work is aimed at studying the robustness of these methods
when different numbers of antenna elements and other design variables
are taken into account.
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