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A Comparison of Global Methods
for Linear Two-Point Boundary Value Problems

By R. D. Russell and J. M. Varah*

Abstract.   Recently there has been a great deal of interest in numerical methods of a

global nature for boundary value problems.   In this paper we discuss and compare

these global methods from a computational point of view, for the case of a single

linear two-point boundary value problem.

I. Introduction.   Consider the (2m)th-order linear two-point boundary value
problem

m
(1.1) Lu(x) = X  (- lYDi(ai(x)D,u) = /(*),      a < * < b,

(=0

(1 -2) D'u(a) = Dlu(b) = 0,      0 < i < m - 1.

Three well-known methods which give global continuous approximate solutions to this
problem are the methods of collocation, Galerkin, and least squares.  In this paper we
shall relate and compare these methods from the point of view of practical machine
computation.

First, in Section II, we show how these methods are related in general, using
arbitrary basis functions to determine the finite-dimensional subspace in which the
approximate solutions are constructed.  Then in Section III, we relate the available
error estimates for the common choice of piecewise polynomial bases.  Finally in Sec-
tion IV, we compare the amount of work required to compute these solutions by
forming and solving the relevant matrix equations.

II. Description of the Methods.   All the methods we consider find approximate
solutions of the form S^c(.0,(*), i.e. the solutions are elements of a finite-dimensional
subspace

Sn = span{0!(*), . . . , 4>N(x)}

whose basis elements all satisfy the boundary conditions (1.2). The methods only differ
in the way the coefficients {c¡} are chosen.

1.  Collocation.   Here the approximate solution w^N\x) = 2^ w-0-(*) is deter-
mined by satisfying (1.1) exactly at N points, i.e.

(2-0 7wW(*,.) =/(*,.),      z=l,...,/V.
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1008 R. D. RUSSELL AND J. M. VARAH

The resulting linear system to solve for the coefficients {w}is

(2-2) Cw = f,   cif = Ltpfa),   /.=/(*,.).

2.  Galerkin.   The Galerkin solution u^N\x) = zZ^u¡<p(x) is determined by forc-
ing the residual (Lu^N^ -/) to be orthogonal to each basis function:

(2.3) f * Lu<N\x}tl>/Lx)dx =Sbf(x)4>i(x)dx,      i=l,...,N.
J a Ja

This gives the linear system

(2.4) Au = g,   df, = S^iL^dx,   g.=S^f4>idx.

Since integration by parts gives

(2.5) av = ¡\wjypidx = /a&M(0;., <¡>.)dx,

where M(u, v) = X'¡L0a¡(x)D'uD'v, the Galerkin solution is equivalent to the so-called
Ritz solution derived from the variational principle for (1.1), (1.2).  This also shows
that the matrix A is symmetric, and in fact it is positive definite when the operator in
(1.1) is elliptic.

Computationally of course, these integrals must be replaced by quadrature sums
in all but the most trivial problems.  This can be done in a variety of ways: we assume
in what follows only that the integrals on both sides of (2.3) are evaluated by the
same quadrature rule, namely

rb Q
J   p(x)dx=z £   ukp(xk).

0 fc=i

The resulting discretized problem depends on whether we choose the Galerkin or Ritz
form of the integral in (2.5), so the two formulations are no longer equivalent. We
prefer to distinguish them by the terms discrete Galerkin and discrete Ritz.

(a) Discrete Ritz.   Using the Ritz form of the integrals leads to Au = g, where

(2.6) 00 = £   "***(*,(**). *,(**))>   It = Z   «*/(**#,<**)•
fc=l Zc=l

This is the form normally used since it retains the matrix symmetry, and we refer to
Strang and Fix [7] for estimates of the number of quadrature points Q necessary to
ensure no loss of accuracy from the discretization (for piecewise polynomial bases).

(b) Discrete Galerkin.   This gives Âû = g where

Q Q
(2.7) $i/= £   cofcL0/(*fc)0,(*fe),  gt= £   GJfc0,.(*fc)/(*fc).

fc=l k=l

If we define the matrix B by

bik =0/(*fc)>      i=l,. . .,N,k=l,...,Q,

then (2.7) can be expressed as
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A COMPARISON OF GLOBAL METHODS 1009

(2 8) BDCu=BDf,

where C and /are defined in (2.2) and D = diag(oj().  This gives easily
Theorem 2.1. If N = Q, the discrete Galerkin method (2.7) is equivalent to the

collocation method (2.2) using the same points, provided
(i) none of the quadrature weights cok are zero,

(ii) the matrix B is nonsingular.
Note: (ii) is guaranteed if the functions {0,(*)} are unisolvent.
Thus collocation can be viewed as a discrete Galerkin method using the same set

of points, and of course is much less work since C is easier to evaluate than Â = BDC.
Normally however, to obtain the same order of accuracy as the undiscretized Galerkin
method (2.3), we need Q> N.   But for some special choices of piecewise polynomial
bases and quadrature points, Q = N is sufficient; we shall discuss this in Section III.

3. Least squares.   This solution v^N\x) = 2^u-0(*) is found by minimizing
iba(Lv>N' - f)2dx with respect to the coefficients [v^.  Again the solution is char-
acterized by an orthogonality condition:

(2.9) \b LviN\x)(L<pt) dx=\b f(I4¡) dx,      i=l,...,N.
Ja Ja

Discretizing with the same quadrature rule on both sides, we obtain

(2.10) CTDC\ = CTDf.

From this we easily obtain
Theorem 2.2. If N = Q, the discrete least squares method (2.10) is equivalent

to the collocation method (2.2) using the same points, provided
(i) the quadrature weights {ojk} are nonzero,

(ii) the collocation matrix C is nonsingular.
Again we normally use Q> N here, but even in this case we can consider discrete

least squares as an extension of collocation: if the weights {cjfc} are all positive, (2.10)
is precisely the set of normal equations for the discrete linear least squares problem

(2.11) min||ö'/2(Cv-f)ll2.

Thus we merely "collocate" at more points (0 than functions iN) giving an overdeter-
mined set of linear equations; scale these by D    and solve by the familiar linear least
squares method.  We will return to this idea later.

III.  Convergence Results for Piecewise Polynomial Bases.  Now we specialize the
choice of basic functions {0,(*)} to piecewise polynomials: given a mesh a = x0 < x.
< • • • < xN = b and h = max|*|+ j - xA, we demand that each basis function be a
polynomial of degree 2« - 1 in each subinterval, with k derivatives matching at the
knots {*,-} so the functions are globally C^k\  This is (A/ - l)ik 4 1) continuity con-
ditions, and counting the 2m boundary conditions (1.2), there are [(2n - 1 - k)N 4 k
4 1 - 2m] free parameters left, and thus the same number of basis functions.  Com-
putationally, it is important that the basis functions used have support over as small an
interval as possible; we refer to de Boor [11] for a discussion of the 2?-spline basis for
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1010 R. D. RUSSELL AND J. M. VARAH

this space of functions, which has minimal support.   Particular choices of interest are
(i) splines iSp^^): degree 2n - 1, globally C^2"~2^; support 2« subintervals,
(ii) Hermites (#^): degree 2n - 1, globally C^; support 2 subintervals with

either Ä-spline or natural Hermite bases.
Our purpose here is to give a uniform presentation of the known convergence

results; for more details the reader is referred to other papers.   Before giving the con-
vergence results, we mention some standard preliminary results.  For «(*), u(*) satisfy-
ing (1.2), define

(3.1) aiu, v) = J    J!  ai(x)D'u(x)D,v(x)dx.
1 = 0

Integrating by parts and using (1.2), we have

-b

'a

We also define the norm

-b   m

i
i=0

rb rb
a(u, v) = I   u(x)Lv(x)dx =      (Lu(x))v(x) dx.

J a Ja

rb     m
<=J    Z (D'vix))2dx.

It is well known that if (1.1) is sufficiently smooth and elliptic (e.g. aÁx) > 0  (0 < i
< m - 1) and am(x) > S > 0) we have

(3.2) C\\v\\2D<a(v,v)<C'\\v\\2D

and

(33) \a(u,v)\^C'\\u\\D\\v\\D.

We also need the bilinear form

(3.4) b(u, v) = f " Lu(x)LxAx) dx
J a

and the norm

•b 2

1 = 0

Again if (1.1) is sufficiently smooth and elliptic,

(3.5) K\\v\\2E <b(v,v)<K'\\v\\2E

and

(3.6) \b(u,v)\<K'\\u\\E\\v\\E.

1.  Collocation.   Convergence for the collocation method is given by the follow-
ing theorem of de Boor and Swartz [2].

Theorem 3.1. Suppose (1.1), (1.2) has a unique solution u(x) and the coeffi-
cients o/(l.l) are sufficiently smooth.   Then using a B-spline basis of degree 2n - 1
and continuity C^2m_1\ and collocating at the 2n - 2m Gaussian points in each sub-
interval, produces a unique solution w(-N^(x) for sufficiently small h, which satisfies

Jb 2m
X iD'vixffdx.

a        ,.
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A COMPARISON OF GLOBAL METHODS 1011

(3.7) ||W _ w(iV)||2  = 0(Ämin(2n,4„-4m))

and

(3.8) \u(x¡) - w^)(*,.)l = 0(h4n~4m),      1 < i < N.

The rather unusual continuity class required here (e.g. only C'1' for a second-order
problem) is necessary because this gives exactly 2« - 2m collocation points in each
subinterval (see the formula in the first paragraph of this section).   From our point of
view, (3.7) is natural from Theorem 2.1: collocation at the 2n - 2m Gaussian points is
equivalent to a discrete Galerkin method using Gaussian quadrature (error bound
0(h4n~4m^)) and the corresponding Galerkin method, at least for a smooth basis, has
error bound Oih2n), as we shall see later.  With this in mind, we give our own proof
of part of Theorem 3.1.

Proof of '(3.7). Let 0 be the solution of Lc¡> = v = (u - wiN))l\\u - w(A°||2 as in
Nitsche [4]. The Green's function for L is sufficiently smooth that 110^11«, < K, 0 <
/' < 2m. Then

||M - WW||2 = S" i<« ~wm)dx = «(0, u - w(N)) = ¡I <Kf-f)dx,

where /' = Lw^N^ satisfies fit) = fit/) at the 2n - 2m Gaussian points in each subin-
terval [*,., */+. ].  If pt{x) = ïlf^-2m (* - t,), then

(3-9) f ,+ 1 Piix)rix)dx = 0
Jx¡

for all polynomials r(x) of degree less than 2zz - 2m.  On [*,-, *(+,],/-/ = p¿x)q¿x)
and llPjOOIloo = 0(h2n~2m).  The standard existence proof for w^Ar) implies
||(«-w(JV))(/)|| =Oih2n~2m) fox 0<j< 2m, from which follows boundedness of
derivatives of w^ and hence /.  Thus

N-i rxi+l
<bif-f)dx= XI Pi(x) [0(*>7i(*)] dx.

1=0     Xi

Now expanding [0r/f] in a Taylor series about *;- with k = min {2m, 2« - 2m) terms
and using (3.9),

Uu-wW\\2 =Z   CÍ+ ' Pi(x) [0<?'^)(U (* -*/ dx = 0(hm^2"'4"'4^).
,=o Jxi k-

Q.E.D.
This collocation at Gaussian points has proven very successful in practice especially

for n — 2m, in which case we are working with the Hermite space Lv^^ which has a
very convenient natural basis (see [9] for some numerical comparisons with finite-dif-
ference methods).  However, for n ^ 2m the computations require a 5-spline basis; it
might be more attractive computationally to use the Hermite space //^ with continuity
C^1' rather than c(2m~1\ with r chosen so the order of accuracy is the same.  For
this space, the number of collocation points required is [rN 4 r - 2m], so we can use
r in each subinterval except for r -2m intervals where we use one less point if r < 2m
or one more if r > 2m.

\\u - w(Ar)|| -
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1012 R. D. RUSSELL AND J. M. VARAH

If we use Gaussian points in each subinterval, and assume that the collocation
solution exists, the above proof of (3.7) shows

w(N)n rt(hm\n(r+2m,2r= o(hmin^r+2m'2rh

for the Hermite space Hq.  (One fewer point in some intervals only affects the local
error by h, leaving the same global error.)  Notice that we get the same convergence as
with the Ä-spline basis of degree 2n - 1, continuity 2m - I, if we take r = 2n - 2m.
That is, we can collocate at the same 2n - 2m Gaussian points, but with a natural
Hermite basis rather than 5-splines, and obtain just as much accuracy.  In Section IV,
we show that the amount of computation involved is the same.

2. Galerkin.   The convergence rates for the (continuous) Galerkin method are
well known (see for example Varga [10]):

Theorem 3.2. Suppose (1.1), (1.2) has a unique solution u(x), the coefficients
of il.I) are sufficiently smooth, and (3.2), (3.3) hold.  Then using piecewise polynomials
of degree 2« - 1 and continuity at least C^"-1^ [a, b], there exists a unique Galerkin
solution u^N\x) for h sufficiently small, and it satisfies \\u - m^||2 = Oih2").

For the discrete Ritz method, the number of quadrature points required to main-
tain this accuracy is still not completely understood. Discretizations of only the right-
hand side of (2.3) have been considered by Herbold et al. [3] and Schultz [5]. More
recently, Strang and Fix [7] have considered the more realistic problem of discretizing
both sides as in (2.6). They show that using (2n - 1) Gaussian points in each subinter-
val maintains the 0(h2n) accuracy.

3. Least squares.  Convergence of the (continuous) least squares method for
very general problems has been analyzed by Bramble and Schatz [1].  For the sake of
completeness, we give a convergence proof for our particular problem (i.e. (2.9) applied
to (1.1)).

Theorem 3.3. Suppose (1.1), (1.2) has a unique solution u(x), the coefficients
of (1.1) are sufficiently smooth, and (3.5), (3.6) hold.   Then using piecewise polynom-
ials of degree 2n - 1 and continuity at least c'"_1^[a, b], the least squares solution
v^N\x) exists for h sufficiently small, and satisfies \\u - t/^||2 = 0(hs), where s —
min(2«, 4n - 4m).

Proof.   (The proof models Schultz [6] for the Galerkin solution.)  From (2.9)
and (3.4), the exact solution u(x) satisfies

b(u, v)= { (Lu)(Lv)dx = f   f(Lv)dx
Ja Ja

for all v, and the least squares solution v^N\x) satisfies

b(v(N\ v) = Cf(Lv)dx
Ja

for all v E SN.  So for any v, w E SN,

b(w-v(N\v) = b(w-u,v).

Take v = w~ v<-N) and use (3.5):
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llw - uw||| < (l/K)\b(w - v(N\ w - ¿N))\ < (K'/K)\\u - w\\E\\VW - w\\E.

Now let w be the interpolate of u in SN; it is well known that

||U0) - w(/)||2 = 0(/z2n-'')||z/2'°||2,       1 </ < 2m.

Thus

II" - v(N\ < ||« - w\\E + llw - v(N\ < (1 + K'/K)\\u - w\\E = 0(h2n-2m).

To get the higher-order convergence in the L2 norm, we again use the device of Nitsche:
Let 0, 0 be defined by (1.2) and 10 = 0, 7,0 = (« - v(N))/\\u - v(N\.  From con-
tinuity of the Green's function for L, we know ||0(/)||2 < K, 0 </ < 2m, and ||0(/)||2
<K, 0</<4m.  Now

II" - v(N\ = P (I(L0))(« - vW)dx = biu - ¿N\ 0)
J a

= biu - v^N\ 0 - w)

for all w E SN.  Let w be the interpolate of 0 in SN; since we know ||0^||2 < K for
0 </ < 4m, we have

||« - viN)\\2 < if||« - u(JV)y 10 - w\\E < Kh2n-2mhrU{r\    r = min(2m, 2« - 2m).

Q.E.D.
If we discretize the least squares problem as in (2.10), we need to ensure that this

convergence rate is maintained.  As we mentioned at the end of Section II, this amounts
to collocating at more points than there are functions and solving the resulting discrete
linear least squares problem (2.11) by familiar methods.  For example, we could use
piecewise polynomials of degree 2« - 1 and continuity C^   , k > 2m - 1, and "collo-
cate" at the 2« - 2m Gaussian points in each subinterval.   We conjecture this keeps
Qtnmin(2n,4n-4m,-. accuraCy   xhe advantages are that we obtain higher global contin-
uity of the approximate solution, and we can use other basis functions than Ä-splines
(e.g. the natural Hermite basis for Hq1^) without going to higher degree as was necessary
with collocation.  One can even use splines (i.e. continuity C'-2n~2'); as we shall see in
Section IV, this is more economical and can even be less work than collocation.  Ex-
periments of P. Sammon have shown OQi4) convergence with cubic splines, using the
two Gaussian points in each subinterval as data points, and solving the resulting over-
determined linear system by familiar linear least squares methods.

rV.  Comparison of Methods.   Here we compare the computational work involved
for methods of the same global accuracy on problem (1.1), (1.2), using piecewise poly-
nomial bases.  All the methods compared have global error 0(h2"); normally the poly-
nomials have degree 2« - 1, and we assume a fixed mesh a = x0 <x. < • • • <xN =
b.

1. Collocation.   As we saw in Section III, we can get 0(h2") global error by
collocating with the Ä-splines of de Boor-Swartz of degree 2n - 1, or by using the Her-
mite space H%\ r = 2n - 2m.   In what follows, we assume n > 2m so r ¡> n.
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1014 R. D. RUSSELL AND J. M. VARAH

(a) B-splines of de Boor-Swartz.   These functions have degree 2n — 1, continuity
£.(2m-i)^ gj^ we coiiocate at the r — 2« - 2m Gaussian points in each subinterval.
With the boundary conditions, this gives a total of rN 4 2m equations.  There are r
basis functions associated with each interior knot and n at each endpoint, giving the
same number of unknown coefficients to solve for.

Two components to the work are involved in any of these methods: forming the
matrix elements and solving the resulting linear system.   For collocation, each matrix
element involves an evaluation of (1.1); we denote this by EL.  Although the evaluation
time depends to some extent on the basis function used (since we need 0.(*J), 4>'.(x¡),
etc.), this work does not depend on N (i.e. on h) since the evaluations are always at
the Gaussian points, and we assume these coefficients can be stored beforehand, no
matter what h is.  Thus EL is only a function of m, the order of the differential
equation.  Also, we do not consider the work involved in evaluating the approximate
solution for given values of * after it has been computed; this also depends on the basis
used.

These fi-splines have support over something less than two subintervals (their
continuity is less than the Hermite basis H^1' for n > 2m) but to simplify the matrix
analysis, we assume it is in fact two subintervals.  Then the matrix has the form

/
m

(4.1)

\

\

m

We solve (4.1) by block-tridiagonal factorization; i.e. we write it in the form

,,

(4.2)

A,      B.       C.

N-l

with B0 n x n, A. r x n, C0 n x r, BN

AN     BN     I
n x n, AN n x r, CN_t r x n, and the other

blocks r x r.   Since r/2 = n - m, this cuts each F¡, G¡ block in half horizontally, so
the top half of Ci and bottom half of A¡ are zero.  Thus, we can use the analysis of
[8, p. 867] to show the solution time is (13r3/12 + 2r2)NM, where M denotes the
average time for a multiplication/division.  This together with the setup time for the
matrix elements gives a total time estimate of
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A COMPARISON OF GLOBAL METHODS 1015

(4-3) (13r3N/l2 + 2r2N)M 4 2r2NEL.

(b) Collocation with Hq.  These are piecewise polynomials of degree 2r - 1, con-
tinuity C*-r~1', and we need r = 2n — 2m to give OQi2") convergence.  We use the
natural Hermite basis, having r basis functions associated with each interior knot and r
at each endpoint, giving r(A + 1) functions in all and the same number of coefficients
to determine.  We again collocate at the r Gaussian points in each interval; this and
the boundary conditions make (WV + 2m) equations. Thus we need r-2m = 2(n - 2m)
extra equations when n > 2m; we get these by collocating at (« - 2m) extra points in
the first and last interval.  This maintains Oih2") accuracy and makes the matrix
analysis easier than using one more point in each of several intervals, as we did for the
convergence results in Section III.  (However, if m < n < 2m, this messier approach
would be necessary as there would be fewer points in some intervals.)

Since these basis functions have support over exactly two subintervals, the matrix
has the form

m

n -2m

2m

m I
Again we put this in the form (4.2), this time with B0r x r.   Again exactly half

of the A;, C¡ matrices are zero, so the solution time is the same as for the 5-splines of
de Boor-Swartz.   The setup time is also the same, so we again get (4.3) as our work
estimate.  The only difference in computation time will be in evaluation of the approx-
imate solution as we alluded to earlier.  This will probably be less for the Hermite
basis, as the 5-splines are somewhat cumbersome to evaluate.

2. Discrete Ritz.   For the discrete Ritz method (see (2.6)) the two obvious
choices for bases giving Oih2") accuracy are the piecewise Hermite polynomials of
degree 2« - 1   (/7^n)) and splines of degree 2« - 1   (Sp^).

(a) //q"^:   Since these are C(n_1) at the knots, there are n basis functions associ-
ated with each of the (N - 1) interior knots and n at each endpoint.  Thus we find
u<nN + ")(*) = 2Ä+" «,.0,(*) by solving Au~ = b,
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1016 R. D. RUSSELL AND J. M. VARAH

(4.4)
qN

aa £   0>kM(<}>ßk), 0,«,     6,.
fc = l

<?ATZ ^,(U/(U-
fc=i

The homogeneous boundary conditions (1.2) imply «¿ = 0 for 1 < i < m and nN 4 1
< i < «A^ + m and we include these as the first and last m equations of the linear
system to simplify the matrix analysis.

We assume the quadrature rule uses q points in each subinterval; as we mentioned >
earlier, the value of q necessary to maintain Oih2") accuracy is not completely under-
stood, but for example one could use q = 2n - 1 Gaussian points in each subinterval
(see Strang and Fix [7]).  We believe q = 2n - m is in fact sufficient for the general
problem (1.1).  Using fewer points seems not to work: in fact,solving the problem y" =
/(*) using a two-point Gauss rule for cubic Hermite polynomials (n = 2, m = 1) with
equally spaced knots leads to a singular matrix A in (2.6).

These natural Hermite basis functions have support over two subintervals and the
quadrature sums are only over the intersection of the supports of the functions used.
Thus 0/„+/-(*) has support (*,_,, *,-+i) for 1 </' < n and A has the block-tridiagonal
form

(4.5)

with each block n x n.
Now consider the setup time for (4.5).  It is symmetric, so we need only consider

the upper triangle.   For an element of B¡, both functions in (4.4) have support (*,_,,
*/+1) so the quadrature sum is over 2q points; for C¡, the sum is only over the q
points in (*,., *i+1).  This makes a total of (2n2 4 n)Nq evaluations of M(0;-, 0,)
(denoted EM) and subsequent multiplications to form A from (4.4).  For the right-hand
side b we have an additional 4qnN multiplications (and qnN evaluations of <j>¡, f which
we ignore).

Solution time for a matrix like (4.5) using a block-Cholesky factorization is
essentially 5«3A//3 multiplications, giving a total for discrete Ritz using Hermite func-
tions of

(4.6) \(2n2 + 5n)qN 4 5n3N/3]M 4 (2n2 4 n)qNEM-

ill) Sp^: For regular splines of degree 2n - 1, continuity c(2"~2), there is just
one 5-spline basis function associated with each interior knot and n at each endpoint.
Each has support over 2n intervals so for the n additional functions at * = a we use
5-splines centered at *0 = a, x_t, . . . , x_n+ . (defined by reflection through a), and
similarly for * = b. The m boundary conditions at each endpoint involve linear com-
binations of all 2« 5-splines which are nonzero there.  We take care of these implicitly
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A COMPARISON OF GLOBAL METHODS 1017

by using as our basis the 2n - m appropriate linear combinations of these 2n 5-splines
which automatically satisfy the boundary conditions.

Thus, in general <¡>¡ has support (xi+m_2n, xi+m) and the computation of a~u from
(4.4) involves the intersection of the supports of <¡>¡ and 0;- which is (Xj+m-2„,x{+m)
for / > i.   So ätj ^ 0 for \j - i\ < 2n, or A has half-bandwidth 2«. Assuming q
quadrature points per subinterval, this means the z'th row of A takes qÇÏ\n k) =
qn(2n 4 1) evaluations of M(0;-, 0() and subsequent multiplications. Each b¡ requires 4nq
multiplications, and solving Äu = b by band Cholesky takes 2n2N multiplications,
giving a total for discrete Ritz using splines of

(4.7) [(2zz2 + Sn)qN 4 2n2N]M 4 (2n2 4 n)qNEM.

Notice that (4.7) and (4.6) are almost identical, except that the solution time
with the spline matrix is less.

3. Least squares.   In Section II, we saw that the discrete least squares method
generalizes the collocation procedure when more collocation points than functions are
desired.  In particular, this provides a viable alternative to the Galerkin method when
a smooth spline basis is used.  We consider only this smooth spline basis (i.e. degree
2« - 1, continuity C^2"-2^)because, as we saw with the Galerkin method, it is the
most economical.

Assuming q quadrature points (or "collocation" points) in each subinterval, the
matrix C of (2.10) looks like

2zz - m

(4.8)

2«

2«

\ 2n — m

where there are N horizontal blocks of q rows each.  Thus,formation of DVlC takes
(2nqN)EL 4 (2nqN)M.   Now to solve the discrete linear least squares problem, we form
the normal matrix (DVlC)T(DV2C). This has precisely the same form as the spline
Galerkin matrix A; namely, banded with half-bandwidth 2n.   Formation of a general
row of the normal matrix takes q(2n) 4 q(2n - 1) + • • • + ^(1) multiplications.  For
the upper half of the whole matrix, this amounts to NqÇL2." k) - Nqni2n 4 1), plus
2nqN for the right-hand side.  Finally, solving by band Cholesky takes 2n2N multiplica-
tions, giving a total for least squares of

[(2«2 + Sn)qN 4 2n2N]M 4 (2nqN)EL.(4.9)
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We can draw the following conclusions about the relative efficiencies of these
methods: comparing (4.7) and (4.9) we see that discrete least squares is more efficient
than discrete Ritz, assuming (as we shall) EL = EM.  The number of quadrature points
for discrete Ritz is at most q = 2n - I and is probably q = 2n-m. On the other hand,
for discrete least squares we believe q = 2n - 2m is sufficient, as conjectured in Section
III.  However, even if we take the same q for both methods, least squares with splines
is always more efficient than discrete Ritz with splines, because of fewer function
evaluations.

The comparison with collocation is a bit more difficult; from (4.3) we see that
collocation (with either //^r) or the 5-splines of de Boor-Swartz) is cheaper than dis-
crete Ritz because of fewer function evaluations.  However, the relative merits of colloc-
ation and least squares depend on the value of n and m (see the table below where
we assume q = 2n - m for discrete Ritz, q = 2n - 2m for discrete least squares).

m = 1, « = 2 m = 1, w = 3 n large, m small

collocation     (l6|Af + 8E^)n     (lOl |/tf + 32El\n   (y"3^ + ^2E,\n

discrete Ritz    (62M 4 30EM)N      (183M 4 105EM)N     (4n3M 4 4n3EM)N

discrete least
(44M + SEL)N       (15071/ + 24EL)N        (4n3M 4 4n2EL)N

soimrGS

Thus, for small values of«, collocation is cheaper; however, for large n least squares
takes about half the time of collocation, and both are an order of magnitude better
than discrete Ritz (because of fewer function evaluations).
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