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SUMMARY 

Left truncation and right censoring arise frequently in practice for life data. This paper 
is concerned with the estimation of the hazard rate function for such data. Two types of 
nonparametric estimators based on kernel smoothing methods are considered. The first 
one is obtained by convolving a kernel with a cumulative hazard estimator. The second 
one is in the form of a ratio of two statistics. Local properties including consistency, 
asymptotic normality and mean squared error expressions are presented for both 
estimators. These properties facilitate locally adaptive bandwidth choice. The two types 
of estimators are then compared based on their theoretical and empirical performances. 
The effect of overlooking the truncation factor is demonstrated through the Channing 
House data. 
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1. INTRODUCTION 

In medical follow-up or in engineering life testing studies one may not be able to 
observe the variable of interest, referred to hereafter as the lifetime. Among the different 
forms in which incomplete data appear, right censoring and left truncation are two 
common ones. Left truncation may occur if the time origin of the lifetime precedes the 
time origin of the study. Only subjects that fail after the start of the study are being 
followed, otherwise they are left truncated. Those that are followed are further subject 
to right censoring during the follow-up period. Left truncation and right censoring may 
thus arise together. See for example, an AIDS study by Struthers & Farewell (1989) where 
the 'lifetime' is the incubation period, and the truncation variable is the time from infection 
until the entry to the study. 

Formally, let X be the random variable of interest, called the lifetime variable, with 
continuous distribution function F(x) = pr (X - x). Let T and C be the random variables 
for the left truncation and right censoring time respectively. It is assumed that T, C, X, 
are independent and, without loss of generality, that they are nonnegative. Let Y= 
X A C min (X, C) and 8 = I(Y = X), where I(.) is the indicator function. Under 
the left truncation and right censoring model one observes the triplets (Y, T, 8) only 
if T - Y, otherwise nothing is observed. The observations are thus taken from the 
conditional distribution of (Y, T, 8) given that T - Y Note that the above reduces 
to the right censoring model when pr (T = 0) = 1 and to the left truncation model when 
pr (C =+X) =1. 
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The nonparametric product-limit estimator of F for left truncated and right censored 
data was given by Tsai, Jewell & Wang (1987) and shown to be the nonparametric 
maximum likelihood estimator of F by Wang (1987). Our focus in the present paper is 
to estimate the hazard rate A(x) defined by A(x) =f(x)/{1 - F(x)}, where f is the 
probability density function of F. The left truncation factor is sometimes overlooked by 
researchers. This will result in underestimating the hazard rate as demonstrated in ? 7, 
Fig. 5, using the Channing House data of Hyde (1977). 

The nonparametric estimation of the hazard rates was initiated by Watson & Leadbetter 
(1964) who proposed three types of estimators for independent and identically distributed 
observations. Two of these types are shown to be equivalent by Rice & Rosenblatt (1976). 
We extend both remaining types of estimators in ? 2 to accommodate left truncated and 
right censored data. The first type aims at estimating both the hazard function and its 
derivatives, and is constructed by convolving a kernel with a cumulative hazard estimator; 
see (2 8). The second type aims only at the hazard function itself and is in the form of 
the ratio of a kernel subdensity estimator and an empirical function; see (2 12). 

Local properties of both types of estimators are studied in ?? 3 and 4 including 
consistency, asymptotic normality and mean squared error expressions. The derivation 
of the mean squared error for the ratio estimator, i.e. the second one, is nonstandard for 
kernel estimators. The optimal bandwidth which minimizes the leading term of the mean 
squared error is derived for both types of estimators. In particular, the optimal bandwidth 
for the ratio estimator is the same as the optimal bandwidth of the kernel subdensity 
estimator in the numerator. The kernel estimator which employs the optimal bandwidth 
is called the optimal kernel estimator. It is shown in Theorems 3 3 and 4 3 that the kernel 
hazard estimator employing a bandwidth which is a consistent estimator of the optimal 
bandwidth has the same limiting distributing as the optimal kernel estimator. This is 
referred to as locally adaptive bandwidth choice. Choices of consistent bandwidth 
estimators are suggested for both types of estimators. 

The choice of bandwidths is crucial for the quality of the resulting kernel curve 
estimator. This is even more so for hazard rate estimation than for density estimation 
since the variance of the kernel estimator for the former tends to infinity for large values 
of lifetime. The truncation and censoring scheme further complicate the situation; in 
particular, both the bias and variance may blow up near both tails; see equations (3-6), 
(41) and (4-2). 

The two types of estimators are then compared in ? 5. They have approximately the 
same variance but different biases. The ratio estimators usually yield very jagged curves 
unless a smooth empirical function is employed for the denominator. The global perform- 
ance of the locally adaptive bandwidth choices is compared to that of a fixed global 
bandwidth and the optimal bandwidth through a simulated sample in ? 6. The procedures 
are applied in ? 7 to the Channing House data given by Hyde (1977). 

Our results in ? 4 extend some of the earlier results for right censored data by 
Ramlau-Hansen (1983), Tanner & Wong (1983), Yandell (1983) and Muller & Wang 
(1990). As for truncated data, except for a technical report by the authors and a Ph.D. 
dissertation by the first author, there are no published results on hazard function estimation 
to our knowledge. 

2. DERIVATIONS OF THE TWO HAZARD ESTIMATORS 

Refer to the left truncation and right censoring model in ? 1. Let (1<,, T,, 8,) (i = 1, .. ., n) 
be the independent and identically distributed random vectors which one observes, where 
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Yi = Xi A Ci, Si = I( Yi = Xi), Ti S Yi and Xi, Ci, Ti are independent with marginal distribu- 
tions F, H and G respectively. For any function K with values in [0, 1] denote K(t) = 

1 - K (t). Under the independence assumption, the distribution function W of Yi satisfies 
W = HF. Note that the number of observations n is a random variable. All the arguments 
hereafter in this paper are conditional on n. 

If K is a distribution function, let aK = inf {t: K(t) > O} and bK = sup {t: K(t) < 1} be 
the lower and upper endpoint of support of K. Then under the current model, as discussed 
by Woodroofe (1985), one can expect to estimate F(x) only if 

aG 
- 

aw = min (aF, aH), bG bw = min (bF, bH). 

Otherwise only the conditional distribution FXI(x) = F(x I X ` T) can be estimated, for 
any T B aG. Note, however, that A(x) is always identifiable for x T X, since AxI,(x) = A(x), 
for x ? T. Therefore we do not need to be concerned with the identifiability problem in 
this paper. Assume that a = pr (T - Y)> 0. The subdistribution function W*1 (t) of the 
uncensored observations is 

W*(y)=pr (Y y, 8 = 1I T Y) 

= a-{{ f G(x) dF(x) dH(s)+H(y-) G(x) dF(x)}. 

Hence 

dW*(y) = a- G(y)H(y-) dF(y). (2<1) 

Next, define 

C(z) = pr (T-- z -,-- YI T- Y) = a-G(z) W(z-) = a-1G(z)H(z )F(z-). (22) 

From (2.1) and (2.2), it follows that 

dW*(z)/C(z) = dF(z)/F(z-) = A(z) dz, (2 3) 

and the cumulative hazard function A is therefore 

A(z) A(t) dt =7 W1() (2*4) 
0 o ~C (t) 

Let W*1 and Cn be the empirical estimators of W* and C respectively. Then 

n 

W*n( y) = n-1 I( Yi --- y, Si = l), (2 5) 
i=l 

n 

Cn(z) = n _E I (Ti ---z ---Y, (2-6) 
i=l 

Note here that nCCn ( Y1) ? 1 for i = 1, . . ., n. Replacing W* and C in (2 4) by their empirical 
counterparts one can estimate A(z) by 

An 

A-n (Z) =EI ( Yi --- Y, Si = l )/ InCn ( Yj)}. (2 7) 
i=l 

This estimator (2s7) is the cumulative hazard function of the product limit estimator of 
F given by Tsai, Jewell & Wang (1987). 
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Since one of our goals is to derive a locally adaptive estimator for A(z) and this involves 
estimating higher derivatives of A(z), we will present the results for the rth derivative 
A(r)(z) of A(z), for r ? 0. We consider the following kernel estimator for A(r)(x) by 
convolving Krb(X) = b(r?l)Kr(x/b) with An in (2-7): 

r A n 
Ak (z) -Krb(z-u) d = - 

SiK,b(Z Yi)/{nCn(Yi)} (2.8) 
i=l 

where Kr is the kernel and b = bn is the bandwidth. The subscript n is obviously suppressed 
in k(r) for simplicity. 

We will use a kernel function with the following properties. 

Property 1. We have that Kr is in L2([-1, 1]) with support [-1, 1] and is of bounded 
variation. 

Property 2. For some p - r, 

(_l)r ri ( j = r), 
IXjKr(X) dX 0 (OSj<p, j *r), 

finite but nonzero (j = p). 

Note that, for p > 2, Property 2 requires kernels with negative values and that Kr depends 
on p implicitly. Such a kernel is said to be of order (r, p). 

For the bandwidth we require the usual conditions, 

b ->0 nb2r+l1 -o. (2*9) 

An alternative estimator for A(z) can be obtained via (2-3) by estimating the subdensity 
w*(z) = dWW*(z)/dz and C(z) separately. Specifically, let K = Ko be a kernel function 
satisfying Property 1 and Property 2, and b = bn be the corresponding bandwidth sequence. 
Then a kernel estimator of w*(z) can be obtained by convolving Kb(x) = Ko,b(x)= 

V-K(x/b) with W*, in (2 5) for a bandwidth b satisfying (2 9) with r=0: { -- 
n 

w* (z) = Kb(z -u) dW* (u) = n E iKb(z Yi). (2*10) 
J ~~~~~~~~i=1 

To estimate C(z) the empirical function Cn(z) in (2.6) needs to be modified since it 
takes zero value if z < T(1) or Z > Y(n) and there is a positive probability that it may be 
zero even when T(1) < z < Y(n), where T(1) is the smallest order statistic of the T's and 
Y(n) is the largest order statistic of the Y's. There are several ways to modify Cn, for 
example one can replace Cn(z) by Cn(Yi) for Y(z) Z< Y(i+ ), or one can adjust the 
estimator C'(z) of Woodroofe (1985, p. 168) to fit left truncated and right censored data. 
We choose the following estimator in (2 11) due to its simplicity in evaluating the 
associated expectations later on: 

A fC(Z) if Cn(z)>0( 

where kn -0 as n-co. 
An alternative estimator for A(z) is thus available by combining (2 10), (2 11) and this 

yields 

A(z) = i*(z)/Cn(z). (2412) 
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Unlike (2-8) there is no need to estimate the rth derivative of A(z) for locally adaptive 
bandwidth choices for I since the optimal bandwidth requires estimation of w 2)(z) but 
not that of A(2)(z); see (3-7). 

Properties of the estimators A(z) and A(r)(z) will be studied in ?? 3 and 4 respectively 
for aG < z < bw. 

3. PROPERTIES OF A(z) AND LOCALLY ADAPTIVE BANDWIDTH 

We show in this section properties, including consistency and asymptotic normality 
of X(z) in (2-12), for z such that aG<z<bw. Notice that 0<C(z)<1 on this range. 
These properties are then applied to obtain locally adaptive bandwidths. An estimator 
similar to I was studied by Blum & Susarla (1980) for its global behaviour under the 
right censoring model. We are mainly concerned with the local behaviour in this paper 
and our approach is different from theirs. 

We first concentrate on estimating the rth derivative w*(r) of w*. To this goal we need 
to assume that, for some p ? r, w* is p times continuously differentiable at z. Let Kr be 
a kernel of order (r, p) satisfying Properties 1 and 2, and b be the bandwidth sequence 
satisfying (2 9). Denote 

Brp (-1)P(p!)-' xPKr(x) dx, Vrp=j| K2(x) dx. (3.1) 

Recall that the kernel estimator for w,(r) i 

n 

(z) = Krb (z -y) dW* (y) = n EjK (3-2) 
i=l 

It follows from standard results on kernel density estimators based on independent 
and identically distributed observations that, 

bias {W*(r)(z)}= bP rW(P)(z)Br,p + o(bPr), p> r (3-3) 

var {wI( )(z)}=(nb2r+l)lw*(z) V + o{(nb2r+l)l}(34) 

Hence, letting 

d = lim nb2p+I < o, (3*5) 
n --oo 

it follows that (nb2r+l) {w,(r)(z) - W*r)(z)} converges in distribution to 

N(dlw*(P)Brp W*(Z) Vrp). 

Next notice that pr (Cn(z)= 0)={1-C(z)}n =Cn(z). Hence (2411) implies that 
Cn(z) - Cn(z) = op(n-2) and thus Cn(z) - C(z) = Op(n-). The consistency and asymptotic 
normality of A(z) thus follow by setting r = 0. 

THEOREM 3-1. (a) We have that X(z) is a consistent estimator of A(z). 
(b) We also have that (nb)1{X(z) - A(z)} converges in distribution to 

N (d 1{w (P) (z) / C (z)}IBoP pI {A(z) / C (z)}I VO p). 

The actual bias and variance expressions of A require some calculations which are 
postponed to the Appendix. 
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THEOREM 3-2. For p B 1, the mean squared error of X(z) is 

MSEA(z)l= _ C(z) Vo,p + b2pt C(z) BO'p +( o b2P (3 6) 
IV1L~ '~V/Jnb C (z) ' C(z) 0J* \nb(36 

where the first and second terms are respectively, the leading term of the variance and the 
square of the bias of X(z). The optimal bandwidth which minimizes the leading terms in 
MSE {Xk(z)} above is 

n/(2p+) w*(z) VP }12]/(2p+l) b'(z) = n 2p f w (P (z JOP n 812 ,1P(z). (3-7) 

The mean squared error expression in (3 6) is a stronger result than the usual asymptotic 
mean squared error dealt with in the literature for a ratio estimator. The proof of Theorem 
3-2 in the Appendix can be adopted almost verbatim to improve some results in the 
literature. The optimal rate of the bandwidth n-11(2p+l) is the same as the usual kernel 
density estimator for independent and identically distributed observations. Note that 
b'(z) in (3.7) is also the optimal bandwidth for the kernel estimator Of of w* and it 
depends on unknown quantities w*(z) and w*(P)(z). The next theorem shows that any 
consistent estimator 8(z) of 8'(z) yields a locally adaptive bandwidth. 

Let w(z, [3 ) = w*{z; p(z)} and 

A(z; ,3) = A{z; /(z)} (3 8) 

denote respectively the estimator (24 10) and (2s 12) with bandwidth b = n- /(2p+l) P (z). 
Choose 8a and P8b such that 0 < Pa <p'(Z) <P,b < 00 and define the following bandwidth 
process for Pa 1 P P3b 

- nP/(2P+l){ W*(z; f) - w)*(z)}. 

Standard arguments for locally adaptive bandwidth choice based on independent and 
identically distributed observations (Abramson, 1982; Krieger & Pickands, 1981) show 
that the process {4n(,()} converges weakly on C[,Pa, Pb] to a Gaussian process. This then 
implies that 

,8 (/z)) - 'n{ (z)} - nP/C2P+1 (z)[A{z; 8 (z)} -A {z; '(z)}] 

tends to zero in probability provided p(z) tends to 8'(z) in probability. Since Cn -> C(z) 
in probability we obtain that 

nP/(2P+1)[i{z; / (z)} - {z; X'(z)}] 

tends to zero in probability. Slutsky's theorem and Theorem 3* 1 thus imply the following. 

THEOREM 3*3. Assume p> rand that the kernel K, is Lipschitz continuous of order a>2 
on the real line. Then for any consistent estimator 1(z) of ,'(z) the limiting distribution of 

n f +1.(z; P) -A(z)}, f p+(z;') - A(z)} 

are the same and is the normal distribution with mean {p8(z)}P{w*(P)(z)1C(z)}B(,p and 
variance [,P'(z)]-7[A(z)/ C(z)] VO,p. 

Remark 1. A consistent estimator of 8'(z) can be obtained by estimating w* and w*(P) 
consistently at z. For r = 0 and p, the kernel estimators in (3 2), denoted respectively by 
W._o(z) and w*(iP)(z) to indicate that they are initial estimators, are indeed consistent. It 
should be noted that the initial kernels for iw*O and I*(P) are Ko and Kp respectively. 



Hazard rate estimators for left truncation and right censoring 303 

The initial bandwidth bdp for A *(p) should be larger than the initial bandwidth bdo for 
wi0(z), with n bdo -cx) and n bd'P+ >o. 

A candidate for ,8(z) in Theorem 3-3 is thus 

[3(z) = [ *o(Z) voB, 1 1/(2p+1) (3*9) 

4. PROPERTIES OF A( )(Z) AND LOCALLY ADAPTIVE BANDWIDTH 

In this section we present similar results as in ? 3 for the estimator A(r)(z) in (2 8). To 
proceed, we first draw the attention of the readers to the analogy between the estimator 
A(r) in (2.8) and an estimator in an unpublished report of the authors for left truncated 
data only. Both estimators aim at A(r)(z) and bear similar form except for different 
estimators of C and the indicator 8 appearing in (2 8) to account for the censoring effect. 
This similarity allows the results under left truncation to be adapted to our estimator 
(2-8). Details of the proofs are therefore omitted in this section and referred to the above 
article. 

We assume, for p > r, that A is p times continuously differentiable at z and restrict our 
attention to aG < z < b, as in ? 3. 

THEOREM 441. (a) Forp > r, 

bias {A(r)(z)} - bPrA(P)(z)Brp + o(bP-r). (44) 

(b) If C is continuous at z, then 

nb2r+l var {A(r)(z)} = {A(z)/ C(z)} Vrp + o(1). (4 2) 

(c) Suppose C is continuous at z, then A(r)(z) is a consistent estimator of A(r)(z). 

The asymptotic normality of A(r)(z) is established via its Hajek projection. 

THEOREM 4-2. Suppose C is continuous at z and d = lim nb2p+1 < oo. Then 

(nb2r+l) {(r)(z) -A(r)(z)} - N(d"A(P)(z)Br,p, {A(z)/ C(z)} Vr,p). (4-3) 

We will now consider the local bandwidth choice. It follows from (4.1) and (4 2) that 
the optimal bandwidth b*(z) which minimizes the leading term of MSE {A(r)(z)} is 

b*(z) - 1/(2p+1) [2r+1 A(z) Vrz) 11/(2p+1) 

L2( p-r) C(z) A( P)(z)Br,p12 

_n 1-/+l)/3*(Z) (4*4) 

The optimal bandwidth depends on the unknown quantities A(z), C(z) and A(P)(z). 
Theorem 4 3 states that any consistent estimator ,8(z) of ,8*(z) will yield a locally adaptive 
bandwidth. The proof is omitted. Let 

A(r)(z; /3) = A(r){z; A3(z)} (4*5) 

be the kernel estimator (2 8) with bandwidth b = n-11(2p+l) 8(z), and 

Un (,!3 ) = n(P-r)/(2P+l){A(r)(z; /3) - A(r)(Z)} 

THEOREM 4-3. Suppose C is continuous at z, p > r, and the kernel Kr is Lipschitz of order 
a >2 on the real line. Thenfor any consistent estimator,3 (z) of,8*(z) the limiting distributions 
of Un(/!3(z)) and U1(, 3*(z)) are both normal with mean {/3*(z)}PrA(P)(z)Brp and variance 
{/3*(z)}-(2r+l){A(z)/ C(z)} Vr,p- 
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Let Xo(z) and A(P) (z) denote the initial kernel estimators according to (2-8) for r =0 
and p respectively, and let CQ(z) be as given in (2 11). A candidate for ,B(z) in Theorem 
4-3 is 

A = [2r+ 1 o(z) Vr}P ] (4@6) 

5. COMPARISONS OF THE TWO TYPES OF ESTIMATORS 

Let A(z) denote the estimator A(r)(z) in (2 8) with r= 0. We compare it in this section 
with the other estimator A(z) in (2 12). The comparison will first be made on the theoretical 
framework as laid out in ?? 3 and 4. In ? 6 they will be compared on practical performance 
based on simulated samples. Comments similar to those in this section are also made 
independently by Patil, Wells & Marron (1991) for independent and identically distributed 
samples. 

First, the variances of the two estimators are asymptotically equivalent but they differ 
in the biases; see (3*6) and (4 2). Since C(z) tends to zero as z approaches aG or bw 
the variances of both estimators tend to infinity as z tends to aG or bw. 

Secondly, when a fixed bandwidth is employed, the assumptions on F, G and H for 
properties like consistency and asymptotic normality, centred at the expected value of 
the estimator, are similar for both estimators. For the adaptive bandwidths in (4 6) with 
p =A2, (z, 18) requires that A(2) be continuous at z while A(z, ,8) with /3 given by (3 9) 
requires that w*(2) be continuous at z which requires continuous second derivatives of 
the censoring and truncation distributions H and G. 

Thirdly, the estimator X usually yields a curve more erratic than that of A; see, for 
example, Fig. 1. This is due to the fact that the denominator Cn in (2 12) is unsmooth 
and this can be corrected somewhat by replacing it by an appropriate smooth version of 
it. Theorem 3-1 remains true for the smooth ratio estimator although the bias and variance 
expressions of the smooth ratio estimator are difficult to handle. 

Fourthly, when adaptive bandwidths are employed, the initial bandwidths have to be 
chosen with some care. In reality the initial bandwidths can be determined by a global 
procedure if such a procedure is available or subjectively by inspecting the range and 
spread of the data and the location of the point z. Once a bandwidth is chosen one can 

(a) (b) 

z z 

Fig. 1. (a) Dotted line, estimator A(z) in (2.8) with fixed bandwidth b = Ot3; solid line, true curve. 
(b) Dotted line, estimator X(z) in (2.12) with fixed bandwidth b = O3; solid line, true curve. 
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either use it as the initial bandwidth for the adaptive procedure or iterate the adaptive 
procedures a few times, starting with this bandwidth, to produce another initial bandwidth. 
As mentioned earlier, the initial bandwidths for A(2) and w*(2) should be larger than those 
for A and wt*. 

Fifthly, the locally adaptive estimators when applied over a range of z's usually yield 
spikes at several points; see Fig. 2(a). This can be corrected as suggested by 
Muller (1988, p. 120) and Schucany (1989). Further discussion is given in the next section. 

6. A SIMULATED EXAMPLE 

We demonstrate in this section how to apply the adaptive procedures of ?? 3 and 4 in 
practice and compare their global performance through simulated samples. 

The lifetime variable is simulated from a distribution F with hazard rate A(z)= 
(Z _1)2+ 1. This failure rate is chosen so that it has a bowl shape which would resemble 
most practical life distributions. The constant 1 is added to avoid A being zero at z = 1 
which distorts the optimal bandwidth expression for X(z). Note that the bowl shape of 
this hazard function A makes it harder to estimate near both the left and right boundaries 
as opposed to a hazard function which tails off to zero at either boundary. 

Both the censoring and truncation distributions are simulated from exponential distri- 
butions with means 4 and 0 1 respectively. A random sample (Xi, Ci, T1) of size 200 is 
simulated independently. This resulted in a censoring proportion of 14-8% for the Y 
data and a truncation proportion of 17% for the (Y, T) data. The observed sample size 
n is equal to 166. For estimating A(z) and w*(z), the kernel 

KO(x)= =6(l -2x2 +x 4), 

of order r =0, p =2 is used. To estimate A(2)(z) and w*(2)(z) the kernel, 

K2(x) =315(-_1 + 9X2 _ 15x4 + 7x6), 

of order r =2, p =4 is employed. Both kernels are chosen with reference to Miuller (1988, 
p. 68) as they have certain optimality properties. Note also that both Ko and K2 above 
are Lipschitz continuous of order one on (-oo, oo), hence are appropriate for the adaptive 
bandwidth choice. 

A global fixed bandwidth bdo = 03 is chosen for both A(z) and A(z) for all 0< z <25. 
Note that pr (X : 2 5) = 0 003. The resulting estimators are given in Fig. 1(a) for k and 
in Fig. 1(b) for I. Notice that k is much smoother than I as discussed in ? 5. There is a 
slight left boundary effect as the estimated curve drops off near zero. 

For the adaptive bandwidth estimator we use A(z, ,B) with 13 given in (4 6). Global 
initial bandwidths bdo=0 3 and bd2 =0 7 are used for k(z) and A(2)(z) respectively. The 
resulting adaptive estimator and adaptive bandwidth b are shown in Fig. 2(a) and Fig. 
2(b) separately. Note that the spikes in Fig. 2(a) are basically due to the corresponding 
spikes of the adaptive bandwidth in Fig. 2(b). To correct this undesirable feature we 
truncate the 13 below at b*=O-5bdo=0415 and above at b*=2bdo=0-6; that is 13 is 
replaced by the closer one of b* or b* should it fall outside the region (b*, b*). The 
resulting truncated adaptive bandwidth estimator is plotted in Fig. 3(a). This corrects 
the spikes but not the left boundary problem. Further research on boundary modification 
is needed; see, for example, Rice (1984). The theoretical optimal bandwidth estimator 
is plotted in Fig. 3(b) for the purpose of comparison. The optimal kernel estimator has 
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(a) (b) 

4i 4- 

3- 3- 

2 0 1 2 
z z 

Fig. 2. (a) Dotted line, adaptive estimator k(z, f3) in (4.5) with f3 in (4.6); initial bandwidths, bdo = 0 3, 
bd2 = 0 7; solid line, true curve. (b) Adaptive bandwidth b corresponding to Fig. 2(a). 

4(a) (b) 

0 2 :0 1 2 z z 

Fig. 3. (a) Dotted line, adaptive estimator in Fig. 2(a) with adaptive bandwidth truncated below at 
0 15 and above at 06; solid line, true curve. (b) Dotted line, theoretical optimal bandwidth estimator 

with b*(z) in (4.4); solid line, true curve. 

(a) 
(b 

4-~~~~~~~~~~~~~~~~~~~~~~~~~~I 

0 ~ ~ ~ ~~~~~ 11 2 ( 

z z 

Fig. 4. (a) Dotted line, adaptive estimator A(Z, f3) in (3.8) with p3 in (3 9); initial bandwidths, bdo = 0 3, 
bd2 = O7, with adaptive bandwidth truncated below at 0 15 and above at O}6; solid line, true curve. 
(b) A second simulated example of A(z, f3) as in Fig. 3(a) and A(z, 3) as in Fig. 4(a); solid line, true 

curve; light dotted line, A; dashed line, A. 
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a serious boundary problem on both boundaries due to the large optimal bandwidths 
near both tails. Reexamining Figs l(a), 3(a) and 3(b) there seems to be some benefit in 
applying the modified adaptive procedures over the fixed bandwidth procedure and they 
compare favourably to the theoretical optimal procedure. 

The above procedures are also applied to the alternative estimator k(z, ,6) where 83 is 
given in (3 9) and the adaptive bandwidth b is truncated at b* = 0 15 and b* = 0-6. The 
resulting estimator is shown in Fig. 4(a). It is noteworthy that while the local bandwidth 
selection improves k appreciably as compared to a global one, it does not seem to benefit 
A. This phenomenon is also reflected in a second simulated sample which resulted in 
16% censoring and 22% truncation. We report, in Fig. 4(b), only the locally adaptive 
procedures for A(z, ,B) and X(z, f3) for this sample. 

To summarize, the estimator A in (2-8) seems to perform better than the alternative 
estimator A for this particular model. Referring to the first comment in ? 5, this may be 
attributed to the differences in the bias terms for this particular model. 

7. AN EXAMPLE 

In this section the procedures in ?? 2-4 are applied to the Channing House data of 
Hyde (1977). The observations consist of survival data for male members of the Channing 
House retirement community in Palo Alto, California. The variable of interest, X, is the 
lifetime in months of the male retired people. The individuals are observed only if they 
survive long enough to participate in the community. Once they come under observation, 
the participants are also subject to censoring. The left truncation and right censoring 
model therefore applies. Here the truncation time T is age in months at entry into study 
plus one, denoted by v +1 by Hyde (1977), and Y = X A C is the age in months when 
last seen in the study, denoted by A* there. There are a total of 97 observations. Of them, 
46 have died, 46 survived to the closing date of the study and 5 withdrew from the 
community. 

The usual identifiability assumption that aG - aw may not be reasonable here but, as 
mentioned earlier, this does not matter for hazard rate estimation. Due to the boundary 
problems and since there are only two Y's, 777 and 781, below 840 and three of them 
above 1125 we report only the results on the interval [840, 1125] although all the data 
were used in the estimation procedures. The kernels Ko and K2 are the same as in ? 5. 
A fixed bandwidth b = 50 is chosen for both A(z) in (2-8) and X(z) in (2.12) for all z in 
[840, 1125]. The results are given in Fig. 5(a). There is an increasing trend in the hazard 
function which is expected. This data set has also been analyzed in the past as randomly 
censored data only. To see how the estimates would differ had the truncation factor been 
ignored, the same sample is analyzed by letting the truncation variable T 0 and the 
resulting A(z) is displayed in Fig. 5(a) with the thinner solid line. It is clear that the 
hazard rate is underestimated uniformly when the truncation effect is ignored and the 
discrepancy is larger for smaller z's due to the left truncation scheme. This emphasizes 
the importance of accounting for the truncation effect. Otherwise the result can be 
optimistically misleading. As for the adaptive bandwidth estimators A(z, f3) with ,B in 
(4-6) and A(z, 83) with /3 in (3 9), initial global bandwidths bdo = 50, bd2= 100 are used 
for k(z) and A(2)(z) with adaptive bandwidths truncated to 70 if it exceeds 70. The 
resulting truncated adaptive bandwidth estimators are displayed in Fig. 5(b), where the 
increasing trend in hazard rate is even more visible now than in Fig. 5(a). The hazard 
rate increases rapidly in the early ages below 900 months, i.e. 75 years old, then stabilizes 
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Fig. 5. (a) Estimated hazard rate for Channing House data; fixed bandwidth b = 50; darker solid line, A; 
thinner solid line, kwith the truncation effect neglected; dotted line, A. (b) Adaptive estimators for Channing 
House data; initial bandwidth bdo = 50, bd2 = 100 with adaptive bandwidths truncated above at 70; solid 

line, A; dotted line, A. 

between the months 900-960, i.e. ages 75-80, and starts to rise steadily again after age 
80. The slight drop near 1120 months, or 93 years, is probably due to boundary effects. 
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APPENDIX 

Proof of Theorem 3 2 

To establish the bias and variance expression in Theorem 3 2 we need the following lemma. 

LEMMA A 1. We have: 
(a) E{C.(z)}= C(z) + k.C'(z); 
(b) var {Cn(z)}= n 1C(z)C(z)+k 2C (z){I-C (z)-2k-C(z)}; 
(c) E({Cn(z)-k)= 0(1), for any integer k 1; 
(d) E({C.(z) - C(z)}4) = (n-2); 

(e) E({C.(z) - C(z)}8) =0(n-4 

Proof. Express nC6(z) = BI(B > 0) + nknI(B = 0), where B - Binomial (n, C(z)). Parts (a) and 
(b) follow from direct calculations. Part (c) follows from C(z) < 1 and 

E[{Cn(z)}k < (n + I)kCn(Z)+{C(z)}-k(k+ 1)!. 

Note that (2s 11) implies that 

E [{ Cn (z) -Cn (z)} ] = O C (z)}, 

for any integer k ? 1. Therefore it suffices to prove 

E[{Cn(z) -C(z)}4] = O(n-2) 
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in part (d). Notice that Cn (z) - C (z) = n1 l; 7I , where 7Bi are independent and identically dis- 
tributed mean zero random variables with values between 0 and 1. Therefore when taking 
expectation of (X m7i)4 only the terms E(iqnjq) and E(q4) are nonzero. Thus we have 

E[{C.(z) - C(z)}4] = n4 [nE(?i 4) + ( {E(r')} j = O(n 

Part (e) follows by a similar combinatorial argument as in part (d) that 

E[{C. (z) -C (z)}8] = O(n -4). C] 

Proof of Theorem 3-2. Consider 

X(z)-A(z) = *(Z)({C(Z)} -_{C(Z)}-1) + {C(z)}-'[W*(Z(z) -] 

+ {C(z)}-[E{i*(z)} -w_*(z)] 

=1+11+111. (A 1) 

By the Cauchy-Schwarz inequality, we have 

Fri1 [W*(ZVI2E [ ,, (z) C(Z) ~2 
{E(I)}2 E Ew*'z)j [{n(z) C (zE =AxB. (A*2) 

Let r = 0 and use the bias and variance expressions for O*(r)(z) in (3 3) and (3A4) to show that 
A-, M for some constant M. Applying the Cauchy-Schwarz inequality to the second term B in 
(A*2) we obtain, for Lemma A l(c), (d), that B=O(n-1). We have thus shown that E(I)= 
O(n-112). The bias part in (3 6) now follows from (3 3) and (A 1). 

Using similar arguments as above and Lemma A 1(e) with some calculations it can be shown 
that E(12) = O(n-1). Hence var (I) = O(n-1) = o((nb)-1). The variance part in (3 6) now follows 
from Lemma A 1(c) and (3 4), applying the Cauchy-Schwarz inequality to cov (I, II) and replacing 
w*/C by A. n 
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