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Abstract 14 

Studies combined in a meta-analysis often have differences in their design and conduct that 15 

can lead to heterogeneous results. A random-effects model accounts for these differences in 16 

the underlying study effects, which includes a heterogeneity variance parameter. The 17 

DerSimonian-Laird method is often used to estimate the heterogeneity variance, but simulation 18 

studies have found the method can be biased and other methods are available. This paper 19 

compares the properties of nine different heterogeneity variance estimators using simulated 20 

meta-analysis data. Simulated scenarios include studies of equal size and of moderate and large 21 

differences in size. Results confirm that the DerSimonian-Laird estimator is negatively biased 22 

in scenarios with small studies, and in scenarios with a rare binary outcome. Results also show 23 

the Paule-Mandel method has considerable positive bias in meta-analyses with large 24 
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differences in study size. We recommend the method of restricted maximum likelihood 25 

(REML) to estimate the heterogeneity variance over other methods. However, considering that 26 

meta-analyses of health studies typically contain few studies, the heterogeneity variance 27 

estimate should not be used as a reliable gauge for the extent of heterogeneity in a meta-28 

analysis. The estimated summary effect of the meta-analysis and its confidence interval derived 29 

from the Hartung-Knapp-Sidik-Jonkman method is more robust to changes in the heterogeneity 30 

variance estimate and shows minimal deviation from the nominal coverage of 95% under most 31 

of our simulated scenarios. 32 

Keywords 33 

Heterogeneity, simulation, random-effects, DerSimonian-Laird, REML 34 

1 Introduction 35 

Meta-analysis is the statistical technique of combining the results of multiple comparable 36 

studies. These studies often have differences in their design and conduct that lead to 37 

heterogeneity in their underlying effects. When heterogeneity is thought to be present, 38 

researchers should first attempt to find its causes, but these causes may be too numerous to 39 

isolate or may simply be unknown. Unexplained heterogeneity of study effects can be 40 

quantified in a random-effects model. This model typically assumes a normal distribution of 41 

the underlying effects across studies. A reliable estimate of the variance of this distribution can 42 

provide valuable insight into the degree of heterogeneity between studies, even if such studies 43 

are not formally synthesised in a meta-analysis. 44 

The moment-based method proposed by DerSimonian-Laird method (DerSimonian and Laird, 45 

1986) is most commonly used to estimate the heterogeneity variance. However, this method 46 

has been shown in previous simulation studies to be negatively biased in meta-analyses 47 

containing small studies (Malzahn et al., 2000), particularly in meta-analyses of binary 48 

outcomes (Novianti et al., 2014; Sidik and Jonkman, 2007). There are many other available 49 

methods (Veroniki et al., 2015), including those proposed by Paule and Mandel (1982), 50 

Hartung and Makambi (2003), Sidik and Jonkman (2005, 2007), and the restricted maximum 51 

likelihood method (REML) (Harville, 1977). Estimates derived from these methods in the same 52 

meta-analysis can often be notably different and in a small number of cases, these estimates 53 

can produce discordant conclusions on the summary effect and its confidence interval (Langan 54 

et al., 2015). Therefore, the choice of heterogeneity variance method is an important 55 

consideration in a meta-analysis. Research based on simulated meta-analysis data can allow a 56 

researcher to make a more informed decision. 57 

A recent systematic review collated simulation studies that compare the properties of 58 

heterogeneity variance estimators (Langan et al., 2016). Its aim was to assess if there is 59 

consensus on which heterogeneity variance methods (if any) have better properties than 60 

DerSimonian-Laird. The review identified 12 relevant simulation studies, but there was little 61 

consensus across the various authors’ recommendations (Malzahn et al., 2000; Novianti et al., 62 
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2014; Sidik and Jonkman, 2005; Sidik and Jonkman, 2007; Panityakul et al., 2013; 63 

Viechtbauer, 2005; Rukhin et al., 2000; Bhaumik et al., 2012; Knapp and Hartung, 2003; 64 

Sanchez-Meca and Marin-Martinez, 2008; Kontopantelis et al., 2013; Chung et al., 2013). This 65 

may have been caused by a potential conflict of interest among the authors of all but four of 66 

these studies (Novianti et al., 2014; Panityakul et al., 2013; Viechtbauer, 2005; Sanchez-Meca 67 

and Marin-Martinez, 2008); the authors of these eight studies recommended their own newly 68 

proposed methods over existing methods. Three of the simulation studies (Novianti et al., 2014; 69 

Panityakul et al., 2013; Viechtbauer, 2005) compared only pre-existing methods and made an 70 

explicit recommendation for estimating the heterogeneity variance; the authors of these studies 71 

recommended the method of Paule and Mandel (1982) and/or REML (Harville, 1977), but only 72 

compared a subset of methods. 73 

The tentative conclusions of that review provided motivation for a new simulation study, which 74 

we present in this paper. The limitations of previous simulation studies helped inform the 75 

design of this study. We consider the inclusion of all methods identified in recent reviews of 76 

heterogeneity variance methods (Veroniki et al., 2015; Langan et al., 2016), compare methods 77 

comprehensively in a range of simulated scenarios representative of meta-analyses of health 78 

studies, and report a wide range of performance measures. Performance measures include those 79 

that relate directly to the heterogeneity variance estimates, and those that measure the impact 80 

of heterogeneity variance estimates on the summary effect estimate and its confidence interval. 81 

Our recommendations are based on a subjective trade-off between many performance 82 

measures. To minimise any conflict of interest, we do not propose any new methods in this 83 

paper. 84 

The aims of this simulation study are to: (1) compare the relative performance of heterogeneity 85 

variance methods to establish which method(s) have the most reasonable properties; (2) find 86 

scenarios where the performance of all methods is poor, such that we cannot rely on a single 87 

method to provide an estimate. In scenarios where all methods perform poorly, we make wider 88 

recommendations for random-effects meta-analysis and dealing with between-study 89 

heterogeneity. 90 

The outline of the paper is as follows. In section 2, we introduce methods for estimating the 91 

heterogeneity variance and any other meta-analysis methods relevant to this simulation study. 92 

The design of the simulation study is given in section 3, followed by the results of this study 93 

in section 4. Results are discussed and conclusions are drawn in sections 5 and 6. 94 

2 Methods 95 

2.1 The heterogeneity variance parameter in a random-effects model 96 

A random-effects model accounts for the possibility that underlying effects differ between 97 

studies in a meta-analysis. The random-effects model is defined as: 98 

𝜃𝑖 = 𝜃𝑖 + 𝜀𝑖 99 
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                        𝜃𝑖 = 𝜃 + 𝛿𝑖 ,                                                                    (1) 100 

where 𝜃𝑖 is the true effect size in study i, 𝜃𝑖 is the estimated effect size, and 𝜃 is the average 101 

effect across all studies. 𝜀𝑖 and 𝛿𝑖 are the within-study errors and the between-study 102 

heterogeneity respectively. Meta-analysis methods typically assume that both are normally 103 

distributed, i.e. 𝜀𝑖~𝑁(0, 𝜎𝑖
2) and 𝛿𝑖~𝑁(0, 𝜏

2). The heterogeneity variance parameter is a 104 

measure of the variance of 𝜃𝑖 around 𝜃 and is denoted by 𝜏2.  105 

The inverse-variance method is most commonly used to estimate 𝜃 in this model; the estimate 106 

is given by: 107 

𝜃 =∑𝑤𝑖 𝜃𝑖

𝑘

𝑖=1

∑𝑤𝑖

𝑘

𝑖=1

,⁄                                                             (2) 108 

where 𝑘 is the number of studies in the meta-analysis and 𝑤𝑖 is the weight given to study i. 109 

Under the random-effects model, using weights 𝑤𝑖 = 1 (𝜎𝑖
2 + 𝜏2)⁄  provides the uniformly 110 

minimum variance unbiased estimator (UMVUE) of 𝜃, which we denote by 𝜃𝑅𝐸. When 𝜏2 =111 

0, model (1) simplifies to what is commonly referred to as the fixed-effect model, where the 112 

true effects are homogeneous. In that case, the UMVUE of 𝜃 (which is now the common true 113 

effect for all 𝑘 studies) is obtained with (2), but using weights 𝑤𝑖 = 1 𝜎𝑖
2⁄ . We denote this 114 

estimator by 𝜃𝐹𝐸 . However, the variance parameters 𝜎𝑖
2 and 𝜏2 are unknown in practice and 115 

must be estimated from the data. Methods to estimate 𝜏2 are outlined in the next section. 116 

2.2 Heterogeneity variance estimators 117 

Nine estimators were identified from two systematic reviews of heterogeneity variance 118 

methods (Veroniki et al., 2015; Langan et al., 2016). Estimators proposed by Hunter and 119 

Schmidt (2004), Rukhin (2000), Malzahn et al. (2000) and the maximum likelihood method 120 

proposed by Hardy and Thompson (1996) are present in these reviews but excluded from the 121 

main results because preliminary analysis showed they are clearly inferior to other methods (as 122 

shown in appendix 1). Furthermore, Bayesian methods that rely on a subjective choice of prior 123 

distribution are excluded because of difficulty in objectively comparing them to frequentist 124 

methods. The method proposed by Morris (1983) is excluded because it is an approximation to 125 

REML. We excluded the positive DerSimonian-Laird estimator (Kontopantelis et al., 2013), 126 

which truncates heterogeneity variance estimates below 0.01, because any positive cut-off 127 

value could be applied. 128 

The included heterogeneity variance estimators are listed in table 1. This table also includes 129 

acronyms for the estimators used throughout this paper. Their formulae are given below. 130 

Table 1: Nine heterogeneity variance estimators included in this simulation study 131 
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Method of moments approach (estimators 1-5) 132 

Five estimators included in this study can be derived from the method of moments approach, 133 

which is based on the generalised Q-statistic (DerSimonian and Kacker, 2007): 134 

𝑄𝑀𝑀 =∑𝑎𝑖(𝜃𝑖 − 𝜃)
2

𝑘

𝑖=1

 135 

The weight assigned to study i is denoted by 𝑎𝑖 and calculated differently depending on which 136 

of the five method of moments estimators is used. 𝜃 is given by formula (2) with study weights 137 

𝑤𝑖 = 𝑎𝑖. By equating 𝑄𝑀𝑀 to its expected value, the following general formula for the 138 

heterogeneity variance can be derived (see DerSimonian and Kacker (2007)) for a detailed 139 

derivation): 140 

𝜏̂2 = 𝑚𝑎𝑥

{
 
 

 
 

0,

𝑄𝑀𝑀 − ∑ 𝑎𝑖𝜎̂𝑖
2𝑘

𝑖=1 +
∑ 𝑎𝑖

2𝜎̂𝑖
2𝑘

𝑖=1

∑ 𝑎𝑖
𝑘
𝑖=1

∑ 𝑎𝑖
𝑘
𝑖=1 −

∑ 𝑎𝑖
2𝑘

𝑖=1

∑ 𝑎𝑖
𝑘
𝑖=1 }

 
 

 
 

                                             (3) 141 

1. The DerSimonian-Laird estimator (DL) (DerSimonian and Laird, 1986) uses the fixed-effect 142 

model weights 𝑎𝑖 = 1 𝜎̂𝑖
2⁄ , which leads to the formula: 143 

𝜏̂𝐷𝐿
2 = 𝑚𝑎𝑥

{
 
 

 
 

0,
∑ (1 𝜎̂𝑖

2⁄ )(𝜃𝑖 − 𝜃𝐹𝐸)
2𝑘

𝑖=1 − (𝑘 − 1)

∑ (1 𝜎̂𝑖
2⁄ )𝑘

𝑖=1 −
∑ (1 𝜎̂𝑖

2⁄ )2𝑘
𝑖=1

∑ (1 𝜎̂𝑖
2⁄ )𝑘

𝑖=1 }
 
 

 
 

 144 

2. Cochran’s ANOVA estimator (CA) uses equal study weights 𝑎𝑖 = 1 𝑘⁄ , leading to: 145 

𝜏̂𝐶𝐴
2 = 𝑚𝑎𝑥 {0,

1

𝑘−1
∑ (𝜃𝑖 − 𝜃𝐶𝐴)

2𝑘
𝑖=1 −

1

𝑘
∑ 𝜎̂𝑖

2𝑘
𝑖=1 } , where 𝜃𝐶𝐴 is calculated from formula (2) 146 

with study weights 𝑤𝑖 = 1 𝑘⁄ . 147 

3. The Paule-Mandel estimator (PM) uses the random-effects model study weights, defined by 148 

substituting 𝑎𝑖 = 1 (𝜎̂𝑖
2 + 𝜏̂𝑃𝑀

2 )⁄  into formula (3). Since 𝑎𝑖 is a function of 𝜏̂𝑃𝑀
2 , there is no 149 

closed-form expression for 𝜏̂𝑃𝑀
2  and iteration is required to find the solution. Iterative 150 

algorithms including those suggested by Bowden et al. (2011) and Jackson et al. (2014) always 151 

converge. The same estimator has been derived independently of the methods of moments 152 

approach and is therefore often referred to as the empirical Bayes estimator in the literature 153 

(Rukhin, 2013). 154 

4. The two-step Cochran’s ANOVA estimator also uses Paule-Mandel random-effects weights 155 

but restricts iteration to two-steps (PMCA). Cochran’s ANOVA is used to initially estimate 𝜏2, 156 

thus, a closed form expression can be derived by substituting 𝑎𝑖 = 1 (𝜎̂𝑖
2 + 𝜏̂𝐶𝐴

2 )⁄  into formula 157 

(3). 158 

5. The two-step DerSimonian-Laird estimator (PMDL) has similar weights as PMCA above, but 159 

uses the DerSimonian-Laird method to calculate an initial estimate of 𝜏2. Therefore the study 160 

weights are 𝑎𝑖 = 1 (𝜎̂𝑖
2 + 𝜏̂𝐷𝐿

2 )⁄ . 161 
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All five of these methods can produce negative variance estimates and are truncated to zero in 162 

such cases. 163 

Hartung-Makambi (estimator 6) 164 

Hartung and Makambi (2003) proposed a correction to the DerSimonian-Laird estimator so 165 

that 𝜏̂2 is always positive and truncation is not required. The formula is given by: 166 

𝜏̂𝐻𝑀
2 =

(∑ (1 𝜎̂𝑖
2⁄ )(𝜃𝑖 − 𝜃𝐹𝐸)

2𝑘
𝑖=1 )

2

(∑ (1 𝜎̂𝑖
2⁄ )𝑘

𝑖=1 −
∑ (1 𝜎̂𝑖

2⁄ )2𝑘
𝑖=1

∑ (1 𝜎̂𝑖
2⁄ )𝑘

𝑖=1

) (2(𝑘 − 1) + ∑ (1 𝜎̂𝑖
2⁄ )(𝜃𝑖 − 𝜃𝐹𝐸)

2𝑘
𝑖=1 )

 167 

Sidik-Jonkman (estimators 7 and 8) 168 

Sidik and Jonkman (2005) proposed the following two-step estimator that only produces 169 

positive 𝜏2 estimates: 170 

𝜏̂𝑆𝐽
2 =

1

𝑘 − 1
∑

1

1 + (𝜎̂𝑖
2/𝜏̂0

2)
(𝜃𝑖 − 𝜃𝑆𝐽)

2
 ,

𝑘

𝑖=1
 171 

where 𝜏̂0
2 =

1

𝑘−1
∑ (𝜃𝑖 − 𝜃𝐶𝐴)

2𝑘
𝑖=1  is the initial heterogeneity variance estimate and 𝜃𝑆𝐽 is 172 

calculated from formula (2) with weights 𝑤𝑖 = 1 (1 + (𝜎̂𝑖
2/𝜏̂0

2))⁄ . 173 

Sidik and Jonkman (2005) noted that an alternative formula for 𝜏̂0
2 may lead to an estimator 174 

with better properties. In a subsequent paper (2007), they proposed an alternative initial 175 

estimate 𝜏̂0
2 = 𝑚𝑎𝑥{0.01, 𝜏̂𝐶𝐴

2 }, where 𝜏̂𝐶𝐴
2  is Cochran’s ANOVA estimate of the heterogeneity 176 

variance (estimator 2). 177 

Restricted maximum likelihood (estimator 9) 178 

To derive the restricted maximum likelihood (REML) estimator, the log-likelihood function 179 

from the random-effects model (1) derived from the maximum likelihood method (Hardy and 180 

Thompson, 2004) is transformed so that it excludes the parameter 𝜃 (Harville, 1977). In doing 181 

so, REML avoids making the assumption that 𝜃 is known and is therefore thought to be an 182 

improvement on the original maximum likelihood estimator (Viechtbauer, 2005). This results 183 

in the following modified log-likelihood function: 184 

 185 

𝑙 = −
𝑘

2
𝑙𝑛(2𝜋) −

1

2
∑ 𝑙𝑛(𝜎𝑖

2 + 𝜏2)
𝑘

𝑖=1
−
1

2
∑

(𝜃𝑖 − 𝜃)

𝜎𝑖
2 + 𝜏2

𝑘

𝑖=1
−
1

2
𝑙𝑛 (∑

1

𝜎𝑖
2 + 𝜏2

𝑘

𝑖=1
) 186 

 187 

Maximising this modified log-likelihood function with respect to 𝜏2 (by differentiating and 188 

setting equal to zero) results in the following formula for the heterogeneity variance: 189 

𝜏̂𝑅𝐸𝑀𝐿
2 = 𝑚𝑎𝑥 {0,

∑ 𝑎𝑖
2 ((𝜃𝑖 − 𝜃𝑅𝐸)

2
− 𝜎̂𝑖

2)𝑘
𝑖=1

∑ 𝑎𝑖
2𝑘

𝑖=1

+
1

∑ 𝑎𝑖
𝑘
𝑖=1

}, 190 
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where 𝑎𝑖 = 1 (𝜎̂𝑖
2 + 𝜏̂𝑅𝐸𝑀𝐿

2 )⁄ . 191 

The heterogeneity variance estimate is calculated through a process of iteration. Fisher’s 192 

scoring algorithm is used for iteration in this study, as implemented in the metafor package in 193 

R (Viechtbauer, 2010). 194 

2.3 Confidence interval methods for the summary effect 195 

In this study, we also investigate how choice of a particular heterogeneity variance estimation 196 

method may impact on the estimate of the summary effect 𝜃 and its confidence interval. As we 197 

described earlier, the inverse-variance method is typically used to estimate 𝜃 in a random-198 

effects meta-analysis, so we calculate 𝜃 using this method throughout. The following are three 199 

methods to estimate a corresponding confidence interval. 200 

A Wald-type confidence interval can be calculated as (DerSimonian and Laird, 1986): 201 

𝜃 ± Z(1−𝐶) 2⁄ √𝑉𝑎𝑟(𝜃) 202 

𝑉𝑎𝑟(𝜃) = 1 (∑ 1 (𝜎̂𝑖
2 + 𝜏̂2)⁄

𝑘

𝑖=1
)⁄                                              (4) 203 

where C is the coverage level of the confidence interval, and 𝑍(1−𝐶) 2⁄  is the (1 − 𝐶) 2⁄  centile 204 

of the standard normal distribution (e.g. 𝑍(1−0.95) 2⁄ = 1.96) 205 

Alternatively, a t-distribution can be assumed for the summary effect with 𝑘 − 1 degrees of 206 

freedom (Follmann and Proschan, 1999): 207 

𝜃 ± 𝑡𝑘−1, (1−𝐶) 2⁄ √𝑉𝑎𝑟(𝜃) , 208 

where 𝑡𝑘−1, (1−𝐶) 2⁄  is the (1 − 𝐶) 2⁄  centile of the t-distribution with 𝑘 − 1 degrees of freedom 209 

and 𝑉𝑎𝑟(𝜃) is calculated from formula (4). 210 

The Hartung-Knapp-Sidik-Jonkman method (HKSJ) (Hartung and Knapp, 2001; Sidik and 211 

Jonkman, 2002) also relies on a t-distribution and uses an alternative weighted variance for 𝜃: 212 

𝜃 ± 𝑡𝑘−1, (1−𝐶) 2⁄ √𝑉𝑎𝑟𝐻𝐾𝑆𝐽(𝜃) 213 

𝑉𝑎𝑟𝐻𝐾𝑆𝐽(𝜃) =
∑ 𝑎𝑖
𝑘
𝑖=1 (𝜃𝑖 − 𝜃)

2

(𝑘 − 1)∑ 𝑎𝑖
𝑘
𝑖=1

, 214 

where 𝑎𝑖 = 1 (𝜎̂𝑖
2 + 𝜏̂2)⁄ ,  𝜃 is calculated from formula (2) and 𝜏̂2 can be estimated using any 215 

of the methods outlined in this paper. 216 

This method is equivalent to the t-distribution method above, but its variance is multiplied by 217 

a scaling factor ∑ 𝑎𝑖
𝑘
𝑖=1 (𝜃𝑖 − 𝜃)

2
(𝑘 − 1)⁄  (Sidik and Jonkman, 2002; Wiksten et al., 2016). 218 

In certain cases, this scaling factor can be less than one, which leads to a narrower confidence 219 
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interval than the standard t-distribution approach and can also lead to a narrower interval 220 

compared to the Wald-type method in few cases (Higgins and Thompson, 2002). A variation 221 

of this method has been proposed to deal with this by constraining the scaling factor to be ≥ 1 222 

(Hartung and Makambi, 2003). However, throughout this study, the HKSJ method without 223 

constraint is used. 224 

3 Simulation study design 225 

All simulations and analyses were carried out in R version 3.2.2. The package metafor 226 

(Viechtbauer, 2010) was used to run simulated meta-analyses and calculate heterogeneity 227 

variance estimates from methods coded in this package, bespoke code was used for those that 228 

are not. A study protocol was agreed by all authors before running these simulations and is 229 

available upon request from the first author. 230 

3.1 Simulation methods 231 

For studies 𝑖 = 1,… , 𝑘 in each meta-analysis, true study effects 𝜃𝑖 are simulated from the 232 

distribution 𝑁(𝜃, 𝜏2). Parameters 𝜃, 𝜏2, and 𝑘 take values as defined in section 3.2. Study 233 

sample sizes 𝑁𝑖 are generated from a distribution also detailed in section 3.2 and are then split 234 

evenly between the two study groups 𝑛1𝑖 and 𝑛2𝑖. Participant-level data are then simulated for 235 

both continuous and binary outcomes, and effect sizes and within-study variances (𝜃𝑖 and 𝜎𝑖
2) 236 

are estimated from these data. In continuous outcome meta-analyses, effects are measured as a 237 

standardised mean difference and in binary outcome meta-analyses, effects are measured as a 238 

log-odds ratio. 239 

For each study simulated from continuous outcome data, the following steps are carried out:  240 

(1) Generate 𝑛1𝑖 observations from 𝑁(0, 𝜎1𝑖
2 ) and 𝑛2𝑖 observations from 𝑁(𝜃𝑖 , 𝜎2𝑖

2 ). We 241 

assume variances 𝜎1𝑖
2  and 𝜎2𝑖

2  in the two groups are equal and, without loss of generality, 242 

set them equal to 1. 243 

(2) Calculate the sample means and standard deviations of these observations. 244 

(3) Calculate 𝜃𝑖 and 𝜎̂𝑖
2 for standardised mean differences by Hedges’ g method, thus 245 

accounting for small sample bias of standardised mean differences (Borenstein et al., 246 

1999, equations 2.23 and 2.24). 247 

For studies with an odds ratio outcome measure: 248 

(1) Generate an average event probability between the two study groups (𝑝̅𝑖) from one of 249 

the distributions as defined in section 3.2. Although this simulation approach is not 250 

common, Smith et al. (1995) has previously defined a Bayesian meta-analysis model 251 

that included the same 𝑝̅𝑖 parameter. 252 

(2) Derive underlying event probabilities for each study group (𝑝1𝑖 and 𝑝2𝑖) from the 253 

solutions to the following simultaneous equations: 254 

𝑝̅𝑖 = (𝑝1𝑖 + 𝑝2𝑖) 2⁄  255 

𝜃𝑖 = 𝑙𝑜𝑔[(𝑝2𝑖(1 − 𝑝1𝑖)) (𝑝1𝑖(1 − 𝑝2𝑖))⁄ ] 256 
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(3) Simulate cell counts of the 2×2 contingency table from the distributions 𝐵𝑖𝑛(𝑛1𝑖, 𝑝1𝑖) 257 

and 𝐵𝑖𝑛(𝑛2𝑖, 𝑝2𝑖). Apply a continuity correction of 0.5 to studies with zero cell counts. 258 

(4) Calculate 𝜃𝑖 and 𝜎̂𝑖
2 for log odds ratios from the standard formulae in Borenstein et al. 259 

(1999). 260 

3.2 Parameter values 261 

Parameter values are chosen to represent the range of values observed in published meta-262 

analyses in the Cochrane Database of Systematic Reviews (Langan et al., 2015) and based on 263 

parameter values from previous simulation studies (Langan et al., 2016). For all combinations 264 

of parameter values as outlined in this section, 5000 meta-analyses are simulated. Binary 265 

outcome meta-analyses are simulated with log-odds ratios of 𝜃 = {0,0.5,1.1,2.3} 266 

(corresponding to odds ratios of 1, 1.65, 3, and 10). Standardised mean difference meta-267 

analyses are simulated with 𝜃 = 0.5 only, because previous simulation studies suggest 𝜃 has 268 

no noticeable effect on any of the results (Viechtbauer, 2005; Sanchez-Meca and Marin-269 

Martinez, 2008). Sample sizes are generated from the following five distributions to represent 270 

meta-analyses containing small, small-to-medium, medium, large, and small and large studies: 271 

(1) 𝑁𝑖 = 40, (2) 𝑁𝑖~𝑈(40,400), (3) 𝑁𝑖 = 400, (4) 𝑁𝑖~𝑈(2000,4000), and (5) 𝑁𝑖 = 40 272 

(small) in half of studies and half selected from 𝑁𝑖~𝑈(2000,4000) (large). If k is odd in the 273 

last scenario, one study is selected randomly (with probability 0.5) to be small or large. For 274 

odds ratio meta-analyses, the average event probability (𝑝̅𝑖) takes the values (1) 0.5, (2) 0.05, 275 

(3) 0.01, and (4) generated from the distribution 𝑈(0.1,0.5). Simulated meta-analyses contain 276 

2, 3, 5, 10, 20, 30, 50, and 100 studies. 277 

Heterogeneity variance parameter values (𝜏2) are defined such that the resulting meta-analyses 278 

span a wide range of levels of inconsistency between study effects. We measured inconsistency 279 

using the 𝐼2 statistic (Higgins and Thompson, 2002), an approximate measure of the relative 280 

size of the heterogeneity variance to the total variability in effect estimates (the sum of within-281 

study error variance and between-study heterogeneity). The chosen 𝜏2 values result in meta-282 

analyses with average 𝐼2 values of 0%, 15%, 30%, 45%, 60%, 75%, 90%, and 95% and are 283 

given in appendix 2. 𝐼2 values are calculated using the true 𝜏2 parameter estimates, but still 284 

vary between simulated meta-analyses because of the simulated variation in the standard errors. 285 

Parameter values for 𝜏2 vary between scenarios with different distributions for 𝑁𝑖 and 𝑝̅𝑖 to 286 

maintain a consistent range of 𝐼2. In each scenario, 𝜏2 is fixed and 𝐼2 varies between meta-287 

analyses, therefore, we also present the range of 𝐼2 next to the graphs in the results. 288 

Simulating all combinations of parameter values leads to 320 scenarios for standardised mean 289 

difference meta-analyses (8(𝑘) × 5(𝑁𝑖) × 8(𝜏
2)) and 5120 scenarios for odds ratio meta-290 

analyses (8(𝑘) × 5(𝑁𝑖) × 8(𝜏
2) × 4(𝑝̅𝑖) × 4(𝜃)). Given the large number of simulated 291 

scenarios, this paper can only show results from a representative subset of these scenarios. 292 

3.3 Performance measures 293 

Properties of heterogeneity variance estimators are measured in terms of bias and mean squared 294 

error. These two measures are plotted proportional to the heterogeneity variance parameter 295 
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value, so that results can be compared more easily between scenarios with different 𝜏2. For 296 

example, a proportional bias of 100% means that 𝜏̂2 is on average twice as large as the true 𝜏2. 297 

By the same token, a proportional bias of −50% means that 𝜏̂2 is on average half as large as 298 

the true 𝜏2. Similarly, a proportional mean squared error of 100% implies that the mean squared 299 

error is equal to 𝜏2. We also report bias of 𝜃 and coverage of the three included methods to 300 

calculate 95% confidence intervals using estimates from the eleven included heterogeneity 301 

variance estimators. 302 

4 Results 303 

In section 4.1, results are presented for performance measures that relate directly to the 304 

heterogeneity variance parameter; bias and mean squared error. In section 4.2, we present bias 305 

of the summary effect. In section 4.3, we present the coverage probability of the three 306 

confidence interval methods for the summary effect. 307 

4.1 Properties of heterogeneity variance parameter estimates 308 

Estimators are compared in terms of bias in figures 1 and 2 and in terms of mean squared error 309 

in figures 3 and 4. The first figure in each case shows results from standardised mean difference 310 

meta-analyses and the second shows results from odds ratio meta-analyses. We present selected 311 

scenarios containing small studies, small-to-medium studies, and small and large studies 312 

combined with scenarios where the average 𝐼2 is either equal to 30% or 90%, and for 𝜃 = 0.5 313 

only. For odds ratio meta-analyses, we present scenarios where the average event probability 314 

in each study is uniformly distributed between 0.1 and 0.5. In this section, results are 315 

summarised separately for each heterogeneity variance estimator. 316 

DerSimonian-Laird (DL) 317 

In standardised mean difference meta-analyses, DL is negatively biased when 𝐼2 is large and 318 

study sample sizes are small (as shown in figure 1, bottom-left). The estimator is more 319 

negatively biased in the equivalent odds ratio meta-analyses, even with event rates between 0.1 320 

and 0.5 (figure 2). Additionally, DL is negatively biased in odds ratio meta-analyses when 321 

sample sizes are small-to-medium (figure 2, middle-left). In all other scenarios presented in 322 

figures 1 and 2, DL is positively biased in meta-analyses containing fewer than 10-20 studies 323 

and roughly unbiased for those with more studies. DL has similar bias to many estimators 324 

including PMCA, PMDL, and REML in scenarios with small-to-medium studies. In meta-325 

analyses with a mix of small and large studies (figures 1 and 2, third column), DL is one of the 326 

least positively biased estimators - distinctly lower than PM and PMCA. 327 

DL has a relatively low mean squared error in the same scenarios where negative bias is also 328 

observed (figures 3 and 4). However, this is not necessarily a good property because only 329 

underestimates can be truncated to zero and truncation reduces the error of the estimate. Low 330 

mean squared error is also observed in scenarios with small and large studies where DL has 331 

low bias (figures 3 and 4, third column). 332 
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Cochran’s ANOVA (CA) 333 

CA tends to produce higher estimates of the heterogeneity variance than most other estimators 334 

for both standardised mean difference and odds ratio meta-analyses. As such, CA is roughly 335 

unbiased in scenarios with high 𝐼2 when most other estimators are negatively biased. However, 336 

CA is one of the most positively biased estimators for low to moderate 𝐼2. CA's positive bias 337 

is particularly prominent in scenarios with small and large studies (figures 1 and 2, third 338 

column); it is counterintuitive to assign equal study weights (as the CA estimator does) in these 339 

scenarios with large differences in study size. CA also has higher mean squared error than most 340 

other estimators when the estimator is positively biased (figures 3 and 4). 341 

Paule-Mandel (PM) 342 

PM has properties similar to DL in scenarios of standardised mean difference meta-analyses 343 

that contain small or small-to-medium sized studies (figure 1, first and second column). In 344 

these scenarios, PM is roughly unbiased when 𝐼2 is typically high or the meta-analysis has 345 

more than 20 studies and positively biased otherwise. In scenarios where DL is negatively 346 

biased, PM often has less negative bias, except in scenarios with highly sparse data where all 347 

estimators perform poorly (figure 2, bottom-left). In scenarios with a mix of small and large 348 

studies (figures 1 and 2, third column), PM has a higher mean squared error and higher positive 349 

bias than DL, PMDL, HM, and REML (figures 1-4, third column). 350 

Two-step Cochran’s ANOVA (PMCA) 351 

PMCA uses CA as an initial estimate of heterogeneity. PMCA's bias and mean squared error are 352 

equal to, or somewhere between, CA and PM in all scenarios. Given than CA and PM have 353 

high positive bias and large mean squared error in scenarios with small and large studies, so 354 

too does PMCA (figures 1-4, third column). 355 

Two-step DerSimonian-Laird (PMDL) 356 

In a similar fashion to PMCA, PMDL has bias and mean squared error that is equal to, or 357 

somewhere between, DL and PM in all scenarios. PMDL has properties similar to the best 358 

performing out of the two estimators in all simulated scenarios. In scenarios with large and 359 

small studies, PMDL has low positive bias and mean squared error similar to DL and in 360 

scenarios where DL is negatively biased, PMDL and PM have comparable properties. There is 361 

little difference in the properties of PMDL and REML in all scenarios. 362 

Hartung-Makambi (HM) 363 

In meta-analyses with small or small-to-medium study sizes and zero or low 𝐼2, HM tends to 364 

produce relatively high estimates of heterogeneity and therefore has relatively high positive 365 

bias (figures 1 and 2, top-left). This is perhaps because HM is a transformation of the DL 366 

estimator that only produces positive estimates. HM tends to produce comparatively low 367 

estimates when 𝐼2 is moderate or high and has more negative bias than DL in these scenarios. 368 

HM has a comparatively low mean squared error in all scenarios presented (figures 3 and 4), 369 

including scenarios where HM has high positive bias. HM is one of the best performing 370 
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estimators in meta-analyses containing small and large studies (figures 1-4, third column), with 371 

properties comparable with DL, PMDL, and REML. 372 

Sidik-Jonkman (SJ) 373 

SJ typically produces one of the highest estimates of the heterogeneity variance in both 374 

standardised mean difference and odds ratio meta-analyses; even higher than the other 375 

estimators which only produce positive estimates (HM and SJCA). As such, SJ has considerable 376 

positive bias and high mean squared error in meta-analyses with up to moderate 𝐼2. For 377 

example, in standardised mean difference meta-analyses containing small-to-medium sized 378 

studies and low 𝐼2 (figure 1, top-middle), SJ has bias of more than 100% when almost all other 379 

estimators are roughly unbiased. 380 

Alternative Sidik-Jonkman (SJCA) 381 

SJCA generally has improved properties over the original SJ estimator. In meta-analyses with 382 

small studies (as shown in figures 1 and 2, first column), SJCA is one of the least biased 383 

estimators, with bias similar to many of the truncated methods including DL, PM, and REML. 384 

As the typical study size increases, the extent of SJCA’s positive bias also increases, such that 385 

it becomes one of the most positively biased estimators in meta-analyses with small and large 386 

studies (figures 1 and 2, third column). In scenarios where SJCA has positive bias, it also has 387 

relatively high mean squared error (i.e., in meta-analyses with large studies, see figures 3 and 388 

4, third column). 389 

REML 390 

REML has similar properties to PMDL and DL in most scenarios. In a small number of scenarios 391 

where DL is negatively biased, REML is also negatively biased but often to a much lesser 392 

extent (observed most prominently in figure 2, bottom-left). REML has relatively low bias and 393 

low mean squared error comparable with DL, HM, and PMDL in scenarios containing small 394 

and large studies. 395 

Figure 1: Bias of heterogeneity variance estimates in standardised mean difference outcome 396 

meta-analyses. 397 

Scenarios containing small studies (first row), small-to-medium studies (second row), and 398 

small and large studies (third row). Effect size 𝜃 = 0.5. Note: the y-axis limits differ between 399 

plots.  400 

 401 

Figure 2: Bias of heterogeneity variance estimates in odds ratio meta-analyses with 402 

underlying summary odds ratio 1.65 and an average event probability between 0.1 and 0.5 403 

Scenarios containing small studies (first row), small-to-medium studies (second row), and 404 

small and large studies (third row). Effect size 𝜃 = 0.5. Note: the y-axis limits differ between 405 

plots. 406 

 407 
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Figure 3: Mean squared error of heterogeneity variance estimates in standardised mean 408 

difference outcome meta-analyses. 409 

Scenarios containing small studies (first row), small-to-medium studies (second row), and 410 

small and large studies (third row). Effect size 𝜃 = 0.5. Note: the y-axis limits differ between 411 

plots. 412 

 413 

Figure 4: Mean squared error of heterogeneity variance estimates in odds ratio meta-414 

analyses with underlying summary odds ratio 1.65 and an average event probability between 415 

0.1 and 0.5 416 

Scenarios containing small studies (first row), small-to-medium studies (second row), and 417 

small and large studies (third row). Effect size 𝜃 = 0.5. Note: the y-axis limits differ between 418 

plots. 419 

 420 

4.2 Summary effect estimates 421 

Results show that summary effect estimates (𝜃) are almost unbiased in all scenarios of 422 

standardised mean difference meta-analyses (𝜃 = 0.5) and odds ratio meta-analyses with 423 

common events. However, summary effect estimates are biased towards the null value of zero 424 

in odds ratio meta-analyses with rare events. This is likely to be partly a consequence of the 425 

choice of continuity correction (we added 0.5 to zero cell counts) and the degree of bias was 426 

similar across all heterogeneity variance estimators. We present bias of the summary effect in 427 

the supplementary results only. 428 

4.3 Coverage of 95% summary effect confidence intervals 429 

Coverage is presented in figure 5 for all combinations of heterogeneity variance estimators and 430 

(95%) Wald-type, t-distribution, and HKSJ confidence interval methods for the summary 431 

effect. Results are presented for standardised mean difference meta-analyses only, but results 432 

are consistent with the equivalent scenarios of odds ratio meta-analyses with common events 433 

(event probabilities 0.1 to 0.5, see appendix 3 in the supplementary results). 434 

Wald-type method 435 

Coverage of the 95% Wald-type confidence interval can differ by up to 5% between 436 

heterogeneity variance estimators, up to 30% between numbers of studies, and up to 20% 437 

between heterogeneity values. Coverage varies between 96-100% when studies are 438 

homogeneous and can be as low as 65% when the typical 𝐼2 is 90% (𝜏2 = 0.187) and meta-439 

analyses have two or three studies. When heterogeneity is present, the confidence interval’s 440 

coverage tends towards the nominal value of 95% as the number of studies increases. 441 

Standard t-distribution method 442 

Coverage of the t-distribution 95% confidence interval is generally more robust to changes in 443 

the mean 𝐼2, as shown in figure 5. In these scenarios, however, coverage can differ by up to 444 

5% depending on the heterogeneity variance estimator used and the number of studies. When 445 
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there are 20 studies or more, 95% t-distribution confidence intervals have coverage 94-97%, 446 

but perform conservatively with coverages close to 100% when there are fewer than 20 studies. 447 

The heterogeneity variance estimator that works best with this confidence interval method 448 

varies considerably between scenarios, so it is difficult to select one overall. 449 

Hartung-Knapp-Sidik-Jonkman (HKSJ) method 450 

The HKSJ confidence interval for the summary effect has better coverage than the other two 451 

methods in all scenarios. This method has coverage 94-96% in standardised mean difference 452 

meta-analyses presented in figure 5 and is insensitive to the choice of heterogeneity variance 453 

estimator. The method can produce confidence intervals with sub-optimal coverage in odds 454 

ratio meta-analyses with rare events, where all meta-analysis methods perform poorly (as 455 

demonstrated in the supplementary results, appendix 4). 456 

Figure 5: Coverage of 95% confidence intervals of the summary effect in standardised mean 457 

difference meta-analyses with small-to-medium studies (𝑵𝒊 = 𝑼(𝟒𝟎, 𝟒𝟎𝟎)) 458 

Coverage of Wald-type (first row), t-distribution (second row), and HKSJ (third row) 459 

confidence intervals presented. 460 

4.4 Generalisability of presented results 461 

The results presented so far come from a subset of all simulation scenarios, but these results 462 

can be generalised to some extent. All results are presented in the supplementary material. 463 

First, all results presented in the main paper come from scenarios with standardised mean 464 

difference and log-odds ratio summary effects of 0.5 (odds ratio = 1.65), but results were 465 

consistent with more extreme odds ratio effects in most scenarios. The exception is in odds 466 

ratio meta-analyses containing only small studies with rare events (average event probability = 467 

0.05), where a larger effect size (odds ratio = 10) produced heterogeneity variance estimates 468 

with more negative bias across all methods. Results from other effect sizes are found in the 469 

supplementary results. 470 

Second, results are not presented in the main paper from scenarios where all heterogeneity 471 

variance methods failed with considerable negative bias. This occurred in all scenarios of odds 472 

ratio meta-analyses with rare events (event probability = 0.05 and 0.01) except where study 473 

sizes were large (sample size >4000 per study). In these scenarios, summary effects were 474 

considerably biased and confidence interval methods also failed to produce reasonable 475 

coverage. For example, simulation results show that the HKSJ method can have coverage as 476 

low as 85% in odds ratio meta-analyses with small-to-medium sized studies with an underlying 477 

event probability of 0.05 (see appendix 4). Poor properties were perhaps observed in these 478 

scenarios because many studies contained zero events and a continuity correction was applied 479 

(0.5 was added to all 2x2 cell counts in these simulations). An alternative continuity correction 480 

may have produced different results. 481 

Finally, results were presented thus far are from meta-analyses with typical 𝐼2 values of 0%, 482 

30%, 60%, and 90% (corresponding to four heterogeneity variance parameter values). Meta-483 
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analyses with other typical 𝐼2 values were simulated, but the four presented gave an adequate 484 

description of the properties of methods across all levels of inconsistency. 485 

5 Discussion 486 

The DerSimonian-Laird heterogeneity variance estimator is not recommended for widespread 487 

use in two-stage random-effects meta-analysis and therefore, should not be the default method 488 

for meta-analysis in statistical software packages; it produces estimates with more negative 489 

bias than most other methods in odds ratio meta-analyses with small studies or rare events and 490 

to a lesser extent in standardised mean difference meta-analyses with small studies. This 491 

finding can perhaps be explained by DerSimonian-Laird's fixed-effect study weights that are 492 

based solely on estimated within-study variances; these variances are imprecise and likely to 493 

be biased under such conditions. This observation is in agreement with previous simulation 494 

studies (Sidik and Jonkman, 2007; Panityakul et al., 2013), as identified in a systematic review 495 

(Langan et al., 2016). Viechtbauer (2005) and Böhning et al. (2002) stated that DerSimonian-496 

Laird is unbiased when within-study variances are known. However, DerSimonian-Laird is one 497 

of the better performing estimators in meta-analyses with large differences in study size. 498 

This simulation study identified three heterogeneity variance estimators with more reasonable 499 

properties; REML (Harville, 1977), Paule-Mandel (1982), and the two-step Paule-Mandel that 500 

uses a DerSimonian-Laird initial estimate (DerSimonian and Kacker, 2007). Paule-Mandel is 501 

often approximately unbiased when DerSimonian-Laird is negatively biased. However, results 502 

also show Paule-Mandel has high positive bias when there are large differences in study size. 503 

This can perhaps be attributed to the random-effects study weights used in this method, which 504 

can lead to small studies being given a relatively large weight under heterogeneous conditions. 505 

A similar issue regarding the use of random-effects study weights for summary effect 506 

estimation has been noted elsewhere (Higgins and Spiegelhalter, 2002). The two-step 507 

DerSimonian-Laird estimator (PMDL) inherits most of the best properties of DerSimonian-508 

Laird and Paule-Mandel methods and is simple to compute. REML has very similar properties 509 

to this two-step estimator and is already widely known, recommended in two previous 510 

simulation studies for meta-analyses with continuous (Novianti et al., 2014; Viechtbauer, 2005) 511 

and binary (Viechtbauer, 2005) outcomes. Furthermore, REML is already available in many 512 

statistical software packages (Viechtbauer, 2010; Kontopantelis and Reeves, 2010). Of those 513 

with reasonable properties, REML is the only estimator that assumes normality of effect sizes, 514 

but a previous simulation study (Kontopantelis and Reeves, 2012a; Kontopantelis and Reeves, 515 

2012b) showed all these methods are reasonably robust under non-normal conditions. 516 

One of the aims of this simulation study was to investigate when it is appropriate to rely on one 517 

estimate of the heterogeneity variance. Results show all estimators are imprecise and often fail 518 

to detect high levels of heterogeneity in meta-analyses containing fewer than ten studies. 519 

Furthermore, only 14% of meta-analyses in the Cochrane Database of Systematic Reviews 520 

contain ten studies or more (Langan et al., 2015), so it is rarely appropriate to rely on one 521 

estimate of heterogeneity in this setting. All estimators have poor properties even in meta-522 
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analyses containing high numbers of studies when study sizes are small or the event of interest 523 

is rare. 524 

Estimates of the summary effect and its HKSJ confidence interval are of less cause for concern, 525 

and perform well even in meta-analyses with only two studies. In particular, the HKSJ 526 

confidence interval offers a large improvement in coverage over the commonly used Wald-527 

type confidence interval. However, caution must still be applied when dealing with meta-528 

analysis datasets with rare events, where summary effects are biased and the HKSJ confidence 529 

interval method can have coverage as low as 85%. Summary effect estimates in this study were 530 

calculated using the inverse-variance approach, though the use of the Mantel-Haenszel method 531 

has been recommended for rare events (Kontopantelis et al., 2013; Bradburn et al., 2007) and 532 

may have improved properties in these scenarios. These findings agree with a previous 533 

simulation study (IntHout et al., 2014), in which the HKSJ method was compared with other 534 

confidence interval methods for both continuous and binary outcome measures. The results 535 

presented in this paper show the HKSJ method is robust to changes in the heterogeneity 536 

variance estimate. 537 

Our findings do not concur with some previous simulation studies. In all cases, this can be 538 

attributed to differences in parameter values and other differences in simulation study design. 539 

The original estimator proposed by Sidik and Jonkman (2005) performed well in the author’s 540 

own simulations, yet simulations in this study shows they have considerable positive bias in 541 

meta-analyses of up to moderate 𝐼2. This was not observed by Sidik and Jonkman (2005) 542 

because simulated meta-analyses were only presented with high 𝐼2 (Langan et al., 2016). The 543 

method of Paule-Mandel has been recommended based on the results of three previous 544 

simulation studies (Novianti et al., 2014; Panityakul et al., 2013; Bhaumik et al., 2012), but 545 

these studies did not simulate meta-analyses with moderate-to-large differences in study size, 546 

where Paule-Mandel has considerable positive bias. Novianti et al. (2014) only recommended 547 

REML for continuous outcome meta-analyses and observed a small negative bias when the 548 

outcome is binary and high 𝐼2; this bias was less pronounced in our simulations with low to 549 

moderate 𝐼2  that Novianti et al (2014) did not include in their simulations (Langan et al., 2016).  550 

The limitations of this simulation study are as follows. First, only a subset of all confidence 551 

interval methods for the summary effect are included. Results show the HKSJ method is more 552 

robust than the Wald method to the choice of heterogeneity variance estimator, but no 553 

confidence interval method can be recommended solely from the results of this study. Other 554 

methods include the profile likelihood method (Hardy and Thompson, 1996), which has also 555 

been shown as a better alternative to the Wald method in simulated meta-analysis data (Henmi 556 

and Copas, 2010) and recommended elsewhere (Cornell, 2014). Second, a continuity correction 557 

of 0.5 was applied whenever simulated studies with a binary outcome contained zero events, 558 

but other methods with a better performance are available (Sweeting et al., 2004). This choice 559 

may have affected the results in scenarios where the event is rare (i.e. 0.05), but alternative 560 

continuity corrections are unlikely to have led to meaningful improvements where the event 561 

rate is extremely rare (i.e. 0.01) and all random-effects methods fail in terms of all performance 562 

measures. We assumed effects to be normally distributed and although this is a limitation, it 563 

has been shown that most of the investigated methods are robust even in extreme non-normal 564 
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distributions (Kontopantelis and Reeves. 2012a). Third, our analyses assume that all studies 565 

provide unbiased estimates of the true effects underlying them. In practice, results of studies 566 

may be biased if the studies are performed sub-optimally, and meta-analyses may be biased if 567 

studies are missing for reasons related to their results (e.g. due to publication bias). These biases 568 

can affect estimation of heterogeneity (both upwardly or downwardly) and lead to 569 

inappropriate conclusions. Finally, although the study aimed to simulate a comprehensive 570 

range of scenarios, this range could never be complete given how diverse meta-analyses are in 571 

practice; not all outcome measures were included (e.g. hazard ratios) and the distributions from 572 

which sample sizes were drawn in this study cannot be considered representative of all 573 

observed distributions because study sample sizes are unlikely to conform to a defined 574 

distribution. 575 

We compared methods in the context of a classical two-stage meta-analysis where study effect 576 

estimates and their standard errors are calculated first, then combined at the second final stage. 577 

Alternatively, one-stage meta-analyses can be undertaken using individual participant data 578 

(IPD) using mixed modelling techniques; these raw data can be derived trivially from study-579 

level 2x2 contingency tables for binary outcome meta-analyses (Stijnen et al., 2010; Simmonds 580 

and Higgins, 2016).  Stijnen et al. (2010) explains that this approach makes random-effects 581 

meta-analyses more feasible with sparse data and does not require a continuity correction in 582 

case of zero events. Jackson et al. (2018) reviewed modelling approaches for this type of meta-583 

analysis data and suggest these models can offer improved statistical inference on the summary 584 

effect. However, these models can present additional numerical issues given their complexity. 585 

Future work comparing the properties of heterogeneity variance methods between one-stage 586 

and two-stage binary outcome meta-analyses would be informative.  587 

The HKSJ method is generally preferred over the Wald-type method. However, Wiksten et al. 588 

(Wilksten et al., 2016) showed it can occasionally lead to less conservative results, even when 589 

the Wald method uses a fixed-effect variance structure. Sidik and Jonkman (2007) proposed a 590 

modification to the HKSJ method to ensure the resulting confidence interval is at least as wide 591 

as the Wald-type fixed-effect confidence interval. We did not apply this modification in our 592 

study. A simulation study by Rover et al. (2015) found the modified method provides coverage 593 

closer to the nominal level when differences in study size were large. 594 

Summarising the properties of a comprehensive list of heterogeneity variance estimators, 595 

compared over many combinations of parameter values was the biggest challenge of this study. 596 

By simulating meta-analyses from a wide range parameter values, inevitably there are scenarios 597 

that reflect meta-analyses rarely observed in practice. For example, most meta-analyses contain 598 

very few studies (Langan et al., 2015; Davey et al., 2011), but meta-analyses with up to 100 599 

studies were simulated in order to show results over the full range of possible meta-analysis 600 

sizes. An attempt was made to focus more on the scenarios representative of real meta-analyses 601 

when interpreting results, but this was inevitably subjective. 602 
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6 Conclusion 603 

A summary of our recommendations are given in table 2. The two-step DerSimonian-Laird 604 

estimator (PMDL) and REML can often be biased, but overall have the most reasonable 605 

properties in standardised mean difference and odds ratio meta-analyses. Of these two 606 

estimators, REML is recommended on the basis of these results because it is already widely 607 

known, available in most statistical software packages, and consistent with the method 608 

commonly used for one-stage meta-analyses using individual participant data (Simmonds et 609 

al., 2015). The two-step DerSimonian-Laird estimator is recommended as an alternative if a 610 

simpler, non-iterative method is required. 611 

The Hartung-Knapp-Sidik-Jonkman confidence interval for the summary effect is generally 612 

recommended over the standard t-distribution and Wald-type methods, particularly in binary 613 

outcome meta-analyses with rare events and the number of studies included is less than 20. To 614 

be consistent, we recommend the same REML estimate of the heterogeneity variance to 615 

calculate this confidence interval. However, this is inconsequential given how robust this 616 

confidence interval is to changes in the heterogeneity variance method in most scenarios. 617 

A REML point estimate, or indeed any other single estimate of heterogeneity, should not be 618 

relied on to gauge the extent of heterogeneity in most meta-analyses. Confidence intervals 619 

should always be reported to express imprecision of the heterogeneity variance estimate. 620 

However, a point estimate can usually be used reliably to calculate a summary effect with a 621 

Hartung-Knapp-Sidik-Jonkman confidence interval. 622 

Table 2: A summary of results and recommendations (considering only REML, PM and 623 

PMDL heterogeneity variance methods, and HKSJ confidence interval)  624 
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Table 1: Nine heterogeneity variance estimators included in this study 757 

 Estimator Acronym 

Method of moments estimators (truncated) 

1 DerSimonian-Laird DL 

2 Cochran’s ANOVA CA 

3 Paule-Mandel PM 

4 Two-step Cochran’s ANOVA PMCA 

5 Two-step DerSimonian-Laird PMDL 

Non-truncated estimators 

6 Hartung-Makambi HM 

7 Sidik-Jonkman SJ 

8 Alternative Sidik-Jonkman SJCA 

Maximum likelihood estimators 

9 Restricted maximum likelihood REML 
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Table 2: A summary of results and recommendations (considering only REML, PM and 759 

PMDL heterogeneity variance methods, and HKSJ confidence interval) 760 

 OR outcome with average event 

probability: 

SMD outcome 0.05 0.1 to 0.5 

Study 

sizes: 
Small 

All estimators have 

substantial negative 

bias in the presence 

of heterogeneity. 

HKSJ confidence 

interval can have 

coverage too 

high/low for >20 

studies (appendix 4). 

REML/PM/PMDL recommended, but all 

estimators biased/imprecise for <10 

studies. HKSJ confidence interval yields 

the nominal coverage. 
Small-to-

medium 

Small 

and large 

REML/PMDL and HKSJ confidence 

interval recommended (as above), but all 

heterogeneity variance estimators 

biased/imprecise for <10 studies. PM 

positively biased. 
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Appendix 1: Proportional bias (left-hand-side) and proportional mean squared error 762 

(right-hand-side) in selected scenarios with estimators proposed by Rukhin (B0, BP) and 763 

Malzahn, Böhning and Holling (MBH) included 764 

Scenarios containing standardised mean difference meta-analyses (𝜃 = 0.5) with 765 

small-to-medium study sizes (𝑁𝑖 = 40 − 400) and an average 𝐼2 of 60%. 766 

 767 

See separate file for figure.  768 
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Appendix 2: Heterogeneity variance parameter values for each simulated scenario. 769 

 

Study sizes 

Avg. event 

probability 𝐼2
=
1
5
%

 

𝐼2
=
3
0
%

 

𝐼2
=
4
5
%

 

𝐼2
=
6
0
%

 

𝐼2
=
7
5
%

 

𝐼2
=
9
0
%

 

𝐼2
=
9
5
%

 

odds ratio meta-analyses (𝜃 = 0.5) 

small 

0.5 

0.0670 0.1780 0.3440 0.6330 1.330 4.500 15.60 

small-to-medium 0.0144 0.0333 0.0655 0.1220 0.2440 0.7800 1.670 

medium 0.0067 0.0174 0.0333 0.0560 0.1220 0.3670 0.7800 

small and large 0.0025 0.0066 0.0144 0.0230 0.0756 0.3560 0.7800 

large 0.0001 0.0023 0.0046 0.0082 0.0166 0.0450 0.0100 

small 

0.1 to 0.5 

0.0944 0.2330 0.4450 0.8560 1.89 20.00 * 

small-to-medium 0.0178 0.0433 0.0855 0.1545 0.3220 1.110 2.300 

medium 0.0089 0.0233 0.0433 0.0780 0.1560 0.4500 1.110 

small and large 0.0036 0.0084 0.0178 0.0356 0.0945 0.4560 1.220 

large 0.0012 0.0023 0.0058 0.0107 0.0222 0.0645 0.1340 

small 

0.05 

0.4220 1.156 2.560 7.560 * * * 

small-to-medium 0.0755 0.1890 0.3780 0.7450 1.780 * * 

medium 0.0340 0.0967 0.1890 0.3560 0.7560 3.440 * 

small and large 0.0144 0.0345 0.0745 0.1670 0.4330 2.300 * 

large 0.0053 0.0133 0.0255 0.0445 0.0890 0.2300 0.5600 

small 

0.01 

2.780 14.50 * * * * * 

small-to-medium 0.3780 1.110 2.450 6.700 * * * 

medium 0.1200 0.4500 1.067 2.440 7.800 * * 

small and large 0.0656 0.1780 0.3400 0.1000 3.670 * * 

large 0.0245 0.0622 0.1220 0.2330 0.4780 1.780 * 

standardised mean difference meta-analyses (𝜃 = 0.5) 

small - 0.0178 0.0444 0.0845 0.156 0.322 0.1 2.440 

small-to-medium - 0.00345 0.00856 0.0156 0.023 0.056 0.12 0.3400 

medium - 0.00178 0.00444 0.00844 0.01545 0.0311 0.089 0.1200 

small and large - 0.000656 0.00156 0.00344 0.00744 0.0189 0.089 0.1200 

large - 0.000244 0.00056 0.001133 0.00211 0.00422 0.0133 0.0256 

𝜏2 consistent between numbers of studies and distributions of study effects. 𝐼2 = 0% always 770 

corresponds to 𝜏2 = 0 so these scenarios are not included in the table. 771 

* the given average 𝐼2 could not be attained for any 𝜏2 value, so meta-analyses were not simulated. 772 

  773 
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Appendix 3: Coverage of 95% confidence intervals of the summary effect in odds ratio 774 

meta-analyses with small-to-medium studies (𝑵𝒊 = 𝑼(𝟒𝟎, 𝟒𝟎𝟎)) and an average event 775 

probability between 0.1 and 0.5 776 

Coverage of Wald-type (first row), t-distribution (second row), and HKSJ (third row) 777 

confidence intervals presented. 778 

 779 

See separate file for figure.  780 
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Appendix 4: Coverage of 95% confidence intervals of the summary effect in odds ratio 781 

meta-analyses with small-to-medium studies (𝑵𝒊 = 𝟒𝟎 − 𝟒𝟎𝟎) and an average event 782 

probability of 0.05. 783 

Coverage of Wald-type (first row), t-distribution (second row) and Hartung-Knapp (third 784 

row) confidence intervals presented. 785 

There was no such 𝜏2 that produced a mean 𝐼2 of 90% so scenarios where 𝐼2 = 60% are 786 

presented instead. Effect size 𝜃 = 0.5. 787 

 788 

See separate file for figure. 789 


