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Abstraet. Composite material elastic behavior has been studied using many approaches, all of which are based on the concept 
of a Representative Volume Element (RVE). Most methods accurately estimate effective elastic properties when the ratio of 
the RVE size to the global structural dimensions, denoted here as ~/, goes to zero. However, many composites are loeally 
periodic with finite q. The purpose of this paper was to compare homogenization and standard mechanics RVE based analyses 
for periodie porous composites with finite ~/. Both methods were implemented using a displacement based finite element 
formulation. For one-dimensional analyses of composite bars the two methods were equivalent. However, for two- and 
three-dimensional analyses the methods were quite different due to the fact that the local RVE stress and strain state was not 
determined uniquely by the applied boundary conditions. For two-dimensional analyses of porous periodic eomposites the 
effective material properties predicted by standard meehanics approaehes using multiple cell RVEs converged to the homo- 
genization predietions using one cell. In addition, homogenization estimates of loeal strain energy density were within 30% of 
direct analyses while standard mechanics approaehes generally differed from direct analyses by more than 70%. These results 
suggest that homogenizataon theory is preferable over standard mechanics of materials approaches for periodic composites 
even when the material is only locally periodic and q is finite. 

1 Introduetion 

Composite materials have been used extensively in engineering applications due to their high 
strength to weight ratios. Natural materials, including wood and human bone tissue, are also 
composite materials with complex microstructures optimized for withstanding functional loads. 
For exarnple, the low mass composite structures of bone tissue enable an organism to move 
efficiently and withstand high structural loads while minimizing metabolic costs. The prevalence 
of composite structures in nature along with their increasing engineering applications suggest that 
these materials will become the rule rather than the exception in structural design and analysis. 
Increased application of composite materials necessitates accurate yet feasible methods for analyz- 
ing composite material mechanics. 

Composite materials are frequently used to fabricate large structural components. Yet the 
behavior of these components depends on the composite microstructure. Analyzing large structures 
on a microstructural level, however, is clearly an intractable problem. Analysis methods have 
therefore sought to approximate composite structural mechanics by analyzing a representative 
section of the composite microstructure, commonly called a Representative Volume Element 
(RVE). The term RVE seems to have been coined by Hill (1963) and has also been detailed 
extensively by Hashin and co-workers (reviewed in Hashin 1983). 

RVE based methods decouple analysis of a composite material into analyses at the local and 
global levels. The local level analysis models the microstructural details to determine effective 
elastic properties. The local level analysis can also be used to calculate the relationship of the 
effective or average RVE strain to the local strain within the RVE. The composite structure is then 
replaced by an equivalent homogeneous material having the calculated effective properties. The 
global level analysis calculates the effective or average stress and strain within the equivalent 
homogeneous structure. The process of calculating effective properties has been termed "homo- 
genization" by Suquet (1987). If local stress and strain estimates are needed, they can be computed 
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using the relationship between the average and local strain obtained from the local analysis. This 
procedure has been termed "localization" (Suquet 1987). 

There area  number of RVE approaches to analyze composite materials, each of which may 
give different results depending upon the assumptions made and the ratio of the RVE size to the 
size of the global region of interest, denoted here as r/. In general, the accuracy of RVE approaches 
increases as r/~0. For many composite materials, however, r/ is fixed and significantly larger 
than 0. For these cases, it is important to know how choice of analysis method and RVE size will 
affect the accuracy of the analysis. Ideally, one would like to obtain the maximum accuracy for the 
smallest RVE size. This paper compares homogenization theory to a finite element implementation 
of standard mechanics of materials approaches for the analysis of periodic porous composites with 
r/ equal to 0.2. The accuracy of effective stiffness estimates was assessed by comparing the 
predictions of the two approaches directly. The accuracy of local strain energy density estimates 
was assessed by comparing the estimates of each RVE approach separately to a direct analysis of 
the whole composite material. It was shown that homogenization theory gave more accurate 
estimates of effective stiffness and local strain energy than standard mechanics of materials 
approaches for periodic porous composites. 

2 Review of RVE based composite analysis methods 

Effective material property identification for composite materials dates back to the 19 th century, 
including the famous Voigt (1889) and Reuss (1929) bounds. One of the first formal definitions of 
the RVE was given by Hill (1963) who stated that the RVE was 1) structurally entirely typical of 
the composite material on average and 2) contained a sufficient number of inclusions such that 
the apparent moduli were independent of the RVE boundary displacements or tractions. Hashin 
(1983) also emphasized the nature of RVE analysis stating that stress and strain fields in the RVE 
should be statistically homogeneous when subjected to homogeneous boundary conditions except 
in a layer near the external surface. 

The statements by Hill and Hashin reflect the crux of RVE based analysis methods. Since it is 
generally impossible to analyze an entire composite structure, RVE analyses predict the effective 
stiffness and the relationship of average to local strain for the RVE and assume that these quantities 
represent the entire composite structure. This is done by applying boundary conditions to the 
RVE and solving the resultant boundary value problem. The applied boundary conditions, 
however, cannot represent all the possible in-situ boundary conditions to which the RVE is 
subjected within the composite. The accuracy of the RVE approximation depends on how well 
the assumed boundary conditions reflect each of the myriad boundary conditions to which the 
RVE is subjected in-situ. 

Consider the case where the in-situ boundary conditions differ from the applied boundary 
conditions, but produce the same average RVE strain. In this case the average stiffness predicted 
by the RVE analysis must be greater than the actual stiffness by the principle of minimum strain 
energy. The in-situ boundary conditions would minimize the energy while the assumed boundary 
conditions would be admissible and by definition produce greater energy. The average stress within 
the RVE under assumed boundary conditions must be higher to produce a higher energy. The 
same argument holds for applied tractions boundary conditions with the principle of minimum 
complementary energy. In this situation, the homogeneous traction boundary condition will 
produce a higher complementary energy than an in-situ traction condition for the same average 
stress giving a higher compliance and therefore a lower stiffness. Thus, RVE analyses under applied 
displacements give an upper bound on apparent stiffness while applied tractions give a lower 
bound. 

The difference between average stress states under admissible and actual boundary displace- 
ments is greatest when q is large. The same is true for average strain states under admissible and 
actual boundary tractions. Conversely, in standard mechanics approaches, boundary layer effects 
are most prevalent when the RVE is small (Hill 1963). These boundary layer effects decrease when 
the RVE size is increased in accordance with St. Venant's principle (Fung 1965). These two results 
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create a paradox for a fixed size global analysis region since increasing the RVE size also increases 
r/. Moreover, larger RVEs increase the complexity of the resulting boundary value problem. 
Therefore, it is desirable to choose a method that gives the most accuracy for the smallest RVE, 
which for periodic materials is the smallest repeating unit. 

2.1 Mechanics of materials approaches for porous cellular materials 

A number of investigators have used either analytical or finite element based mechanics of 
materials approaches to calculate the effective elastic properties of porous cellular materials 
(Beaupre and Hayes 1985, Christenson 1986, Gibson and Ashby 1982, Gibson and Ashby 1988, 
Huber and Gibson 1988, Iremonger and Lawler 1980, Ishai and Cohen 1967, Kanakkanatt 1973, 
Ko 1965, Lederman 1971, Patel and Finnie 1970, Warren and Kraynik 1988). In the analytical 
approaches, uniform boundary tractions or displacements on the RVE boundary are assumed to 
cause either bending or axial compression of the cell walls. The average stress induced by the 
boundary tractions is divided by the local strain calculated using beam or plate solutions to give 
the apparent modulus. For beam bending, it can be shown (Gibson and Ashby 1982) that the 
apparent modulus/7 is related to the modulus of the cell wall material E by 

p z ~=y ~21, 
\Ps~ 

where C is a proportionality constant, p is the apparent density of the material, and Ps is the density 
of the cell wall material. For axial compression the relationship between the apparent and cell 
wall moduli is (Christenson 1986, Gibson and Ashby 1988) 

\Ps /  

where the terms are the same as defined in Eq. 2.1. 
Mechanics of materials approaches often provide direct insight into the relationship between 

effective stiffness and microstructural geometry. However, the difference between apparent moduli 
calculated under different assumptions can be quite large. For a material with relative density of 
0.1, the apparent stiffness estimate of Eq. 2.2 is 10 times the apparent stiffness estimate of Eq. 2.1. 
Another difficulty is the assumption that traction boundary conditions directly translate into 
uniform loads within the cell wall. Errors in this assumption were demonstrated by Beaupre and 
Hayes (1985) in a finite element study of a two-dimensional porous material consisting of four 
repeated unit cells. They found that the boundary displacements on the inner unit cells had a 
nonlinear shape despite application of uniform linear boundary displacements on the edges of the 
outer unit cells. The stiffness calculated using a linear boundary displacement was 7.5 times higher 
than the stiffness calculated using a nonlinear boundary displacement on the RVE. These results 
are consistent with the theoretical basis of stiffness bounds discussed earlier and illustrate the 
sensitivity of effective stiffness predictions to RVE boundary condition assumptions. 

2.2 Self-consistent methods 

Self-consistent methods, which encompass a number of related approaches, have been frequently 
applied to estimate effective elastic properties. Self-consistent methods analyze the composite 
material as an intially homogeneous material or matrix into which inclusions of a different material 
have been placed. The total strain eij in the material at any point is equal to the strain in the 
homogeneous material ~o~~ plus the deviation in strain e~~ due to the presence of the inclusions. The 
basis of the self-consistent methods is the introduction of a transformation strain ~*~ such that the 
stress within the inclusion is equal to the stress within the matrix modified by the polarization 
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stress (Nemat-Nasser et al. 1982, Benveniste 1987): 

C m (~o ~a g ,  r ~~o 4- e. �8 
i j k l '  kl ~- kl -~- kl ) =  Vijkl~. k l - -  kl) '  (2.3) 

where C~y is the matrix stiffness, C~~ju is the inclusion stiffness, e ~ is" the strain in the homogeneous 

matrix, ed is the perturbation strain, ~*~ is the transformation strain, and the polarization stress is kl 
given by cm. ,~*. The task is then to estimate the perturbation strain based on an assumption about IJKI Kl �9 �9 
the nature of the transformatlon straln. 

The most common assumption is that the transformation strain is constant within the inclusion, 
based on the classic work of Eshelby (1957). Hashin and Shtrikman (1962, 1963, reviewed by 
Hashin 1983) used the concept of polarization stress within variational principles to derive bounds 
for macroscopically isotropic composites with spherical inclusions. Hill (1965) and Budiansky 
(1965) derived bounds within Hashin and Shtrikman's for the same type of composites using 
Eshelby's solution. The bounds derived using Eshelby's solution are closest when the relative 
stiffness of the phases is less than 10 and the concentration of the inclusions is dilute. In fact, the 
lower bounds derived by Hashin and Shtrikman, Hill, and Budiansky equal zero for a porous 
composite with a volume fraction of voids greater than 0.5 (Hashin 1983). 

A significant amount of work has been done to improve the self-consistent estimates of effective 
material properties (Accorsi 1988, Benveniste 1987, Cleary et al. 1980, Kroner 1977, Mori and 
Tanaka 1973, Mura 1982, Norris 1985, 1989, Walpole 1966a, b, Willis 1977). Of particular 
relevance to periodic porous composite analysis is the extensive work of Nemat-Nasser and 
co-workers (Nemat-Nasser and Taya 1981, Nemat-Nasser et al. 1982, Iwakuma and Nemat- 
Nasser 1983, Accorsi and Nemat-Nasser 1986) who introduced Fourier series expansions to 
approximate the periodic fluctuations of the transformation strain and the deviation fields of 
displacement, strain, and stress resulting from periodic geometry. A significant outcome of this 
approach is that Eshelby's tensor, which relates the inclusion strain in the absence of the surround- 
ing matrix to the inclusion strain with the surrounding matrix, is not constant as in classic 
self-consistent solutions. Instead, Eshelby's tensor is a periodically fluctuating function. Nemat- 
Nasser et al. (1982) found that this approach very accurately estimated the effective stiffness of 
porous glass composites. They commented that assuming periodically varying fields successfully 
accounted for the interaction between inclusions at non dilute concentrations even when the 
material was not periodic. 

2.3 Homogenization theory 

Homogenization theory developed from studies of partial differential equations with rapidly 
varying coefficients. Two explicit assumptions are made in homogenization theory. First, it is 
assumed that fields vary on multiple spatial scales due to the existence of a microstructure. Second, 
it is assumed that the microstructure is spatially periodic. The relevant field variables are approxi- 
mated by an asymptotic expansion 

uT(xi, Yi) = l~loi(Xi, Y i )  "-[- l~Ul i (X i ,  Y i )  At- tl21"12i(Xi, Yi) -t- " " ,  (2.4) 

where u 7 is the exact value of the field variable, u0i is the macroscopic or average value of the field 
variable, ull, u21, etc. are perturbations in the field variables due to the microstructure, xl are the 
global level coordinates, y~ are the micro level coordinates, and t/is the ratio of the microstructure 
size to the total size of the analysis region. In elasticity theory Uo~ would be the continuum level 
displacements while ul~ would be the microstructural displacements. The macro coordinates x~ 
are related to the micro coordinates y~ by 

x/ (2.5) 
Y i -~-- - -  " 

Equation (2.5) implies that quantities on the local level like stress vary 1/q times more rapidly than 
corresponding global level quantities. This asymptotic expansion is substituted into the governing 
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differential equations and terms of order O(t/) are separated and set equal to zero. The resulting 
equations govern the mechanical behavior of the composite material at different levels of structure. 

The earliest use of homogenization theory in the West can be attributed to Babuska (1976a-d), 
Keller (1977), Larsen (1975) and Sanchez-Palencia (1974). Independent work on homogenization 
analysis was also done in the Soviet Union beginning in the early 1970's. Bakhvalov and Panasenko 
(1989) summarize and reference much of the Soviet work in their extensive text on homogenization 
theory. Texts on mathematical aspects and engineering applications of homogenization theory to 
many diverse fields have been written by Bensoussan et al. (1978). 

In early studies, Babuska discussed many mathematical aspects of homogenization theory as 
applied to elliptic partial differential equations including the use of boundary layer analysis and 
extensions to nonlinear cases. Babuska and others (see Bakhvalov and Panasenko 1989, Sanchez- 
Palencia 1980) noted that the macroscopic displacement from the asymptotic expansion would 
converge to the average displacement of the actual material as 

Il Uoi - u'] JXL2 < Crl p, (2.6) 

where the norm is defined in the space of square integrable functions L2, p denotes the order of 
terms retained from the expansion, and C is a constant. 

Other studies on the accuracy of homogenization theory have used the concept of Generalized 
or G-convergence (Zhikov et al. 1979). The premise of G-convergence is that the true differential 
operator field variable product will converge to the homogenized differential operator field 
variable product in the limit r/--, 0. For the elasticity problem, G-convergence states 

. a r  a~~,] a r _  au0y 
ll r¦ ~--/%, ~--/-' ~--/q�87 (2.7) 
'1 OXiL OXl_ ] OXiL ~X I J 

The estimate (2.7) shows the mechanical behavior of the homogenized material more closely 
represents that of the true composite material as the size of the microstructure relative to the global 
body size decreases. 

Extensive application of homogenization theory to study composite materials began in France 
in the late 1970's and continued through the 1980's (Bensoussan et al. 1978, Dumontet 1985, 
Duvaut 1976, Lene and Leguillon 1982, Lions 1980, 1981, Sanchez-Palencia 1980, 1987, Suquet 
1987). Lions studied convergence of elliptic operators specifically for porous media and found the 
same convergence estimate as (2.6). Suquet (1987) studied solutions of the microscopic equilibrium 
equation derived from (2.4) with different applied boundary conditions. He found that applied 
displacements overestimated and applied tractions underestimated the effective stiffness of metal 
sheets with small perforations. The use of periodic boundary conditions with the homogenization 
formulation gave the closest agreement with experimental results. Other researchers who have 
applied homogenization theory to study composite materials include Murakami and colleagues 
(Murakami et al. 1981, Murakami and Toledano 1990) who studied laminated composites and 
Guedes and Kikuchi (1990) who investigated computational aspects of homogenization theory as 
applied to composite material analysis. 

The convergence estimates (2.6) provided by Babuska, Bakhvalov and Panasenko, Lions, and 
others again emphasize that accuracy of the homogenization analysis depends on t/. The results 
of Suquet (1987) show that the assumption of periodic boundary conditions is also important for 
obtaining accurate results. The size of the error in (2.6) is partially determined by the constant C. 
C itself may depend on the relative stiffness and geometry of the composite constituents as well 
as the boundary conditions applied to the global analysis region. Furthermore, (2.6) gives error 
bounds for the difference in displacements integrated over the RVE volume but does not provide 
information on the distribution of error within the RVE. Information on the error distribution 
within the RVE may be important for studies concerned with localized stress and strain states of 
the composite microstructure. 

Although detailed error bounds are available for homogenization analysis, it appears that no 
such bounds are available for standard mechanics of materials approaches. For such approaches, 
it is known that accuracy in predicting effective stiffness depends on the RVE size compared to 
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the global analysis region (Hill 1963). However, similar to homogenization theory, the effect of 
RVE to global analysis region size and RVE boundary condition assumptions on the local error 
distribution is not known. Furthermore, unlike homogenization theory, effective stiffness predic- 
tions will change as the number of repeating units contained in the RVE changes. 

3 Theoretical baekground 

3.1 Standard mechanics approach 

In the standard mechanics approach a chosen RVE is generally analyzed using either uniform 
traction or uniform displacement boundary conditions. These boundary conditions are chosen so 
as to produce an average strain (if displacements are used) or an average stress (if tractions are 
applied) within a homogeneous material of the same size as the RVE. The relationship between 
the average strain and the displacement boundary conditions can be written using the divergence 
theorem as 

1 1 1 
- __ = . ~ - ( u i n j - [ -  u j n i ) d S R v E ,  F~iJ ] V/VEI V~RVE F~ijdVRVE [VRv E SRVE 2 

(3.1) 

where g~j is the average strain, ~ij is the local strain in the RVE, u i is the displacement imposed on 
the RVE boundary, n~ is the normal vector to the RVE boundary, and SRVE is the RVE boundary. 
The relationship between the average stress and the boundary tractions can be written as (Hill 
1963) 

_ 1 1 1 

%=IVRvEIV~vE %dVRvE- I VRVE"-' SRVE ~ ~(tiYj-}-tjyi)dSRvE'L (3.2) 

where 8.. is the average stress, a.. is the local stress in the RVE, t i is the traction imposed on the ~J t2 
RVE boundary, Yi are local coordinates of the RVE boundary, and SRV E is the RVE boundary. It 
is important to note that there is no unique relationship between the average stress or strain and 
the boundary tractions or displacements in the two- or three-dimensional case. In other words, a 
number of different boundary displacements integrated over the boundary may produce the same 
average strain. Since the in-situ boundary conditions are not known, the displacements in (3.1) or 
the tractions in (3.2) are generally chosen to be uniform (Fig. 3.1). 

Once the boundary conditions are chosen, the standard weak form of the equilibrium equations 
is solved to calculate the local RVE strain. The weak form of the RVE equilibrium equations for 

~o 
El r 

Yl normal 

Y2 

Y2 normal 

!f'o 1~ 
YlY2 shear 

Fig. 3.1. Uniform boundary conditions applied to 
the RVE in both the applied displacement and 
applied traction approach. The boundary condi- 
tions will produce x normal, y normal, and x y  shear 
stresses (applied traction) or strains (applied dis- 
placements) in a homogeneous material of the 
same size as the RVE 
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the case of applied boundary tractions is solved once for applied stress states corresponding to 
each component kl of the stress tensor 

f CijmnF'ij(I))gkmln(U)dVRvE = f tkll)i i dSRvE, (3.3) 
VRVE SRVE 

where t y is the boundary traction which would produce an average stress ~y in a homogeneous 
material, C .  is the stiffness tensor of the RVE material components, ei,(v) is the virtual strain, 

. ~,lmn . . . .  J . 

~~,(u) lg the total mlcrostructural straln for the kl TM traction, and vi is the vlrtual dlsplacement. Due 
to symmetry of the stress tensor, (3.3) need only be solved three times for two-dimensional problems 
and six times for three-dimensional problems. The weak form of the RVE equilibrium equations 
for the case of applied boundary displacements is 

Cijmneij(V)~'kmln(U)dVRvE = S '~Vi(ukil -- g~l)dSRvE ' (3.4) 
VRVE SRVE 

where the boundary displacements are implemented using a penalty method and 2 is the penalty 
parameter, u u is the boundary displacement, 0 kt is the specified displacement which would produce 
a uniform average strain ~kl in a homogeneous material, and the other terms are as defined 
previously. Once the three strain states (six for 3-D) using (3.3) or (3.4) are determined, the local 
structure tensor M~jpm which relates the average strain ~y and the local or microstructural total 

strain e k~ may be calculated from ij 
kZ ~kl (3.5) 

C'ij = Mijpm pm" 

The local structure tensor M~jpm has minor symmetries such that M~jpm = Mjlpm = Mijmp, but in 

general does not have major symmetry Mgjpm ~ Mpmgj. Once Mijkt is determined, the local strain 
at any point within the RVE may be calculated from an arbitrary average strain as 

e( i = Mijklgy (3.6) 

The effective stiffness tensor C~jg~ which relates the average strain to the average stress 

~ij ~- Cijkl~kl 

may also be calculated from M~jkr Starting from Hooke's law at the microscopic level 

tT ij ~ C ijklF.kl , 

both sides are integrated over the RVE and divided by the total RVE volume to give 

1 ~v tT i jdVRvE= 1 ~ CijklekldVRvE. 
IV~v~l ~ ~ IVR~EI V~w 

Substituting for e u from (3.6) and recalling (3.1) and (3.2) gives 

1 

aij -- [ VRvEI V~vE CiJpmMpmkldVRvEgkl'  

from which the effective stiffness tensor may be defined as 

1 
Cijkl -- ~ f Cijy MprakldI/'RVE (3.7) 

3.2 Homogenization theory 

In homogenization theory, the microscopic coordinates y and the macroscopic coordinates x are 
related by 

Xi 
yi = - ,  (3.8) 
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where r/is the ratio between the RVE size and the size of the macroscopic region in which it exists. 

Physically (3.8) means that quantities like stress or strain will vary -1 laster on the microscopic 

level than on the macroscopic level. Derivatives of any function 9"(x) = g x, y = with respect to 
x are written using the chain ruie and (3.8) as 

1 c3g (3.9) ¦ 'I _ ag + ___  

c3xi 8xi rl ayl 
Applying (3.9) to the asymptotic expansion of the displacement u in (2.4) allows the small 
deformation strain tensor to be written as 

1(8u7 c3u'J'~ l[(SUo,+OUoi~ (au,, c~u,j~ fc3u,i Ou,.j~l 
~,,(u) = ~\~x + 0x,/= ~L\Txj - ~ x ~ / + \ S y j + c ~ y , / + r l k c 3 x j + O x , ] j + h . o . t . ,  (3.10) 

where h.o.t, denotes higher order terms and the other terms are as defined previously. The following 
strain tensors can be defined from (3.10) (neglecting terms of O(r/) and higher) 

l['c3uoi 8Uo/X l(Ouli +8Uxj'], (3.11a-c) 

2 \ c3xj Oxi / �8 ] 

where eis is the local or microstructural strain tensor, g~j is the average or macroscopic strain tensor 
as defined previously and e* has been denoted as the fluctuating strain tensor by Suquet (1987). 

tJ 
The fluctuating strain tensor is assumed to vary periodically. The higher order terms may be 
included to improve the accuracy of the analysis, but require solving additional equations (Bourgat 
1977). For the virtual displacement or weak form of the equilibrium equations, the virtual 
displacement v and henee the virtual strain e~j(v) is also expanded asymptotically as a function of 
x and y 

X(Svi 8vj~ X~(Œ214 ~ ( ~  Œ 
ei'(v)=?\�8 7x~/*~,~*¦ +~ + Oxi] +h.o.t. (3.12) 

After neglecting terms of order O(~/) and higher, the following definitions of the virtual strain 
components are made for convenience 

~(O.o, ~~o~3, y246 0o.3 (313a~) 
~'~(v)=~~ ~~ 0x,/ ~\ ¦ + O yi /  

The expanded forms of the strain tensors (3.1 la and 3.13a) are substituted into the standard weak 
form of the equilibrium equations given by 

Cijkleij(V)F.kl(H)d~Q"= ~ til)idF ~ (3.14) 

where here it is assumed that ~2 ~ represents the total macroscopic plus microscopic domain of the 
composite material and the tractions ti (as weil as any boundary displacements) are applied only 
to the macroscopic boundaries of the composite, not to any interior boundaries in the micro- 
structure. The substitution of the expanded strain tensors into (3.14) yields 

Ciju(e~ + etj(V))(gk, + e*,)d.Q" = ~ tivi�8 (3.15) 

Since v is an arbitrary function, it may be chosen to vary only on the macroscopic or microscopic 
level. If v varies only on the microscopic level and is constant on the macroscopic level (giving 
e~ = 0), then the microscopie equilibrium equation is obtained 

C ijklF,~j(1.~)( gkl "~ e,~t)dl2'~ = O. (3.16a) ~2,t 



S. J. Hollister and N. Kikuchi: A comparison of homogenization and standard mechanics analyses 81 

If v varies only on the macroscopic level and is constant on the microscopic level (giving e~j(v) = 0), 
the macroscopic equilibrium equation is obtained 

B Cijkl~,O(l~)(~kl ~- e*z)d$2n= ~ tiv,dF. (3.16b) 
0 7  F 

Since e*~ varies periodically, (3.16a) and (3.16b) may be rewritten assuming i? in the limit goes to 
zero as 

1 

.QS I V, RVE VRVEI C i j k l e ~ j ( I ) ) ( ~ k i - t -  g*~)dVRvEd.Q = 0 (3.17a) 

1 

all V~RVEI VI~VE~ Cijk'e~ (v)(gu + e*l)dVRvEd'Q = ~r tividF" (3.17b) 

Equation (3.17a) will be satisfied if the integral over the RVE is zero. This means (3.17a) may be 
rewritten as 

C,jkle]j(V)e~,dVRvE = -  ~ C,jk, etj(V)ekldV, vE. (3.18) 
V R V E  V R V E  

In general G~ is not known a priori. However, since the problem is linear, any arbitrary gk~ may 
be written as a linear kombination of unit strains which will be defined for the two-dimensional 
case as (similar to Suquet 1987) 

~pll m~--[ Œ 001 ~22 =--[ 00 ~1 ~12 =--IŒ 101 ~21 ..~ __[~ Œ m ' pm ' pm ' pm " 

Substituting the unit strains into the right hand side of (3.18) gives a stress tensor 

f r * k l  - -  ~k l  (3.19) 
i j  - -  C i j p m  pro" 

An auxiliary equation to solve for e* m in (3.18) using (3.19) is 

C," ,�9 = I e~'(V)fr~kl dVRvE" (3.20) 
JP 1 P J 3 

V R V E  V R V E  

To ensure periodicity of the strain field e *kl the displacements at opposite sides of the RVE are i j  ' 
constrained to be equal. 

Once e *u is determined, the solution to (3.18) may be recovered by ij 

~,~ = - -  f.*klij %'-- (3.21) 

Recalling (3.1la), the relationship between the local RVE strain and the average strain may be 
written using the local structure tensor as 

t3iJ = M i j k l ~ ' k l  ' M i j k l  = l ( ( ~ i k ( ~ j l  nr- (~il(~jk) - -  e*klij ' (3.22a, b) 

where 6ij is the Kronecker delta. 
The relationship between the lokal RVE strain and the average strain (3.22a) is then substituted 

into the macroscopic level equilibrium equations 

1 
a~ I VRVEI VlW,, ~ Ci'klMkl J Pm dVRvE~30"(v)~;J om dl2 = ~r tividF, (3.23) 

where ~m and e~ are outside the integral over the RVE since they have constant value over the 
RVE. Recalling the Eq. (3.7) for the effektive stiffness tensor, the final form of the macroscopic 
equilibrium equation may be written as 

B Cijkte~ = ~ tividF. (3.24) 
K2 F 

It is important to note that the effektive stiffness Ci'kl calculated by homogenization theory using . . JJ . . . .  
(3.7) is not dependent on the RVE slze due to the penodlclty assumptlon used m determining Mijkr 



82 Computational Mechanics 10 (1992) 

This differs from standard mechanics approaches for which the effective stiffness (~Uk! is dependent 
on the RVE size due to the St. Venant effect of the applied displacement or traction boundary 
conditions. 

4 Calculation of effective stiffness: one-dimensional case 

Consider a composite bar composed of two materials that alternate periodically with Young's 
moduli  E 1 and E 2 (Fig. 4.1). The basic repeating unit of the microstructure is assumed to be of 
unit length as is the area of the bar. The general governing equation for homogenization theory 
(3.20) may be rewritten for the one-dimensional case as: 

1 1 

E(x, y)e%(v)dy = ~ E(x, y)e(v)dy, (4.1) 
o o 

where E(x, y) is the Young's modulus which varies at both the microscopic and macroscopic level, 
e* is the axial fluctuating strain component  (3.13c), and e(v) is the axial virtual strain. The following 
solution is given by Kikuchi (in preparation). First, set E(x, y) = E and rewrite (4.1) as 

1 

E(1 - ~*)e(v)dy = 0. (4.2) 
o 

Applying integration by parts to (4.2) gives 

S v E(1 - e*)dy + E(1 - e*~vl'= x = 0. (4.3) z ty= 0 
0 

The strong form of (4.3) is 

- -E(1  - E*) = 0. (4.4) 
Oy 

Integrating (4.4) yields the solution 

E(1 -- e*) = c(x), (4.5) 

where e(x) is constant over the microstructure. To determine c(x), (assuming E is nonzero), (4.5) 
is integrated over y 

I(1 e*)dy ~ dy ~ 1 , 1  - = - u Io = c ( x )  d y .  (4.6) 
o o 

v , , ,  

iiiiii iili ii ilil ! iiii!!i!iiii!i iiiiiil 
L. 1.o 
r" "-I 

~ Matedal 1; Modulus E 1 

Material 2; Modulus E 2 

Fig. 4.1. Composite bar with alter- 
nating materials used for the one- 
dimensional analysis. Total length 
of the unit cell is 1. Section 1 of the 
uni[ cell hasmater ia l  with modulus 
E1 and length 1 - ct. Section 2 of the 
unit cell has material with modulus 
E2 and length 
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Since the displacements u* must  be equal at the cell edges to preserve periodicity, i.e. u*(1) = u*(0), 
c(x) is 

1 
c ( x )  - 

i l d y  (4.7) 

Simplifying (3.7) for the one-dimensional  case (Fig. 4.1) allows the effective stiffness E to be written 
as 

1 1 1 
g = I E(1 -- e*)dy = I c(x)dy = c(x) = 

o o t -y  1 1 1 
! ~~,+ s , y  ~y 

Evaluating the above integral gives/~ explicitly as: 

= E1E2 
(1 - y + y (4.8) 

Next, consider the same composi te  bar subject to tractions P at each end. The average stress will 
be equal to P in each phase of the composite.  The strain in each seetion of the composite  will be: 

P(1 -- ~) P~ 
e l - - - ,  ~ 2 -  �9 (4.9) 

E1 E2 

The effective stiffness of the composi te  bar is given by elementary mechanics as 

/~ = -#. (4.10) 
g 

Since the repeating cell is of unit  length and area, the average strain reduces to the sum of the 
strain in each phase. Combin ing  (4.9) with (4.10) (noting that  # = P) gives the effective stiffness 
using the s tandard mechanics approach as 

E, - -  E1E2 
(1 -- y + aEg" (4.11) 

Thus, for the one-dimensional  case, the effective stiffness computed  using homogenizat ion theory 
and the s tandard mechanics approach  is identical. It is impor tant  to note, however, that  there is 
a direct and unique relationship between the applied boundary  conditions and the average stress 
and strain for the one-dimensional  s tandard mechanics approach.  Furthermore,  there are no 
Poisson effects in the one-dimensional  case. 

5 Computational procedures 

5.1 Standard mechanics approach 

A displacement based finite element approximat ion was used to solve (3.3) and (3.4) for (k,/) -- (1, 1), 
(1, 2), and (2, 2) for the two-dimensional  test cases. A s tandard 4-hode isoparametric quadrilateral 
element was used with bilinear shape functions of the form (Kikuchi 1986) 

Nl(s) = �88 - s0(1 - $2) , ~r2($ ) = 1(1 "3!- S0(1 -- $2) , 

1~3(S) = �88 + S0(1 + S2), 2V4(S) ---- �88 -- Sl)(1 + S2), 

where si are the coordinates of the "toaster" element. The displacements ui, the virtual displacements 
vi, and the coordinates x i are all approximated by 

Ui : Ng($)u~zi, /-)i = Nct(s)uM, xi  _7_ Na~(s)gltLi" 



84 Computational Mechanics 10 (1992) 

Derivatives of quantities with respect to x i are defined by 

~(t~i ~3Ny 
- -  ~)y187 

Bxj ~xj 

where Ny is the value of the shape functions in the x coordinate system and qSy is the value of 
a given function at the element nodal points. The shape functions in the physical coordinate system 
x are then mapped into the coordinates s of the "master" element by 

A 

eNt(x) _ aNy JiS 1, 
¦ ¦ 

where J/~ 1 is the inverse of the Jacobian. Discretizing the left-hand side of (3.3) and (3.4) using the 
procedure described above gives the element stiffness matrix 

2 2 C ¦ j 1 ¦ j 
K e  = ,y ~ E ,�87 � 8 7  ,~XlJl~x~y, (5.1) 

i x  = 1 iy = 1 ~b" m ~ S  n 

where I JI is the determinant of the Jacobian, W~x and Wir are the Gauss weighting points, and 
K e represents the element stiffness matrix which is stored in an array at (27 - 2 + i, 2fl - 2 + j )  iy 
for y fl = 1, 2, 3, 4 and i,j = 1, 2. In all cases, a 2 • 2 Gauss integration scheme was used to integrate 
the element stiffness matrix. The element stiffness matrices were assembled in the usual manner 
to the global stiffness matrix. 

For the applied displacement approach, the specified displacements were imposed by modify- 
ing both the global stiffness matrix and the global load vector with a penalty parameter at the 
appropriate degrees of freedom (Kikuchi 1986). This parameter was generally chosen to be 
(1.0 • 107)C1111" The final discretized form of the equilibrium equations was 

K. .U k l  k l  , j = f j .  (5.2) 

For the applied traction approach, the final form of the discretized equilibrium equations is the 
same as (5.2). However, to avoid a singular stiffness matrix resulting from the absence of constrained 
displacements, a regularization method was applied (Kikuchi 1986) 

~ (c ¦171 lo~~y ) g e  = 

iy ,xE= 1 irE 1 'JUC~Sm ~" --aS�9 '" +e(5,y171 ICl WixWir, (5.3) 

where e is the regularity parameter (chosen to be e = 10-5C 1111), 5ik is the Kronecker delta, and 
the other terms are as defined previously. The right-hand side of(3.3) is discretized using two node 
line elements along the boundary where the traction is applied. 

Once the discretized versions of(3.3) or (3.4) are solved, the strain e y is calculated at the element 
p m  

k l  centroid. The average strain g is obtained by integrating the displacements over the RVE 
. p m  , . . 

boundary (3.1). Equation 3.1 is used to calculate the average straln because the relatlonshlp 
between gu and e kl is not defined in the void. However, the relationship can be approximated by 

p m  i j  

assuming the void is replaced by a soft material whose stiffness in the limit goes to zero (Suquet 
1987). This makes the application of (3.1) valid. 

The local structure tensor Mijp,�9 can be calculated at the element centroid once gu and e.k! are 
p m  U 

known. Taking advantage of the symmetries in gkt 8kZ and Mijpm , it is possible to calculate Mijpm 
pro'  i j '  

by solving three sets of matrix equations (for 2D) 

_ 22 22 2e2~/ MU22 (5.4) ~~~~~-/~~~ ~2~ 
12 12 2el12“ Mijl 2 / d~ /  L~,, 522 ~_ i j j  

Once Miju is known, the effective stiffness C~jk~ is calculated using (3.7) by integrating over the 
discretized RVE and dividing by the total volume of the RVE (including the volume of the void 
if present). Since only one value of M~ju and Ciju are given for each element, the integral in (3.7) 
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Mijkl ~ ~ijM 
I Analyze RVE to calculate 

Local Structure Tensor Mijkl 

] Esnmate local su:ain 
using Mª and ~kl 
by: 

eij = Mª 

Use Effective Stiffness ~'jkl 
. I  in analysis of macroscopic 

bod.y t..o calculate average 
strmn Ekl 

Fig. 5.1. Computational procedure for RVE approach. Schematic outline of the computational procedure used in the RVE 
approach to composite material analysis. First, the RVE is analyzed using the chosen approach (homo_genization or standard 
mechanics) to calculate the local structure tensor M,jk~ and subsequently the effective stiffness tensor Cou.  The average strain 
ek~ lS then calculated in a macroscopic analysis assuming the composite structure to be a locally homogeneous material with 
stiffness C,~k~" Finally, the local strain e,~ in each RVE is estimated from the average straln and the local structure tensor 

is approximated by multiplying the integrand in (3.7) in each element by the element's volume and 
summing over all elements. 

After the effective stiffness Cijy has been determined, Eq. 3.24 can then be solved to determine 
the average strain gu resulting in a homogeneous body under given boundary conditions. The 
strain at any microstructural location within the global body is then calculated by post-processing 
the average strain gkZ with the local structure tensor M~jy A flowchart of the computational 
procedure is given in Fig. 5.1. 

5.2 Homogenization approach 

A displacement based finite element approach was also used to solve the general case of the 
homogenization microscopic equilibrium (3.20). Discretizing the left-hand side of (3.20) gives the 
same form of element stiffness matrix as for the applied displacement approach (5.1) 

2 2 0N~ J 1 t?2V~ J 
K e = - -1 iJiW, xW~y ' (5.5) 

ix= l iy= l GS m OS n 

which is stored in a two-dimensional array at (2c~ - 2 + i, 2fl - 2 + j )  for ~, fi = 1, 2, 3, 4 and i , j  = 1, 2. 
A 2 x 2 Gauss integration scheme is again used to evaluate both the element stiffness matrix and 
element load vector. Discretizing the right-hand side of (2.20) using the procedure outlined in 
Sect. 4.1 gives the following element load vector 

2 2 
y171 ---- • 2 y ¦171 J _. 1F J I W~xWi,, (5.6) 

i x= l iy= l tJ ~Srn jm 

where fi~)lk '~ d~¦ inna(¦228228228 ~ 2reas2 vector zl defined previously. The element load 
s 1 ( + i), for y  1 - 4  and i =  1 - 2 .  

After assembling the element stiffness matrix and the element load vector, the displacements 
at opposite sides of the RVE are constrained to be equal using a penalty method to ensure that 
e*. k* is periodic in (3.20). The implementation of this displacement constraint differs slightly from 
the constraints used in the applied displacement approach. Let i and j be the degrees of freedom 
on opposite sides of the RVE that are constrained to displace equally. Then the global stiffness 
matrix K~j is modified as follows 

K u = K  u+2,  K j j = K j j + 2 ,  K i j = K i j - 2 ,  
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where Kij is the ij th entry of the global stiffness matrix and 2 is the penalty parameter, chosen to 
be (1.0 × 1 0 7 ) C l 1 1 1  . Finally, because the present formulation does not include boundary effects, 
the local structure tensor MijkZ is defined up to an additive constant using the purely periodic 
constraints (Guedes 1990). To constrain the global stiffness matrix against rigid body modes, one 
node of the finite element model is constrained not to displace using the same penalty approach 
as in the applied displacement_approach. The choice of node does not influence the final value of 
the effective elastic constants C~jR, (Guedes 1990). 

After the discretized version of (3.20) is solved, the fluctuating strain components e *k~ are 
determined at the element centroids. These fluctuating strain components are then used to 
calculate the local structure tensor M~jk, using (3.22b). Note that M~jk, is calculated by superposition 
with the identity tensor unlike the standard approaches in which MijkZ is back calculated by solving 
a system of linear equations. This difference is much more noticeable for 3D problems in which 
six sets of 6 x 6 matrix equations need to be solved for standard approaches while (3.22b) may be 
used in the homogenization approach to determine M~jkt without any more difficulty. 

After M~k~ is determined, the effective stiffness tensor is calculated using (3.7) and the same 
method as discussed with standard approaches. The procedure outlined in Fig. 5.1 is followed to 
calculate first the average strain gk~ in the global body and then the local strain F, kl at each point 
in the global body. 

6 Two-dimensional comparison: methods 

Two-dimensional cellular structures with solid volume fractions of 30~, 50~o, 70~, and 90~o were 
analyzed. For the standard mechanics approach RVE sizes of 1,4, 9, 16, and 25 cells (here "cell" 
refers to the basic repeating unit of the periodic material) were analyzed (Fig. 6.1) for each solid 
volume fraction. Both uniform traction and uniform displacement boundary conditions were 
applied for the standard mechanics approach. For the homogenization analysis only one cell was 
analyzed for each volume fraction since the periodicity assumption gives the same result for any 
number of cells. The solid modeling and mesh generation program PATRAN (PDA Engineering, 
Costa Mesta, CA) was used to generate the finite element mesh for each case. 

i 

k__.z k__z 

k A k  A k  

6.2 

Figs. 6.1 and 6.2. 6.1 Sample finite element meshes used for RVE analysis. A 25-celled 
RVE is shown on top and a 9-celled is shown on the bottom. 6.2 Off-axis boundary 
conditions used for comparison of local strain energy density from direct and RVE 
analyses. The applied displacements and tractions are oriented at 45 ° to the principal 
axis of the material. 
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6.1 Effective stiffness comparisons 

The effective stiffness tensor (7' ~~u as a function of orientation 0 was calculated for each case using 
the standard transformation 

(~' = - (6.1) i j k l  C m n p q a i m  a j n a k p a l q ~  

where Cmnpq is the effective stiffness tensor in the principal orientation of the microstructure and 
a.L�9 is the direction cosine tensor for a given orlentatmn." " The percent difference between C'..~,.y 
determined using the standard mechanics approach and C'ijk~ determined using homogenizatmn 
theory was then calculated for 0 between 0 ~ and 90 ~ 

6.2 Comparison of local strain ener9y density distributions 

The local strain energy density (U) distribution predicted by each approach was compared to 
direct estimates U �87 from a complete finite element analysis for porous cell structures of 30~, 50~, 
70~, and 90~o solid volume fraction. Each structure contained 25 cells and was subject to two 
different boundary conditions: 1) an oft axis boundary displacement and 2) an oft axis boundary 
traction (Fig. 6.2). One celled RVEs of 30~o, 50~, 70~, and 90~o volume fraction were analyzed 
using each RVE approach (homogenization, uniform displacement, and uniform traction) to 
determine (~ and the local structure tensor Mi,k�87 Homogeneous materials with stiffness C~jk~ of 

�9 i j k l  . . J 

the same slze as the original cell structures were analyzed under the two different boundary 
conditions to determine g~i- The average stress and strain distributions were then post-processed 
using (3.6) to determine e~j and y from which U was calculated. The percent difference between 

the direct estimate and each microstructural analysis estimate calculated as 100 U-----b-- was 
then plotted on the original structure. 

7 Two-dimensional comparison: results 

7.1 Effective stiffness comparisons 

--! 

The largest difference between C' ijkl calculated using applied displacements and Cijkl calculated 
using_homogenization theory occurred for the 30~ solid volume fraction material. Both (7' t t 1 t 
and C' 1122 converged from above to the homogenization predictions as the number of cells in the 
RVE increased. The largest_difference for C'1111 was + 72~ and occurred at a 45 ~ orientation while 
the largest difference for C�8 was +1000~ and occurred at a 0 ~ orientation. The applied -, 
displacement prediction of the shear modulus, C 1212, converged from below to the homogenization -, 
prediction as a function of orientation. The largest difference of - 5 4 ~  for C1212 occurred at a 
45 ~ orientation. The maximum difference between the homogenization and applied displacement 
predictions - '  - '  - '  of C 1111, C1122, and C 1212 for the 30~ volume fraction materials are plotted against 
the inverse of the number of cells in the RVE used in the applied displacement analysis in Fig. 7.1. 
The applied displacement predictions converged to the homogenization predictions as approxi- 

--t --t mately linear functions of the number of cells in the RVE. The differences between C 1111, C1122, 
-, 

and C1212 for the 90~ volume fraction material as a function of RVE size (Fig. 7.2) show nearly 
linear convergence, with much smaller differences between the stiffness predictions of the two 
approaches. In general, increasing the RVE size or the solid volume fraction decreased the 
difference between the applied displacement and homogenization estimates of effective stiffness. 

The differences between CŒ ~ calculated using applied traction boundary conditions and (~' 
i j k l  

calculated using homogenization theory were generally larger than differences found using applied 
displacements. The applied traction predictions of C' 11 a i converged from below while the predic- 
tions of C' 1122 converged from above to the homogenization predictions. The largest difference 
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F igs, 7.1__-7.4. 7.1 Maximum difference between applied displacement and homogenization predictions ofeffective stiffness terms 
C xl~a, Ct ~2�87 Ca 211 of the 30% volume fraction material as a function of the inverse number of eells along one direction of 
the RVE. For one-celt RVE analyses, there are large differences between the applied displacement approach and the 
homogenization analysis. As the number of cells analyzed using applied displacements is increased to 5 • 5, the stiffness 
predictions converge to that of the 1-cell homogenization_ analzsis. 7.2 Maximum differenee between applied displacement and 
homogenization predictions of effective stiffness terms Ca~2, C~~22, C~2a2 of the 90% volume fraction material as a function 
of the inverse number of cells along one direction of the RVE. Although the initial stiffness predictions differences are rauch 
less than the 30% material, the same convergence pat_tern is seen. 7.3 Maximum difference between applied traction and 
homogenization predictions of effective stiffness terms C lt t l, ~'1 x 22, C12 ~ 2 of the 30% volume fraction material as a function 
of the inverse number of cells along one direction of the RVE. The differences in stiffness prediction are rauch larger than the 
differences found for the applied displacement approach and the convergence is rauch slower. 7.4 Maximum difference between 
applied traction and homogenization predictions of effective stiffness terms C~t~�87 Ca a22, C~ 212 of the 90% volume fraction 
material as a function of the inverse number of cells along oue direction of the RVE. For this case, the differences 
in the 1-celled RVE analysis are similar to the applied displaeement case. In addition, the eonvergence for this case is rauch 
fastet than for the 30% volume fraction material analyzed using the applied traction approach 

- '  ( - 60%)  and - '  for Cz~~l Cl122 (+500%) both occurred at a 0 ~ orientation for the 30% volume 
fraction material. The applied traction predictions of C'~ 212 converged from below to the homo- 
genization predictions, with the largest difference of - 100% occurring at a 45 ~ orientation for the 
30% volume fraction material. Plots of the maximum difference between the homogenization 

--r - - !  - - t  
predictions and the applied traction predictions of C 1 ~ ~ 1, C1122, and C~212 for the 30% volume 
fraction material (Fig. 7.3) show that the applied traction predictions converged to the homo- 
genization predictions as approximately a linear function of RVE size. Similar plots for the 90% 
volume fraction material (Fig. 7.4), also show approximately linear convergence between the 
applied traction and homogenization predictions as a funetion of RVE size. As with the applied 
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displacement approach, increasing the RVE size or the solid volume fraction decreased the 
difference between the applied traction and homogenization estimates of the effective stiffness. 

7.2 Comparison of local strain energy density distributions 

Homogenization estimates of the local strain energy density U showed two different trends, 
depending on the applied boundary condition. The homogenization estimates were very close to 
the direct estimates for the off axis traction boundary conditions (Fig. 7.5 shows the 30~ volume 
fraction case). For all volume fractions the homogenization estimates were within _ 30~o of the 
direct estimates, except in small regions close to the boundary. The errors near the boundary 
increased slightly as the volume fraction decreased, but errors greater than + 30~ were only found 
within approximately one half cell length of the boundary. Agreement between homogenization 
and direct estimates under off axis boundary displacement conditions were fairly close for the 30~o 
(Fig. 7.6) volume fraction case, but became progressively worse as the solid volume fraction 
increased. With increasing solid volume fraction, the off axis displacement case errors progressed 
inward from the lower left and upper right side boundaries parallel to the direction of the applied 
displacements. 

Local strain energy density estimates from the applied displacement approach showed similar 
trends for both the off-axis traction and displacement boundary conditions. For the off-axis 
traction case, errors increased in magnitude from generally less than _ 30~o at 90~o volume fraction 
to over + 70~ to + 90~ at 30~ volume fraction (Fig. 7.7). The errors at all volume fractions were 
distributed in periodic patterns over the porous structures and increased consistently within these 
periodic patterns as the volume fraction decreased. The errors for the off-axis displacement case 
increased from between + 30~o and + 60~o at 90~o volume fraction to over - 7 0 ~  to -90~o for 
the entire 30~ volume fraction material (Fig. 7.8). Errors in the applied displacement predictions 
and the homogenization estimates were similar for the 90~ volume fraction material under 
displacement boundary conditions. With decreasing volume fraction, however, the errors were 
increasingly distributed in periodic patterns in the same manner as the off-axis traction case. 

The local strain energy estimates from the applied traction approach, like those from the 
applied displacement approach, showed similar error trends for both off-axis boundary conditions. 

j: 

% Difference 

,i1~ -"V"-  "!l 

[ ] + 3 0 %  to +70% 

[ ] - 3 0 %  to +30% 

[ ] - 3 0 %  to -70% 

[]  >-70% 

7.5 7.6 

Figs. 7.5 and 7.6. Percent difference in strain energy density calculated by direct finite element analysis and by the 
homogenization RVE approach 7.5 for the 25-celled structure under off-axis boundary tractions. The homogenization estimates 
are with + 30% over the entire structure except for small regions near the boundary; 7.6 for the 25-celled structure under 
off-axis boundary displacements. For this case, the homogenization estimates are within +_ 30% of the direct estimate over the 
interior of the structure approximately one half cell length away from the boundary, Close to the boundary, the errors become 
much larger, due to boundary layer effects 
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Figs. 7.7 and 7.8. Percent difference in strain energy density calculated by direct finite element analysis and by the applied 
displacement RVE approach 7.7 for the 25-celled structure under off-axis boundary tractions. (The errors for this case are 
much larger homogenization analysis and are distributed periodically over the whole structure. The errors range from + 30~o 
to over - 70~o); 7.8 for the 25-celled structure under off-axis boundary displacements. (The errors for this case are again much 
larger than the homogenization analysis and are distributed periodically over the whole structure. The errors in this case are 
almost all over + 70~o) 
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Figs. 7.9 and 7.10. Percent difference in strain energy density calculated by direct finite element analysis and by the applied 
traction RVE approach 7.9 for the 25-celled structure under off-axis boundary displacements. (The errors for this case are also 
much larger than the homogenization analysis and are also distributed periodically over the whole structure. The errors range 
from + 30~o to over -70~o); 7.10 for the 25-celled structure under off-axis boundary tractions. (The errors are distributed 
periodically over the entire structure and fluctuate rapidly between -70Vo to + 70~o) 

Errors for the off-axis traction boundary condition increased from between _-t- 30~o and + 60~ at 
90~ volume fraction to over + 70~o to + 909/o at 30'~ volume fraction (Fig. 7.9). The errors at all 
volume fractions were distributed in periodic patterns similar to those of the applied displacement 
approach. The errors consistently increased within these periodic patterns as the solid volume 
fraction decreased. Errors for the off-axis displacement boundary condition were somewhat similar 
to the homogenization approach at 90~o volume fraction (between __ 30~o to over + 60~o), but 
increased significantly at 30~ solid volume fraction (Fig. 7.10) to over -70~o to - 9 0 ~ .  These 
errors were increasingly arranged in periodic patterns as the solid volume fraction decreased. 
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8 Analysis of a composite plate 

8.1 Methods 

A plate consisting of a solid homogeneous material bonded to a two-layer cellular porous 
material with a solid volume fraction of 30~o (Fig. 8.1) was used to examine the accuracy of the 
RVE approaches for large boundary layer effects and large t/. The plate was fixed at the left end 
and subject to uniform compressive displacement of 0.001 at the other end. The homogeneous 
material and the material in the solid part of the void structure had the same elastic properties. 
The complete structure was discretized using 9600 4-node bilinear quad elements to directly 
estimate the strain energy density. 

The plate was also analyzed using the applied traction, applied displacement, and homogeniza- 
tion RVE approaches using the computational procedure outlined in Fig. 5.1. First, a 1-celled 
RVE model of the void section was analyzed using each microstructural analysis method. (Note: 
For the homogeneous section, no microstructural analysis was done since the local structure tensor 
reduces to the identity tensor and the average strain is equal to the local strain). Next, a homogene- 
ous material of the same dimensions as the plate with the effective stiffness from the RVE 
approaches was analyzed using the same boundary conditions as the direct analysis to calculate 
the average strain. Then, for each RVE approach, the local strain distribution was estimated using 
(3.6) after which the local strain energy density was calculated. For each RVE approach, the 
difference between the RVE estimate and the direct estimate was calculated as a percentage of the 
direct estimate and plotted on the finite element mesh of the complete plate. 

8.2 Results 

The results for the homogenization analysis (Fig. 8.2a) show that estimates within the porous layer 
are within __+ 15~ of the direct estimates for areas one halfcell length away from the free boundary. 
Near to the boundary with the homogeneous material layer, the errors increased to between + 30~o 
and + 4 5 ~  over the direct estimates. The largest errors of over _ 100)¦ occurred at the free 
boundary. In the homogeneous material layer, the homogenization esfimates were within _+ 5~, 
except at the boundary with porous material where the errors increased slightly to + 15~. 

The results of the standard approaches were not as accurate as those of the homogenization 
analyses. The applied displacement approach underestimated the direct estimates of strain energy 
density by at least 100~ over the majority of the porous section (Fig. 8.2b). Near the boundary 
between the two materials the errors were also larger than - 100~. In the homogeneous section, 
the errors were similar to the homogenization analysis. As with the analysis of the 25 celled porous 
materials, the errors produced by the applied displacement approach were distributed periodically 
over the porous section of the plate. 

Homogeneous section 

N 

/ / / 
Fixed boundary Applied displacement 

Void section (30 % volume fraction) 

Fig. 8.1. Composite plate structure consisting of a homogeneous 
material bounded to a porous material with 30~ volume fraction. The 
strueture is fixed at one end and subject to a uniform compressive 
displacement at the other end. This was used to test the effects oflarge 
t/(0.5 through the thickness of the plate) and boundary layer effects 
at the interface between the two materials and at the free boundary 
for each RVE analysis approach 
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a 

% Difference 

+60% to +lOO% 

:::: 
K-l .;::; +20% to +60% 

-20% to +20% 

-20% to -60% 

q ;:::::.j. -60% to -100% 

c 

Fig. 8.2a-c. Percent difference between strain energy density calculated by direct finite element analysis and homogenization 
(a), between direct analysis and the applied displacement approach (b), and between direct analysis and the applied traction 
approach(c). The homogenization analysis gives estimates within f 20% of the direct analysis over large sections of the porous 
structure, except near the free boundary. The other two standard mechanics approaches give much poorer estimates of the 
strain energy density with errors above - 60% to - 100% for the applied displacement approach and errors ranging between 
+ 100% and - 100% for the applied traction approach. 

The applied traction approach either overestimated or underestimated the direct estimates of 
strain energy density by nearly 100% (Fig. 8.2~). As with the applied displacement approach, 
the errors were distributed periodically over the porous structure. Errors in the porous section at 
the boundary between the materials were generally between +85x and + 100%. Errors in the 
homogeneous material layer were similar to both the homogenization and applied displacement 
approaches. 

9 Discussion 

The purpose of this paper was to compare homogenization and standard mechanics estimates of 
effective stiffness and local strain energy distributions for porous materials with periodic micro- 
structures. The results indicated that the two methods are equivalent for a restricted class of 
one-dimensional periodic composites. However, for two- and three-dimensional periodic porous 
composites homogenization theory gave much more accurate estimates of local strain energy than 
standard mechanics materials compared to direct analyses of the materials. Furthermore, the 
effective stiffness calculated using standard mechanics approaches converged towards the homo- 
genization effective stiffness as 11 -+O. Given that estimates of effective stiffness are more accurate 
as 4 + 0, this results shows that homogenization theory gives more accurate estimates of effective 
stiffness for periodic materials than standard mechanics approaches with less computational effort. 
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For the one-dimensional case, the different formulations of the standard mechanics approaches 
and homogenization theory gave the same estimate of effective stiffness. In the one-dimensional 
case, however, there is a one-to-one relationship between the applied traction and the average 
stress in each phase of the composite bar. Also, the average strain and the local strain are the same 
in each phase. Since the fluctuation of the local RVE strain about the average RVE strain is zero 
and the average strain is uniquely determined by the applied traction, the homogenization and 
standard mechanics approaches are equivalent for the one-dimensional case. 

The two- and three-dimensional cases differ in two ways from the one-dimensional case. First, 
the local RVE strain in the 2D and 3D cases is not equal to the average RVE strain but fluctuates 
about the average RVE strain. Second, the relationship between the average RVE strain and any 
applied boundary condition is not unique (see Eq. 3.1 and 3.2). The first consideration is relevant 
for calculating the local strain distribution from the average strain distribution. Since homogeniza- 
tion theory and standard mechanics approaches make different assumptions about the relationship 
between the local and average RVE strain, they will produce different predictions of the local RVE 
strain for the 2D and 3D cases. The second consideration is relevant for calculation of the effective 
stiffness. The homogenization predictions are determined solely by the assumption of a periodic 
microstructure. The standard mechanics approaches assume a priori boundary conditions which 
fix the average RVE strain. Therefore, the effective stiffness is determined to some degree by the 
choice of boundary conditions. 

Both the applied displacement and applied traction predictions of C;,jy converged to the 
homogenization prediction for all volume fractions as the RVE size increased. The difference 
between homogenization and standard mechanics estimates of Cijy also converged as the solid 
volume fraction increased. Increasing the RVE size or increasing the solid volume fraction both 
reduce the effect of boundary conditions on the variation of the RVE local strain distribution for 
the standard mechanics approaches. Differences between homogenization and standard mechanics 
predictions of Cijy are strongly related to the void/RVE" size ratio, being reduced as the void/RVE 
size ratio is reduced. As the void to RVE size is reduced, fluctuations of the local strain about a 
mean strain are reduced, and in the limit the local strain fluctuations about the mean reach a fixed 
value (Hill 1963). The homogenization predictions are unaffected by RVE size since the strain 
distribution is periodic and increasing RVE size does not change the local strain fluctuation about 
a mean value. 

The local strain energy predicted by homogenization analysis was within 30~ of that computed 
directly for most cases. The largest errors occurred at the traction and free boundaries for both 
the two-dimensional porous composites and the composite plate. The location of errors is consistent 
with the discussions of Lions (1981), Bakhvalov and Panasenko (1989), Dumontet (1985), and 
Sanchez-Palencia (1987). They all note that the homogenization formulation as applied here does 
not account for large fluctuations in stress and strain which occur close to the boundary. The 
boundary layer effects for the cases studied, however, decayed rapidly and seem to diminish within 
half the length of one unit cell away from the boundary. For locally periodic materials, the largest 
errors will most likely occur at the boundary between dissimilar materials. The results of this study 
suggest that homogenization theory will give accurate estimates (within 30~ of a direct analysis 
for most cases) of local stress for locally periodic composites except in a thin layer at the boundary 
between dissimilar materials. Furthermore, it is possible to improve the accuracy of homogeniza- 
tion analyses near boundaries by including boundary layer terms as discussed by Bakhvalov and 
Panasenko (1989) and Dumontet (1985). 

The local strain energy predicted by the standard mechanics analyses differed by more than 
709/0 from direct analyses for all cases studied. The distribution of error was strikingly different 
for the standard mechanics approach compared to the homogenization approach. Errors in the 
standard mechanics predictions were distributed periodically over the entire area of the composite. 
The periodic distribution of error strongly suggests that the local stress and strain fields predicted 
by the standard mechanics analyses did not agree with the dominant periodic distribution of stress 
and strain within the interior of the composite. It appears that standard mechanics analyses 
utilizing applied tractions or displacements will always engender large local stress and strain errors 
in materials with periodic microstructure. Furthermore, unlike homogenization theory, standard 
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mechanics approaches are not based on a sound mathematical foundation in which the accuracy 
of the approach is assessed a priori for a given r/. For periodic materials with finite r/, homogeniza- 
tion theory provides clearly superior results compared to standard mechanics approaches. 

10 Conclusions 

There were two major findings from this paper concerning the linear elastic analysis of periodic 
porous composites using standard mechanics and homogenization RVE-based methods. First, the 
prediction of effective stiffness by standard mechanics approaches using representative volume 
elements with increasing number of unit cells converged to the homogenization prediction obtained 
with an RVE consisting of one unit cell. Second, homogenization predictions of local strain energy 
density were generally within 30% of direct analyses of periodic porous composites with r/= 0.2 
while standard mechanics predictions differed from direct analyses by more than 70%. These two 
results clearly indicate that homogenization theory is preferable over standard mechanics ap- 
proaches for analyzing locally periodic composites like wood and human bone tissue with finite 

as weil as globally periodic composites. Furthermore, the ability to modify the analysis through 
the use of boundary layer terms or additional terms in the asymptotic expansion (Bourgat 1977) 
adds support for using homogenization theory to analyze not only the mechanics of periodic 
materials, but other processes such as heat conduction and fluid flow as weil. 
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