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Abstract—In this paper, we present an overview of the literature for 
particle filtering under measurement origin uncertainty with an 
emphasize on single scan data association algorithms. We compare 
some of the existing and newly proposed joint state particle filtering 
algorithms for the closely spaced target tracking problem. Both 
maximum a posteriori (MAP) and minimum mean square error 
(MMSE) estimation outputs of four different algorithms are 
compared. We also include MMSE outputs of a non-joint 
(independent) state particle filter and Kalman filter in the 
comparison as a baseline. 

Keywords-Particle filters; data association; measurement origin 
uncertainty; JPDAFC; JPDAF; NNJPDAF. 

I.  INTRODUCTION 
The theory of single-sensor, single-target tracking is rather 

well understood in the literature over the last fifty years since 
the Kalman filter [1] was proposed. When multiple targets are 
present, however, the situation becomes much more complex 
and it is even more complicated when the sensor operates in the 
presence of false alarms and missed detections. Probably, the 
most important problem is the measurement origin uncertainty 
[2] where it is not known which measurement belongs to which 
target and more generally whether a measurement belongs to a 
target or not. How to use such measurements with uncertain 
origin to update a tracking filter constitutes one of the most 
challenging problems in tracking1. The literature devoted to 
solve this problem is abundant. However, the solution 
approaches can be roughly considered to be based on two main 
methodologies: Tracking with or without target identity. 

In the first methodology, the aim is to know about where 
each individual target is. The identity information is preserved 
by carrying out a data association between measurements and 
targets using the rules of combinatorics. The algorithms based 
on this methodology can be classified into two categories as 
single hypothesis and multiple hypotheses algorithms. 

Single hypothesis algorithms utilize only the current scan 
(frame) of measurements for the final association decision, i.e., 
they have sequential decision logic [4]. They are 

                                                           
1 The problem was described, in the words of Li and Bar-Shalom, as the crux 
of tracking [3]. 

computationally cheap and especially suitable for real-time 
applications where quick decision is desired in accordance with 
the computational power at hand. The most widely used of 
such algorithms are those, the so-called hard-assignment 2 
algorithms, such as, the Global Nearest Neighbor (GNN) [2], 
Nearest Neighbor Joint Probabilistic Data Association 
(NNJPDA), [5] and those, the so-called soft-assignment 3 
algorithms, such as Joint Probabilistic Data Association 
(JPDA) [2], [6] and its variants [7].  

Multiple hypotheses algorithms, on the other hand, utilize 
multiple scans (frames) of measurements for the final 
association decision. They propagate all possible hypotheses 
and defer the decision to a later time step (deferred decision 
logic) [4]. They are computationally expensive but produce 
better results than single hypothesis algorithms in dense clutter. 
The most common ones include the Multiple Hypotheses 
Tracking (MHT) [8] algorithm together with its efficient and 
practical implementations [9]–[12] and other multiple frame 
assignment (MFA) algorithms, such as, [13]–[16]. 

The second methodology, which has recently become more 
popular, is based on Random Finite Set (RFS) theory [17]. 
Both the set of targets and the set of measurements are 
considered as a RFS. The aim is to know about where there are 
targets without requiring any identification. Hence, the problem 
of data association is in a sense circumvented [18]. Practically 
used candidates of such algorithms include the probability 
hypothesis density (PHD) [19] and Cardinalized PHD (CPHD) 
[20] filters and their Gaussian Mixture approximations [21]. 
The references [17] and [22] provide a good literature overview 
and solid mathematical foundation of this methodology. 

In this paper, we consider single scan algorithms belonging 
to the first methodology in which the targets are tracked with 
their identities. In conventional formulation, such algorithms 
are integrated into Kalman type of filters analytically as in the 
case of JPDAF [6]. The first work in which these algorithms 
are integrated into particle filters [23], [24] via a simulation–
based framework was given in [25] where only the sketch of 

                                                           
2 Where each track is updated with a single measurement. 
3 Where each track is updated with a probabilistically weighted combination 
of all the measurements. 
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the algorithm was mentioned without a clear mathematical 
formulation. The formulation is explained more clearly in [26]. 
The same idea is also used later in [27] under the name of 
SIR/MCJPDAF which was claimed to be the particle filtering 
implementation of the so-called joint state (i.e., coupled) 
JPDAF [2]. The first attempt to integrate the decoupled (i.e., 
the so-called independent state) JPDA into particle filtering 
appeared in robotics [28]. Some of the equations in [28] were 
corrected later in [29]. Other particle filter implementations of 
decoupled/coupled JPDA were presented in [30]–[33]. 

Although in the aforementioned papers above, the JPDA 
(coupled or decoupled) is tried to be integrated into particle 
filtering, to the best of our knowledge, the decoupled JPDA is 
firstly integrated into particle filtering in a general and 
mathematically correct way in [34]. The formulation presented 
in [34] is more general than [29] in the sense that it takes 
multiple sensors and arbitrary proposal densities into account.  

The other ideas on implementing single scan data 
association algorithms with particle filtering were proposed 
later in [35] and recently in [36]. In [35], the coupled JPDA, 
the NNJPDA and its more general track-coalescence avoiding 
version proposed in [37] were implemented in particle filtering 
framework. In [36], a particle filtering algorithm that considers 
the measurement-to-target association maximizing the 
predictive likelihood, called MPFF, was proposed. As 
explained in the following sections, this algorithm can be seen 
as a special case of the particle filtering implementation of the 
NNJPDA approach proposed in the current paper. 

In this paper, we present an overview of the literature and 
compare some of the existing and newly proposed particle 
filtering algorithms for tracking multiple targets in clutter. In 
section II, we give the problem formulation and the conceptual 
solution by emphasizing its main difficulties. Then, in section 
III and IV, we discuss how to overcome these difficulties in 
particle filtering and present some of the existing and newly 
proposed solutions. The paper ends with a simulation section 
where all the algorithms are compared through a set of artificial 
scenarios relevant for closely spaced target tracking. 

II. PROBLEM FORMULATION AND CONCEPTUAL SOLUTION 
We consider tracking TN  targets in clutter using a single 

sensor. We formulate the problem based on the following 
assumptions. 

A. Assumptions 
A1. The number of targets is assumed fixed and known. 
A2. Each target state at time step k, denoted by t

kx   
1, 2, ,= … Tt N , is assumed independent of each other and makes 

its transition to the next time step, according to a known 
nonlinear transition model: 

( )1 1ξ+ += +t t t
k k kx f x  (1)

where the process noise { }ξ t
k  is a white sequence of known 

distribution ( )ξξ ⋅∼t t
k p .  

Following A2, each target state becomes a Markov process [38, 
p.66]: 

( ) ( )0: 1 1| |− −=t t t t
k k k kp x x p x x , 1, 2, ,= … Tt N   (2)

where { }0: 0 1, , ,…t t t t
k kx x x x  denotes the state sequence up to and 

including time step k. The state transition density ( )1| −
t t
k kp x x  

for target t, can be determined from the known state transition 
model in (1) as  

( ) ( )( )1 1| ξ− −= −t t t t t
k k k kp x x p x f x  (3)

A3. An initial density for each target is also assumed 
available: ( )0 0 ⋅∼t tx p , 1, 2, ,= … Tt N  (Bayesian framework). 

A4. The target-originated measurements are given by the 
known nonlinear transition model:  

( ) η= +t t
k k kz h x , 1, 2, ,= … Tt N  (4)

where ( )⋅h is a nonlinear transformation and { }ηk is the 
measurement error noise, assumed a white sequence of known 
distribution ( )ηη ⋅∼k p .  

A5. We assume the process noise sequences, { }ξ t
k , the 

initial states, 0
tx  for 1,2, ,= … Tt N  and the measurement noise 

sequence { }ηk  are mutually independent for all k. 
The joint-state of all targets is formed by stacking each 

individual target state into a single vector, i.e., 
1 2; ; ;⎡ ⎤⎣ ⎦… TN

k k k kX x x x  where we use a semicolon “;” to denote 
stacking operation. Due to A2, the state transition density for 
the joint state can be factorized over individual target state 
transition densities as 

( ) ( )1 1
1

| |− −
=

= ∏
TN

t t
k k k k

t

p X X p x x  (5)

Similarly, a priori information for the joint state becomes:  

( ) ( )0 0 0
1=

⋅ ⋅∏∼
TN

t

t

X p p  (6)

At each time step k, the sensor produces a set of km  
measurements: { }1 2, , ,… km

k k k kZ z z z which consists of the 
measurements originated from true targets, if detected, and 
false alarms due to clutter. As noted before, it is not known 
with certainty which measurement belongs to which target and 
more generally whether a measurement belongs to a target or 
not (measurement origin uncertainty [2]). 

A6. The target-originated measurements given by (4) are 
assumed to be resolved and they are available with a known 
detection probability, ( ) 1≤t

DP k  which is possibly time &  
target-varying. 

A7. Each measurement, whether it is target-originated or a 
false alarm, is assumed independent of each other. 

A8.  Clutter-originated measurements are assumed 
identically and uniformly distributed over the sensor’s 
surveillance region of volume V . That is, the probability 
density function (pdf) for the spatial position of false alarms is 

( ) 1−=Cp z V  (7)

A9.  Let C
km  be the number of clutter-originated 

measurements (false alarms) in a volume of interest  V  at time 
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step k. Then, C
km  is assumed a Poisson-distributed random 

variable with mean λCV where /λC FA RCP V  is the spatial 
density4 of false alarms with FAP  being the probability of false 
alarm per scan per resolution cell and RCV  being the 
resolution cell volume, assumed constant and the same for all 
the cells. Then, the probability mass function (pmf) of C

km  is: 

( ) ( ) ( ) ( )exp
;

!
λ λ

μ λ
−

=∼
m

C CC
k C C

V V
m m m V

m
P  (8)

where ( );m mP   denotes a Poisson pmf with mean m  for a 
dummy variable m . 

B. Problem Definition 
The problem of multi-target tracking is to estimate the joint-
state kX , given all the available information, which is the 
union of the sets of measurements up to and including time step 
k: { }1: 1 2, , ,…k k kZ Z Z ZZ .  

C. Conceptual Solution 
Solving the multitarget tracking problem defined above is 
achieved if one could estimate the a posteriori probability 
density function (pdf) ( )|k kp X Z of the joint state kX . 
Because, in that case, the solution (an estimate of kX ) can be 
extracted by either taking mode or mean of ( )|k kp X Z  which 
corresponds to two well-known point estimation schemes, 
maximum a posteriori (MAP) or minimum mean square error 
(MMSE) estimation, respectively: 

( ) ( )|
ˆ MODE | arg max |⎡ ⎤⎣ ⎦

k

MAP
k k k k k k

X
X p X p XZ Z  

(9)

( ) ( )|
ˆ MEAN | |⎡ ⎤⎣ ⎦ ∫MMSE

k k k k k k k kX p X X p X dXZ Z  (10)

Under the Markov assumptions: 

( ) ( )1 1 1| , |− − −=k k k k kp X X p X XZ  (11)

( ) ( )1| , |− =k k k k kp Z X p Z XZ , (12)
The posterior can be conceptually calculated via Bayesian 
formalism as: 

( ) ( ) ( ) ( )1
1

1| | |
| −

−

=k k k k k k
k k

p X p Z X p X
p Z

Z Z
Z

 (13)

where  

( ) ( )

( ) ( )

1 1

1

| , |

| |

− −

−=

∫

∫

k k k k k k

k k k k k

p Z p Z X dX

p Z X p X dX

Z Z

Z
 (14)

is a normalizing density, called the predicted measurement 
density or the predictive likelihood, and,  

( ) ( )

( ) ( )

1 1 1 1

1 1 1 1

| , |

| |

− − − −

− − − −=

∫

∫

k k k k k k

k k k k k

p X p X X dX

p X X p X dX

Z Z

Z
 (15)

is the one-step ahead prediction density. Note that, the state 
transition density ( )1| −k kp X X  is already defined in (5) and to 

                                                           
4 i.e., the “intensity rate” parameter of the underlying Poisson process. 

be complete, one needs to define the likelihood ( )|k kp Z X . 
Indeed, as explained in the following sections, how to define 
this likelihood constitutes one of the main difficulties in this 
conceptual solution framework. 

D. Main Difficulties in Applying the Conceptual Solution 
Although the conceptual solution to the multitarget tracking 

problem is simply given by either (9) or (10), there are two 
main difficulties in applying such a conceptual framework.  

The first main difficulty, as mentioned above, is to define 
the likelihood ( )|k kp Z X which is not trivial under 
measurement origin uncertainty. Indeed, solving this problem 
is equivalent to deciding how to update the tracking filter with 
measurements of uncertain origin, and as mentioned before, 
still challenges the tracking community. 

Even one could get rid of the measurement origin 
uncertainty problem by some means, the second main difficulty 
of the conceptual solution framework lies in evaluating the 
multidimensional integrals given in (14) and (15). These 
integrals are intractable for most of the practical scenarios. 
They can be analytically evaluated in closed-form only in very 
few special cases. The most common is the one that the system 
and measurement models given in (1) and (4) obey the so-
called Linear-Gaussian (LG) assumption [38, pp. 201]. In that 
case, the Kalman filter [1] provides the analytic solution to the 
mean and the covariance which fully characterize the Gaussian 
posterior. 

In the following sections, we will discuss how to overcome 
the two difficulties mentioned above in a single elegant 
framework, namely, particle filtering under measurement 
origin uncertainty. First, we will present the “plain” particle 
filtering idea, which overcomes the second difficulty above, in 
section III. Then, in section IV, we will present some examples 
of how this idea can be implemented under measurement origin 
uncertainty to overcome the first difficulty as well. 

III. A TRACTABLE EVALUATION OF BAYESIAN RECURSION: 
PARTICLE FILTERING  

The particle filters [23], [24] provide a practical means for 
calculating the intractable Bayesian integrals, given in (14) and 
(15), by applying well-known numerical Monte Carlo 
integration methods sequentially in time, hence the name 
Sequential Monte Carlo methods [40]. The simple idea is to 
represent probability density functions (pdfs) with random 
samples (called particles) with associated importance weights. 
Let’s assume that the posterior at time step 1−k  is represented 
by a set of N  particles and associated importance weights: 

( ) ( ){ }1 1 1
,− − =

Nn n
k k n

X w . Then, particle filtering basically consists of 

generating N  new samples from a suitably designed proposal 
distribution, which may depend on the old state and the new 
measurements:  

( ) ( )( )1~ | ,−
n n

k k k kX q X X Z , 1,2, ,= …n N  (16)

and calculating the corresponding new importance weights: 
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( ) ( )( )
( ) ( )( )

( ) ( )( )
( )1

1

1

|
|

| ,

−

−

−

∝
n n

k kn n n
k k k kn n

k k k

p X X
w p Z X w

q X X Z
 with ( )

1

1
=

=∑
N

n
k

n

w . (17)

The new particle set ( ) ( ){ }
1

,
=

Nn n
k k n

X w is then approximately 

distributed according to the posterior at time step k. The 
algorithm recursion is initiated by sampling from the initial 
distribution given in (6), i.e., ( ){ } ( )0 01

~
=

Nn

n
X p X  and setting the 

weights to ( )
0 1/=nw N  for 1,2, ,= …n N . From time to time, a 

resampling stage is necessary to avoid degeneracy of the 
importance weights [24]. At any time step k , the MAP and 
MMSE outputs can be approximated using particles as  

( )

( )( ) ( ) ( )( ) ( )
| 1 1

1

ˆ arg max | | − −
=

≈ ∑
n

k

N
n n p pMAP

k k k k k k k
pX

X p Z X p X X w  (18)

( ) ( )
|

1

ˆ
=

≈∑
N

n nMMSE
k k k k

n

X X w  (19)

It is noted in [41] that the MAP point estimation given in (18) 
is a better approximation than the straightforward “maximum 
weight approximation” where the particle with the maximum 
weight is returned as the MAP output. 

IV. PARTICLE FILTERING UNDER MEASUREMENT ORIGIN 
UNCERTAINTY  

As sketched above, after initialization, particle filtering is 
nothing but the consecutive application of (16) and (17) and 
then applying resampling when necessary. At any time step, 
MAP or MMSE estimation outputs can be extracted from the 
particle representation as explained above. The only 
requirements to be able to run such a generic particle filtering 
algorithm are  

1. To be able to sample from ( )0 ⋅p , 

2. To be able to sample from and evaluate  
( )1| ,−k k kq X X Z  for a given values of 1−kX  and kZ ,  

3. To be able to evaluate ( )|k kp Z X  for a given 
value of kX . 

The first requirement can easily be satisfied in practice. The 
second one is also satisfied usually by selecting the proposal 
density as ( ) ( )1 1| , |− −=k k k k kq X X Z p X X . 5   Such a proposal 
selection reduces the second requirement to only being able to 
sample from ( )ξ ⋅p , since the density evaluation requirement is 
straightforwardly achieved through use of (5) and (3). 

The most important difficulty in applying particle filtering 
under measurement origin uncertainty is to satisfy the third 
requirement, because, as explained before, the corresponding 
likelihood can only be evaluated if the true assignment between 
measurements and the sources (targets or clutter) is known. But 
in practice such knowledge is missing due to the problem of 
measurement origin uncertainty. 

                                                           
5 Although there are better alternatives depending on the problem at hand [39] 
[40], we consider the same selection here. Better proposals and how they can 
improve the effciency of particle representation is out of scope of this paper. 

The first particle filtering under measurement origin 
uncertainty was proposed in [25] where only a sketch of the 
algorithm was given without much mathematical rigor. The 
algorithm is explained rigorously later in [26]. The idea was 
very reasonable: The required likelihood is proposed as a 
weighted combination of all possible likelihoods, each 
conditioned on a specific assignment between measurements 
and sources, with weights being the corresponding prior 
probabilities of the assignments: 

( ) ( ) { }| | , Pr |
θ

θ θ
∈Θ

= ∑
k k

k k k k k k kp Z X p Z X m (20)

where kθ  represents any of such specific assignments , called a 
joint association event (or assignment hypothesis) [2] and kΘ  
is the set of all such events. A more clear explanation of the 
same idea was presented later in [27] under the name of 
SIR/MCJPDAF where more explicit formulas were given for 
the terms in (20). Although in [27] the authors claimed that 
they present a particle filtering version of the so-called coupled 
JPDA (i.e., a joint state JPDA) approach [2], this was not the 
case. Because, the weights in (20) were defined as the “prior” 
probabilities of the assignments (not the “posterior” 
probabilities). In that respect, their approach can be regarded as 
a particle filtering implementation of some sort of “degenerate” 
coupled JPDA approach. We call it as JS-D-JPDA-PF where 
JS denotes “joint state” and D denotes the “degenerate”. Other 
various ad-hoc implementations of the same idea were also 
presented in [30] and [32]. In [33], the approach was further 
assisted with a clustering routine similar to [42] to solve the so-
called mixed labeling problem [42], [43] which is prominent in 
joint state particle filters when the targets are closely spaced.  

The first of our proposals in the present paper removes the 
letter “D” in the name of the above algorithm by modifying the 
likelihood in (20) as: 

( ) ( ) { }| | , Pr |
θ

θ θ
∈Θ

= ∑
k k

k k k k k k kp Z X p Z X Z (21)

where, different from (20), not the “prior” but the “posterior” 
assignment probabilities are used in weighting each conditional 
likelihood. The likelihood in (21) exactly corresponds to the 
likelihood in coupled JPDA [2], hence, constitutes a proper 
implementation of the coupled JPDA in particle filtering 
framework. We call the resulting algorithm as JS-JPDA-PF. 

Another likelihood proposal of the present paper is a 
generalized version of likelihood in MPPF [36] algorithm 
whose likelihood was defined as:  

( ) ( )
( )1

| | ,

arg max | ,
θ

θ

θ θ

∗

∗
−

∈Θ

=

k k

k k k k k

k k k k

p Z X p Z X

p Z Z
 (22)

where  

( ) ( ) ( )1 1| , | , |θ θ− −∫k k k k k k k k kp Z p Z X p X dXZ Z  (23)

is the conditional version of the predictive likelihood given in 
(14) which is calculated for a specific measurement assignment 
hypothesis θk . We call this approach as JS-MAXPLA-PF. In 
this paper, we propose to use the following likelihood: 
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( ) ( )
{ }

| | ,

arg max Pr |
θ

θ

θ θ

∗

∗

∈Θ

=

k k

k k k k k

k k k

p Z X p Z X

Z
 (24)

where { }Pr |θk kZ  is the posterior assignment probability, 
which is defined by [2]: 

{ } ( ) { }1
1Pr | | , , Pr |θ θ θ−=k k k k k k k k
k

p Z m m
c

Z Z  (25)

where the term ( )1| , ,θ−k k k kp Z mZ  is the same with (23), kc  is a 
(normalizing) θk -independent term and { }Pr |θk km   is the prior 
assignment probability. Note that (22) can be viewed as a 
special case of (24) where the term { }Pr |θk km  is ignored in 
maximization. Using such likelihood in (24) corresponds to the 
NNJPDA approach [5]. Hence, we call the resulting algorithm 
as JS-NNJPDA-PF. It is well-known that the NNJPDA 
improves the performance for track-coalescence6 problem [44] 
which exists especially when the targets are closely spaced. 
The likelihoods of each algorithm are summarized in Table I. 

TABLE I.  THE LIKELIHOODS DEFINED IN EACH ALGORITHM 

Algorithm Likelihood Ref. 

JS-D-
JPDA-PF 

( ) ( ) { }| | , Pr |
θ

θ θ
∈Θ

= ∑
k k

k k k k k k kp Z X p Z X m  
[25]–[27] 

JS-JPDA-
PF 

( ) ( ) { }| | , Pr |
θ

θ θ
∈Θ

= ∑
k k

k k k k k k kp Z X p Z X Z  This 
paper 

JS- 
MAXPLA

-PF 

( ) ( )| | ,θ ∗=k k k k kp Z X p Z X  where 

( )1arg max | ,
θ

θ θ∗
−

∈Θk k
k k k kp Z Z  [36] 

JS-
NNJPDA-

PF 

( ) ( )| | ,θ ∗=k k k k kp Z X p Z X  where 

{ }arg max Pr |
θ

θ θ∗

∈Θk k
k k kZ  

This 
paper 

 

For the sake of completeness, the terms { }Pr |θk km ,  
( )| ,θk k kp Z X , ( )1| , ,θ−k k k kp Z mZ  and { }Pr |θk kZ appeared in 

the above likelihood expressions will be given next.  

A. The Prior Probability of a Joint Association Event 
Lemma-1: Let ( )θD kT  be the set of indices of detected 

targets and ( )θC
k km  be the number of false alarms hypothesized 

under the event θk . Then, assuming that ( )θD kT  and ( )θC
k km are 

independent, the a priori probability of a joint association event 
conditioned on km  number of measurements is given by  

{ } ( ) ( )( )
( )

( )
( )( )

( )

Pr | !

1
θ θ

θ γ θ μ θ

∅∈ ∈

=

× −∏ ∏
D k k

C C
k k k k k C k k

t t
D D

t T t T

m m m

P k P k
  (26)

where { }( ) 1
!Prγ −

k k km m  is a θk -independent term,  

( )( )μ θC
C k km  is the probability mass function for the number 

                                                           
6 This is closely related to the mixed labelling problem in joint state particle 
filters. 

of false alarms and ( )θ∅ kT  is the set of indices of missed 
(undetected) targets under θk . 

Proof: See JPDAF derivations in [2]. 

Remark-1: Under A9 (i.e., substituting ( )( )μ θC
C k km  in 

(8)), (26) can be written as, 

{ } ( ) ( ) ( )
( )

( )( )
( )

Pr | 1θ

θ θ
θ κ λ

∅∈ ∈

= −∏ ∏
C
k k

D k k

m t t
k k k C D D

t T t T
m V P k P k  (27) 

where ( )expκ λ γ−k C kV  is a θk -independent term. 

B. The Likelihood / Predictive Likelihood Conditioned on a 
Specific Joint Association Event 
Under A7, the likelihood conditioned on a specific joint 

association event can be expressed as: 

( ) ( )
( )

( )( )
( )

| , | θ

θ θ
θ

∈ ∈

= ∏ ∏ k

C k T k

jj j
k k k C k T k k

j J j J

p Z X p z p z x  (28)

where ( )Cp z  is the pdf of the spatial position of false alarms 

and ( ) ( )( )| η= −Tp z x p z h x is the likelihood of a target-
originated measurement with ( )η ⋅p  being the pdf of the 
measurement noise. ( )θC kJ  and ( )θT kJ  denote the sets of 
indices of clutter-originated measurements (false alarms) and 
target-originated measurements under θk , respectively.7 Based 
on A7, the predictive likelihood conditioned on a specific joint 
association event can be written as 

( ) ( )
( )

( ) ( )
( )

1 1| , , |θ
θ θ

θ− −
∈ ∈

= ∏ ∏ k
C k T k

j j
k k k k C k k kj

j J j J
p Z m p z p zZ Z  (29)

where 

( ) ( ) ( )1 1| | |− −∫j j t t t
t k k T k k k k kp z p z x p x dxZ Z  (30)

is the predicted measurement density, or the predictive 
likelihood for the target t.  

Remark-2: Under A8, (i.e., substituting ( )j
C kp z  in (7)), (28) 

and (29) can be respectively written as, 

( ) ( ) ( )( )
( )

| , |θ θ

θ
θ −

∈

= ∏
C
k k k

T k

m jj
k k k T k k

j J

p Z X V p z x  (31)

and 

( ) ( )
( ) ( )

( )
1 1| , , |θ

θ
θ

θ −
− −

∈

= ∏
C
k k

k
T k

m j
k k k k k kj

j J

p Z m V p zZ Z . (32) 

Remark-3: Note that, as opposed to the JPDAF derivations in 
[2], we keep the general non-Gaussian nature for the predicted 
measurement density (a.k.a innovation density in linear case) in 
(30). This integral can be approximated with particles as  

( ) ( )( ) ( ),
1 1

1

| |− −
=

≈∑
N

t n nj j
t k k T k k k

n

p z p z x wZ  (33)

where we use the fact that ( ) ( )1 1| , |− −=k k k k kq X X Z p X X . 

                                                           
7 Mathematically, a joint association event, kθ  can be defined as a mapping 

( ) :k J Sθ ⋅ →  where, { }1, 2, , kJ m= …  and { }0,1, , TS N= … are the sets of 
indices of measurements and sources (targets or clutter), respectively. 
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C. The Posterior Probability of a Joint Association Event 
The posterior probability of a joint association event is 

given as [2] 

{ } ( ) { }1
1Pr | | , , Pr |θ θ θ−=k k k k k k k k
k

p Z m m
c

Z Z  (34)

where { }Pr |θk km  is the prior probability defined in (26) and 
( )1| , ,θ−k k k kp Z mZ  is the conditional predictive likelihood 

defined in (29).  

Remark-4: Following Remark-1 and Remark-2, a reduced 
expression for { }Pr |θk kZ is given as, 

{ } ( ) ( ) ( )
( )

( )( )
( )

( ) ( )
( )

1

Pr | 1

|

θ

θ θ

θ
θ

θ ρ λ
∅∈ ∈

−
∈

= −

×

∏ ∏

∏

C
k k

D k k

k
T k

m t t
k k k C D D

t T t T

j
k kj

j J

P k P k

p z

Z

Z

 (35) 

Remark-5: Defining the expression related to the detection 
parameters as: 

( ) ( ) ( ) ( )
( )

( )( )
( )

1θ

θ θ
θ λ

∅∈ ∈

−∏ ∏
C
k k

D k k

m t t
k C D D

t T t T

P k P kD  (36) 

and following the simplified expressions given in Remark-1, 
Remark-2 and Remark-4, the likelihoods for JS-D-JPDA-PF 
and JS-JPDA-PF given in Table I can be written as 

( ) ( ) ( )( )
( )

| | θ

θ θ
κ θ

∈Θ ∈

= ∑ ∏ k

k k T k

jj
k k k k T k k

j J

p Z X p z xD  (37) 

and 

( ) ( ) ( ){
( )( ) ( ) ( )

( )
1

|

| |

θ

θ

θ
θ

θ

ρ θ−

∈Θ

−
∈

=

⎫⎪× ⎬
⎪⎭

∑

∏

C
k k

k k

k

k
T k

m
k k k k

jj j
T k k k kj

j J

p Z X V

p z x p z

D

Z

 

 

(38) 

respectively. Here, /ρ κk k kc  is a θk -independent term. 

Remark-6: For the time & target-invariant detection 
probabilities case, i.e., ( ) =t

D DP k P , ∀t , (36) reduces to 

( ) ( ) ( ) ( ) ( ) ( ) ( )1θ θ θθ λ −−
C T T
k k k k T k km m N m

k C D DP PD  (39) 

Remark-7: The likelihood defined in [27] is exactly based on 
(37) and (39) except the term ( ) ( ) ( )/ θθλ

CC
k kk k mm

C FA RCP V  is replaced 
with ( ) ( )θ θλ ≈

C C
k k k km m

C FAP  in [27] and the variable nZ  in (6) of [27] 
which was wrongly defined as “the number of false alarms in 
hypothesis n ” should be corrected as “the number of missed 
(undetected) targets in hypothesis n ”. A similar correction is 
also needed in [45] and [32]. 

V. SIMULATION EXPERIMENTS 
To be able to characterize the performance of different 

particle filtering algorithms for the data association problem, 
we follow a “divide and conquer” approach and take a 
simplified scenario where the data association problem is to be 
made more pronounced and the problems, such as nonlinearity, 
non-Gaussianity, model-mismatch (maneuver) [38] and curse-

of dimensionality of particle filters in high dimensional state 
spaces [46], are all suppressed. We are particularly interested in 
situations where the targets are closely spaced. Along this line, 
we consider tracking (or more properly localization of) two 
closely spaced stationary targets in one dimensional (1D) 
geometry. The state of the targets consists of only position and 
assumed to obey the simple random walk model given by 

1 ξ+ = +t t t
k k kx x  , 1, 2=t  (40) 

where ξ t
k , called the process noise, is assumed to be zero mean 

white Gaussian sequence with variance 2σ p , i.e., ( )20,ξ σ∼t
k pN . 

While we generate ground truths without a process noise which 
means that the targets are perfectly stationary, we assume a 
very small value for this parameter during filtering ( 2 0.01σ =p ). 
Targets are located at initial positions 1

0 / 2= −x d and 2
0 / 2= +x d . 

The distance between targets ( d ) is parameterized by the 
sensor’s measurement accuracy as, σ= × md a  where  

10σ =m [m] is the measurement noise standard deviation and 
a  being a scenario-dependent scalar. We consider a scenario 
with closely spaced targets by selecting 2=a . 

The sensor is assumed to produce position only 
measurements of each target for every 1Δ =k  second as 

η= +t t
k k kz x  , 1, 2=t  (41) 

where the measurement noise ( )20,η σ∼k mN  is assumed to be 
zero mean white Gaussian sequence with variance 2σ m . The 
surveillance region of the sensor is taken as the interval 
[ ]10 , 10σ σ− +m m

, hence its volume, the length of the interval, is 

20σ= mV . Both targets are assumed to have a unity probability 
of detection ( 1 2 1= = =D D DP P P ) which is constant and time-
invariant. We assume that sensor may produce false alarms 
which are uniformly distributed over the surveillance region. 
At each time step k, the number of such false alarms is assumed 
to be Poisson distributed with mean λCV  where λC  is the 
spatial false alarm density in [m-1]. In the sequel, we perform 
experiments for { }0,5λ ∈CV  which correspond to “no clutter” 
and “dense clutter” scenarios. We run each scenario until 

50=K  time steps and repeated each scenario for 100=MCN  
Monte Carlo runs. 

In filtering, we assume our prior knowledge on these initial 
states as Gaussian centered at each initial true state with 
variance 2

0|0σ . During experiments, we initialized each filter by 
using single point initialization from a single measurement 
prior to simulation, i.e., 0|0 0ˆ =t tx z  and set the initial variance to 
the measurement error variance, 2 2

0|0σ σ= m . for preserving the 
filter’s consistency [38, pp. 232]. We simulate four joint filters 
given in Table I, namely, JS-D-JPDA-PF [27], JS-JPDA-PF, 
JS-MAXPLA-PF [36] and JS-NNJPDA-PF, and two 
“baseline” filters. One of the baseline filters is chosen as the 
MC-JPDAF of [34] which is the first and exact particle 
filtering implementation of the decoupled (i.e., independent 
state) JPDA approach, and the other one is the Kalman filter 
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(KF) with perfect data association, which constitutes a kind of 
ultimate performance limit (actually a Cramer-Rao Lower 
Bound – CRLB) to the problem.8 We implemented the joint 
state filters without any “plug-in”s, like clustering routine 
considered in [33] and [42]. In all the particle filters, the 
number of particles is chosen as 250=N which seems enough 
for this low dimensional (1D) problem. No gating9 is applied to 
the measurements. We consider MMSE outputs for all the 
filters. Moreover, for joint-state filters, MAP point estimates 
are also computed using (18).  

The result of “no-clutter” scenario is given in Fig. 1. Note 
that we use deliberately soft colors and dashed lines for the soft 
assignment algorithms, JS-D-JPDA-PF [27] and JS-JPDA-
PF, and more prominent colors and continuous lines for the 
hard assignment algorithms, JS-MAXPLA-PF [36] and JS-
NNJPDA-PF. Moreover, we use a continuous line with “dot” 
markers for both of the baseline algorithms, MC-JPDAF [34] 
and KF with perfect data association. 
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Figure 1.  The filtering results smoothed over 100 Monte Carlo runs for  “no-
clutter” scenario. Both MMSE and MAP outputs are presented.  

The conclusions drawn for the “no-clutter” scenario are as 
follows: 

− The independent state filter MC-JPDAF [34] with MMSE 
output performs better than any “plain” joint-state filter 
(either with MMSE or MAP outputs). 

− Among joint state filters, MMSE outputting performs 
better than their MAP counterparts. This is a contradictory 
result with the previously obtained results in the literature, 
such as, [41]. 

− Among joint state filters, the degenerate implementation of 
the coupled JPDAF, namely, JS-D-JPDA-PF [27] 
performs better than the proposed exact implementation 
JS-JPDA-PF in MMSE outputting case, but the situation 
is reversed in MAP outputting where the degenerate 
implementation behaves rather jumpy. This result clearly 
shows that how to decide on point estimate extraction from 
a given particle cloud is very important for the final filter 
performance. 

The result of “dense-clutter” scenario is given in Fig. 2. The 
following conclusions are drawn: 

                                                           
8 This is somewhat a looser CRLB under no measurement origin uncertainty 
case. For the actual problem, i.e., tracking under measurement origin 
uncertainty, a more tighter Posterior Cramer-Rao Lower Bound (PCRLB) can 
be found by utilizing a similar procedure with [47], see [2]. 
9 The another interesting research path (see e.g., [48].) might be to investigate 
the effect of gating parameters on performance of non-Gaussian nonlinear 
multiple target tracking especailly when the targets are closely spaced. 

− The independent state filter MC-JPDAF [34] with MMSE 
output performs worse than any “plain” joint-state filter 
(either with MMSE or MAP outputs). 

− Among joint state filters, MMSE outputting performs 
better than their MAP counterparts. 

− Among joint state filters, the soft assignment algorithms 
perform better than their hard assignment counterparts for 
MMSE outputting case. Indeed, the proposed exact 
implementation JS-JPDA-PF performs well in both 
MMSE and MAP output case. 
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Figure 2.  The filtering results smoothed over 100 Monte Carlo runs for  
“dense-clutter” scenario. Both MMSE and MAP outputs are presented.  

VI. CONCLUSION 
One should note that the conclusions drawn from 

simulation results are correct within the boundaries of the 
simulation setup. Especially the conclusion “MAP outputting 
performs better than MMSE” should be carefully investigated 
by accounting track swap and mixed-labeling phenomena. So a 
possible near future study might be performing extra 
simulations by taking these phenomena into account and 
considering other evaluation metrics such as MOSPA [49]. 
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