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ABSTRACT: Large-scale changes in the state of the land surface affect the circulation of the atmosphere and the struc-
ture and function of ecosystems alike. As global temperatures increase and regional climates change, the timing of key
plant phenophase changes are likely to shift as well. Here we evaluate a suite of phenometrics designed to facilitate an
“apples to apples” comparison between remote sensing products and climate model output. Specifically, we derive day-of-
year (DOY) thresholds of leaf area index (LAI) from both remote sensing and the Community Land Model (CLM) over
the Northern Hemisphere. This systematic approach to comparing phenologically relevant variables reveals appreciable
differences in both LAI seasonal cycle and spring onset timing between model simulated phenology and satellite records.
For example, phenological spring onset in the model occurs on average 30 days later than observed, especially for ever-
green plant functional types. The disagreement in phenology can result in a mean bias of approximately 5% of the total
estimated Northern Hemisphere NPP. Further, while the more recent version of CLM (v5.0) exhibits seasonal mean LAI
values that are in closer agreement with satellite data than its predecessor (CLM4.5), LAI seasonal cycles in CLM5.0
exhibit poorer agreement. Therefore, despite broad improvements for a range of states and fluxes from CLM4.5 to
CLM5.0, degradation of plant phenology occurs in CLM5.0. Therefore, any coupling between the land surface and the
atmosphere that depends on vegetation state might not be fully captured by the existing generation of the model. We also
discuss several avenues for improving the fidelity between observations and model simulations.

KEYWORDS: Biosphere-atmosphere interaction; Carbon cycle; Climate variability; Remote sensing; Land surface model;
Spring season; Vegetation; Vegetation-atmosphere interactions

1. Introduction

In temperate and boreal regions, plant phenology modu-
lates the terrestrial carbon budget by governing the onset and
duration of the growing season (e.g., Morisette et al. 2009;
Richardson et al. 2009, 2010). Human-induced increases in
temperature, as well as changes in precipitation, will likely
modify plant phenology in the future, which in turn will affect
the net storage of carbon on land (e.g., Morisette et al. 2009;
Richardson et al. 2013) among a multitude of other changes
(e.g., Schwartz 1992; Xu et al. 2020). For example, warmer
average global temperatures could favor earlier spring onset
dates and longer growing seasons, and hence lead to a larger
terrestrial carbon sink. Alternatively, earlier springs and

hotter, drier summers could also impose new stresses, includ-
ing droughts, wildfires, and insect outbreaks (e.g., Guillevic
et al. 2002; Peñuelas and Filella 2009), which would increase
terrestrial carbon fluxes into the atmosphere.

Land surface phenology exhibits considerable year-to-year
variability (Schwartz et al. 2006; White et al. 2009; Richardson
et al. 2013) and characterizing those fluctuations accurately
across space and through time requires multiyear large-scale
observations of ecosystems. Long time series of high-resolu-
tion and internally consistent satellite data products are there-
fore essential tools for documenting and describing spring
onset variations at large scales during the recent historical
period.

In addition to remote sensing, land surface models (LSMs)
provide insights into the historical coupled land–atmosphere
processes that govern water, carbon, and energy fluxes through
the climate system. Recently, several papers have examined
both site-level and large-scale annual cycles of leaf area index
(LAI) and net primary production (NPP), finding large dis-
agreements between model simulations and observations (e.g.,
Richardson et al. 2012; Mahowald et al. 2016; Scholze et al.
2017; Albergel et al. 2018; Klosterman et al. 2018; Peano et al.
2021). Other studies have also adopted data assimilation
approaches to improve simulations of the biogeophysical and
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biogeochemical processes (e.g., Sabater et al. 2008; Barbu et al.
2011; Albergel et al. 2017; Fox et al. 2018). However, most of
these studies focused on small scales, a restricted number of
plant functional types, or monthly averages.

The timing of spring onset and fall senescence in LSMs and
their potential influences on land–atmosphere interactions
have not yet been intensively analyzed, as additional obstacles
complicate comparisons between model output and remote
sensing data. For instance, the timing of spring onset varies by
a few weeks from one year to the next, and identifying those
variations requires vegetation data to be sampled at daily or
weekly time intervals. Even when prognostic phenology rou-
tines are included in an Earth system model (ESM) simula-
tion, the output from those routines is seldom archived at
sufficiently high temporal resolution to compare day-of-year
(DOY) metrics of spring onset with remote sensing products.
Given these limitations, the timing of spring onset}as
inferred from remote sensing and LSM simulations alike}has
received relatively little attention in the literature to date.

The majority of previous studies evaluating phenology in
the Community Land Model (CLM) and other land surface
models have focused on comparisons at small spatial scales to
develop parameters and characterize fundamental ecological
processes, but large-scale comparisons are also important to
understand model performance. Studies have used both in
situ measurements and remote sensing at specific sites or for
specific PFTs. For instance, Scholze et al. (2017) used a data
assimilation approach at the site level and tuned parameter-
izations in land surface models to reproduce observed sea-
sonal cycles. Dahlin et al. (2015, 2017) examined stress
deciduous phenology in CLM in tropical drylands and found
that a precipitation criterion is necessary to prevent rapid
onset of growing seasons due to soil moisture fluctuations.
Chen et al. (2016) implemented different spring onset triggers
for seasonal deciduous trees in CLM and improved the mod-
el’s simulation of productivity. While these studies are crucial

for developing model parameters and evaluating ecological
processes, accurately simulating the land surface is a critical
component for future climate projections at the global scale.
It is therefore important to evaluate the skill of CLM to simu-
late key aspects of spring “green up” across different climate
zones at the hemispheric and continental scales that will be
most important for future climate feedback and carbon sinks
or sources.

In this study, we develop DOY indicators to characterize
the progression of spring phenology in both remote sensing
data and CLM simulations over the Northern Hemisphere.
We then compare these indicators from MODIS to new runs
from the CLM (Oleson et al. 2013; Lawrence et al. 2019). We
ask 1) how well does CLM simulate the LAI seasonal cycle
compared to MODIS estimates, 2) to what extent has the sim-
ulated phenology changed between CLM4.5 and CLM5.0 and
what are the sources of these changes, and 3) how much do
biases in CLM phenology affect the annual accumulated ter-
restrial carbon fluxes? By assessing the large-scale patterns of
seasonal cycles of leaf phenology and its NPP influence over
the Northern Hemisphere using metrics that can be readily
computed from both data products, our approach therefore
represents a framework for evaluating land surface phenology
vegetation parameterizations and their response to atmo-
spheric forcing.

2. Data and methods

a. LAI from remote sensing

The indices of primary interest here are all based on LAI,
which is either derived from MODIS or calculated internally
by CLM. We defined the dynamical range of LAI as the dif-
ference between minimum (winter) and maximum (summer)
LAI each year. We then focused on the 25%, 50%, and 75%
thresholds of the annual dynamical range of LAI (Fig. 1).

FIG. 1. Schematic diagram of how the threshold-based DOY indices are computed from (left) remote sensing and
(right) CLM output.
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Using threshold-based indicators reduces the influence of
land use change as well as differences in peak LAI from one
year to the next [e.g., as in White et al. (2009), but applied to
LAI instead of NDVI].

Our remote sensing data originate from the MODIS Terra
MOD15A2H.v006 LAI product (Myneni et al. 2015), which is
an 8-day composite dataset available at 500-m native spatial
resolution. The algorithm uses a three-dimensional radiative
transfer equation to estimate LAI based on surface reflec-
tance and land cover type (Knyazikhin et al. 1999; Yan et al.
2016) and chooses the “best” pixel within the 8-day period
from all Terra sensor measurements. We aggregated the raw
MODIS LAI to the CLM finite-volume grid (nominally 18 3
18 latitude–longitude) in two steps. First, all “good quality”
data points (i.e., points with a MODIS QA flag of “0”) within
a given CLM grid cell were averaged together to produce
LAI fields sampled at the native 8-day time step. Second, a
smoothing spline was fitted to the time series of each grid
point for each year and used to interpolate the 8-day data to
daily resolution. We then calculated the DOY time series of
spring onset as indicated by the different LAI thresholds.

To characterize the agreement between CLM and MODIS
spring onset timing, we used both simple (Pearson) correla-
tion and scatterplots. For all simple correlation analysis, we
adopted a 5% significance level and adjusted for false discov-
ery (Benjamini and Hochberg 1995). We also used scatter-
plots and boxplots to assess how similar spring onset timing
and other phenometrics are between different indices pairs.

b. LAI from the Community Land Model

CLM is the land component of the Community Earth Sys-
tem Model (CESM). It simulates comprehensive biogeophysi-
cal, biogeochemical, and hydrological processes at the land
surface, permitting it to represent land–atmosphere fluxes of
water, carbon, and energy (Oleson et al. 2013; Lawrence et al.
2019). It can be run in a “coupled” configuration, in which
both CLM and the Community Atmosphere Model (CAM;
Neale et al. 2010) exchange fluxes, or it can be forced with his-
torical climate and meteorological reconstructions. Under this
configuration, LAI varies through time as a function of mete-
orological forcing, parameterized plant phenology, and inter-
actions with other processes modeled by CLM. Running
CLM with historical boundary conditions requires a combina-
tion of gridded instrumental data products and reanalysis out-
put to supply the requisite surface radiation, temperature,
wind, and humidity fields, among others. Here, we used ver-
sions 4.5 and 5.0 of CLM (i.e., CLM4.5 and CLM5.0).

The phenology subroutines in CLM govern carbon and
nitrogen fluxes for leaf development and litter fall for natural
vegetation types (i.e., vegetation types that are not simulated
by the crop module). These routines also partially regulate
biogeophysical processes, like photosynthesis and canopy
hydrology, by modifying LAI over the course of the year.
There are three distinct phenology parameterizations in
CLM}seasonal deciduous, stress deciduous, and ever-
green}and each parameterization affects LAI in at least one
of the model’s 14 natural plant functional types (PFTs). For

example, a growing degree-day (GDD) threshold triggers leaf
emergence and growth in PFTs that use the seasonal decidu-
ous phenology routine (White et al. 1997; Oleson et al. 2013;
Lawrence et al. 2019). PFTs governed by stress deciduous
phenology start growing only after their chilling requirements
are met (except for tropical stress deciduous PFTs, e.g.,
broadleaf deciduous tropical trees, that do not have a chilling
requirement) and in response to GDD thresholds and soil
moisture (White et al. 1997; Oleson et al. 2013), as well as an
antecedent precipitation requirement introduced in CLM5.0
(Dahlin et al. 2015; Lawrence et al. 2019). Evergreen phenol-
ogy, in contrast, has a fixed background litter fall rate and no
leaf onset/offset trigger (Oleson et al. 2013; Lawrence et al.
2019), so new leaf production is always occurring and depends
on the current rate of photosynthesis and respiration. Area
weight of the three different phenology plant functional types
is shown in Fig. 2 and how the phenology types connect to the
PFTs in CLM is listed in Table 1.

During each simulation year, PFTs using the deciduous
phenology routine allocate some portion of their carbon and
nitrogen for leaf development during the following year
(Thornton and Zimmermann 2007; Oleson et al. 2013;
Lawrence et al. 2019). Spring onset occurs when the environ-
mental thresholds listed above are reached, and CLM begins
to allocate stored carbon (and nitrogen) from the previous
year to increase LAI over a fixed 30-day period. However,
stress deciduous PFTs can have multiple growing seasons
within one year, or a long growing season and no dormancy
when conditions are favorable.

Usually, multiple PFTs will comprise the natural vegetation
at a given grid cell, but the climate forcing used by each PFT
will be uniform across that grid cell. Likewise, the changes
in LAI at a given point will be the weighted average of all
PFTs at that point (e.g., Fig. S1 in the online supplemental
material). Importantly, grid cell LAI in CLM represents the
average of multiple PFTs that are exposed to the exact same
climate, whereas LAI in MODIS is the average over multiple
land cover types, which may have geographical differences
and varying microclimates. However, this variation within a
grid cell is small relative to the total continental-to-global dif-
ferences. We have also filtered out grid points with more than
50% crop PFTs as our focus here is on natural PFTs.

Interannual variability in the start of spring can be as large
as 60 days, while the advancing trend of spring onset over the
past few decades is on average 1.5 days per decade (e.g.,
Schwartz et al. 2006; Schwartz et al. 2013; Ault et al. 2015). As
with MODIS, we therefore required daily LAI to accurately
characterize spring onset during recent decades. By default,
CLM only outputs monthly total leaf area index (TLAI) his-
tory files, therefore, we ran CLM4.5 and CLM5.0 and output-
ted daily TLAI and net primary production (NPP) values
both as a grid cell average and for each PFT.

c. Experimental design and atmospheric forcing

We ran CLM (4.5 and 5.0) with the GSWP3 historical
forcing dataset (Müller Schmied et al. 2016; http://hydro.
iis.u-tokyo.ac.jp/GSWP3/exp1.html#boundary-conditions).
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Briefly, GSWP3 data are dynamically downscaled from the
Twentieth Century Reanalysis (20CR; Compo et al. 2011)
and corrected using observations. Due to its temporal cover-
age, GSWP3 was used as boundary conditions over the period

from 1 January 1970 through 31 December 2014. Although
other boundary conditions have been used to examine the
skill of CLM [e.g., CRUNCEP in Wang et al. (2014) and
CRUJRA in the TRENDY project], our findings do not

FIG. 2. Maps showing the fractional weight of different phenology types in CLM5.0 for the year 2000.

TABLE 1. Summary information for the three different phenology subroutines used in CLM (first column) and the PFTs that invoke
them (right columns).

Pheno PFT

PFT

Trees/forests Shrub Grassland Cropland

Evergreen Needleleaf evergreen temperate tree,
needleleaf evergreen boreal tree,
broadleaf evergreen tropical
tree, broadleaf evergreen
temperate tree

Broadleaf evergreen
shrub

Stress deciduous Broadleaf deciduous tropical tree Broadleaf deciduous
temperate shrub

c3 nonarctic grass,
c4 grass

c3 crop/crop1,
c3 irrigated/crop2

Seasonal deciduous Needleleaf deciduous boreal tree,
broadleaf deciduous temperate
tree, broadleaf deciduous boreal tree

Broadleaf deciduous
boreal shrub

c3 arctic grass
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depend strongly on the historical forcing data for the regions
and variables of interest here. We discarded the first 33 years
for spinup and used 2003–14 to compare CLM and MODIS
over the Northern Hemisphere.

d. Terrestrial productivity differences between MODIS
and CLM

To examine disagreement in the carbon cycle induced by
the different leaf phenology in CLM and MODIS, we also
computed the total net primary production (NPP) simulated
by CLM during the differences in the duration of peak grow-
ing season between CLM and MODIS and named this indica-
tor DNPPpheno. We defined peak growing season as days
within the year when LAI is above 75% of its annual dynami-
cal range. We then calculated the difference between CLM
and MODIS peak growing season and estimated the total
NPP simulated by CLM during that difference window. CLM
NPP is counted as positive when CLM LAI is within its peak
growing season but MODIS is not, and negative vice versa.
After computing the annual NPP difference induced by differ-
ent peak growing windows in CLM and MODIS, we

calculated DNPPpheno by averaging across all years to charac-
terize the potential influence of errors in modeled phenology
on terrestrial carbon cycle simulations. We only examined
NPP differences induced by differences in peak growing sea-
son length between CLM and MODIS to diminish the influ-
ence of LAI difference and focus on difference due to plant
phenology. We also calculated how large DNPPpheno is com-
pared to the total annual NPP in CLM.

3. Results

a. Spring onset timing

Spring LAI values are generally lower in MODIS than in
either version of CLM (Fig. 3 and Fig. S2). For example,
boreal forests in the eastern North America typically exhibit
LAI values between 2 and 3 m2 m22, as inferred from
MODIS (Fig. 3a). In CLM4.5 these values are greater than
5 m2 m22 (Fig. 3c), while they are lower in CLM5.0 and
closer to MODIS LAIs (about 4 m2 m22, Fig. 3b). Similar
differences occur throughout the northern regions of North
America and Eurasia, as well as in western Europe, the

FIG. 3. Mean spring (April–June) LAI values in (a) MODIS, (b) CLM5.0, and (c) CLM4.5 averaged between 2003 and 2014.
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southeastern United States, and southeast China (Fig. 3).
Although major improvements have been made from CLM4.
5 to CLM5.0, especially over seasonal deciduous and ever-
green PFTs, CLM spring LAIs are still larger than MODIS
across phenology types in the Northern Hemisphere (Fig. S2).
On average, difference between CLM and MODIS LAI is
smaller over deciduous PFTs (less than 1 m2 m22 in CLM5.0
over seasonal deciduous PFTs) and larger over evergreen PFTs
(larger than 2 m2 m22 in both CLM5.0 and CLM4.5; Fig. S2).

The annual dynamical range of LAI is also greater in CLM
than in MODIS across most of the deciduous PFTs domi-
nated regions (Figs. 2 and 4), except for seasonal deciduous
PFTs in CLM5.0 (Fig. S3). For example, both CLM4.5 and
CLM5.0 simulate a dynamical range that can be more than
3 m2 m22 larger than MODIS over northern Canada, north-
ern Russia, and the Tibetan Plateau (Figs. 4a,b). Even though
the overall magnitude decreases by around 1 m2 m22 in both
spring LAI bias and deciduous LAI annual range bias
between CLM4.5 and CLM5.0 (Figs. S2 and S3), the spatial
pattern of bias in the dynamical range is similar for both

model versions and may have even increased in some regions
(blue colors in Fig. 4c). When compared to the annual ampli-
tude in MODIS LAI, CLM4.5 also exhibits higher LAI ampli-
tude in the Mediterranean, in southeast China, and in the
southeastern United States (Fig. 4b). However, there are
exceptions where the annual dynamical range in MODIS is
greater than in CLM (blue regions in Figs. 4a,b), mostly in
evergreen PFTs occupied regions and also over some seasonal
deciduous PFTs (Fig. S3).

In general, the date when LAI reaches 50% of its annual
amplitude occurs later in CLM than in MODIS (Figs. 5 and 6
and Figs. S4 and S5). For temperate and boreal regions, spring
onset in CLM occurs 21.96 26.8 days later in evergreen dom-
inated regions and 8.9 6 15.6 days later in seasonal deciduous
dominated regions than in MODIS (Figs. 2 and 5 and
Fig. S4). In the more southerly regions, which tend to be
dominated by stress deciduous PFTs, CLM can reach the
LAI 50% threshold 60 days (or more) later than MODIS
(Figs. 5 and 6 and Fig. S5). Also, Mediterranean ecosystems
on western coasts usually experience earlier leaf onset than

FIG. 4. Difference in mean annual range of LAI (annual maximum minus annual minimum) averaged between 2003 and 2014.
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eastern coasts at the same latitude in MODIS, but in CLM,
these regions can be dominated by stress deciduous PFTs
and experience not only later spring onset than in MODIS,
but later start of spring than the eastern coasts in CLM
(Fig. S4). Overall, agreements between CLM and MODIS
DOY as well as between CLM4.5 and CLM5.0 increase
northward (Fig. 6).

Outside of the subtropical and Mediterranean regions, both
CLM and MODIS depict similar topographic and latitudinal
gradients of spring onset at continental scales, with the earliest
onset dates occurring in lower latitudes and lower elevations
(Fig. S4). Yet despite these similarities in the gradient of spring
onset, differences as large as 40 days (or more) emerge along
the western edge of North America, the Rocky Mountains,
northeastern Canada, Scandinavia, and western Russia (Fig. 5).
In these areas, positive values (red shading in Figs. 5a,b) indicate
that spring onset occurs more than 30 days later in CLM than in
MODIS, and in general they are in regions where evergreen or
stress deciduous PFTs dominate the grid cell (Figs. 2 and 5 and

Table S1 and Fig. S5). Notably, spring onset is on average over
30 days later in CLM5.0 than in CLM4.5 over evergreen PFTs
and over 20 days later over stress deciduous PFTs (Fig. S5).

Interannual variability in LAI 50% threshold DOY shows
the strongest agreement between CLM and MODIS in high-
latitude regions (north of 608N) over Eurasia and North
America (Fig. 7). In CLM4.5, midlatitude regions (around
408–608N) in North America and central Asia also exhibit
strong (with correlation coefficients close to 0.5) and signifi-
cant correlation with MODIS. In CLM5.0, although the abso-
lute magnitude of LAI values is closer to those displayed in
MODIS (Fig. 3 and Fig. S2), in low- to midlatitude regions
(south of 608N), correlations between LAI 50% threshold
DOY from MODIS and CLM are mostly lower than 0.4 and
not statistically significant, indicating that interannual varia-
tions in the start of spring disagree between these two datasets
(Fig. 7a). Agreements between CLM5.0 and CLM4.5 are also
high and significant in boreal regions (with correlation coeffi-
cients larger than 0.8), but only seasonal deciduous PFTs

FIG. 5. Difference between mean DOY when LAI reaches the 50% threshold of the LAI annual dynamical range. The annual dynamical
range of LAI is defined as the difference between minimum (winter) and maximum (summer) LAI each year.
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dominated locations in temperate regions show high and sig-
nificant correlation (Fig. 7c).

Other than the added precipitation trigger in stress deci-
duous phenology, natural plant phenology schemes are
largely the same in CLM4.5 and CLM5.0, therefore, we also
investigated the soil properties that trigger spring onset. Soil
temperature only exhibits small differences in subtropical and

temperate regions from the GLDAS (Rodell et al. 2004;
described in the supplementary material) and when forced
with different datasets (Fig. S6), except over the Greenland
and in high-altitude regions like the Tibetan Plateau. At
high latitudes (north of 608N), CLM4.5 exhibits warmer
temperature than the GLDAS and CLM5.0 (Figs. S6a,d). The
difference in soil moisture is much larger (Fig. S7). CLM4.5

FIG. 6. Comparison of LAI 50% threshold DOYs derived from different datasets at different latitudes: (first row) 708–858N, (second
row) 558–708N, (third row) 408–558N, and (fourth row) 258–408N (each band includes the upper/northern boundary and excludes the lower/
southern boundary). (a)–(d) LAI 50% threshold DOYs derived from CLM4.5 and MODIS, averaged between 2003 and 2014, for each lat-
itudinal band. (e)–(h) LAI 50% threshold DOYs derived from CLM5.0 and MODIS, averaged between 2003 and 2014, for each latitudinal
band. (i)–(l) LAI 50% threshold DOYs derived from CLM4.5 and CLM5.0, averaged between 2003 and 2014, for each latitudinal band.
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exhibits drier soil than both the GLDAS and CLM5.0, except
in boreal regions in northern Russia and northern Canada
(Figs. S7a,d). CLM5.0 mostly exhibits wetter soil than the
GLDAS, except for a few regions in northern Canada, south-
east and western China, and in northern Russia (Fig. S7b).
On average, CLM5.0 soil moisture in the top 10cm of soil is
more than 50% lager than CLM4.5 in low- to midlatitude
regions (more than 30% drier in Fig. S7d). Although there
are large differences between the amplitude of soil moisture,
both soil temperature and soil moisture show significant cor-
relation between model simulations and the GLDAS (Figs. S8
and S9).

b. Terrestrial productivity

To evaluate plant carbon uptake, we also investigated the
seasonal window of “peak growth,” as indicated by LAI val-
ues over 75% of the annual dynamical range (Fig. 8 and Figs.
S10 and S11). Across the Northern Hemisphere, peak grow-
ing season length decreases northward (Fig. 8). In general,

CLM has a longer peak growing season than MODIS (Figs.
S10a,b and S11). For instance, peak growing season can be
more than 80 days longer in CLM than in MODIS over the
high-elevation regions in Asia and 50 days longer in boreal
regions in North America and Eurasia (Figs. S10a,b). In
CLM5.0, evergreen forest dominated boreal regions (i.e.,
southern coast of the Hudson Bay and northern and eastern
Europe) exhibit longer peak growing season than in both
CLM 4.5 and MODIS (Figs. S10a,c). On average, difference
between CLM and MODIS peak growing season length is the
largest over stress deciduous PFTs and is more than 50 days
in CLM4.5 and more than 35 days in CLM5.0 (Fig. S11).

To characterize how discrepancies in peak growing season
length between CLM and MODIS potentially influence mod-
eled estimates of the terrestrial carbon budget, we calculated
CLM NPP during that period (DNPPpheno, Fig. 9) and how
large the mismatch is compared against annual total NPP
(Fig. 10). Over the Northern Hemisphere, NPP is consistently
overestimated in CLM at high latitudes, in eastern and

FIG. 7. Correlations between (a) CLM5.0 and MODIS, (b) CLM4.5 and MODIS, and (c) CLM5.0 and CLM4.5 LAI 50% threshold DOYs
during 2003–14. Grid points exhibiting significant correlation after adjustment for false positive are marked with a black “x.”
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southwestern United States, and in eastern and southeastern
Asia. For instance, in the southwestern United States,
CLM5.0 estimates 0.05 6 0.02 kgC m22 NPP in the extended
growing season, consisting of 32% 6 13% of total annual net
productivity in CLM (Figs. 9 and 10). Likewise, in eastern
Asia, CLM5.0 estimates 0.2 6 0.05 kgC m22 more NPP per
year in the peak growing season, accounting for 40% 6 10%
of total annual net productivity in that region in CLM. Com-
pared to CLM5.0, CLM4.5 estimates an even larger NPP in
the low to midlatitudes of eastern and southeastern Asia,
Europe, and the United States, but simulates lower annual
NPP in high-latitude regions. Overall, disagreements between
CLM and MODIS peak growing season produce larger NPP
in CLM over the Northern Hemisphere, except for a few
evergreen forest and grassland-dominated locations (Fig. 10).

4. Discussion

Appreciable differences are present in both LAI seasonal
cycle and spring onset timing between CLM simulated phe-
nology and MODIS estimates. The timing of spring onset
derived from satellite remote sensing and CLM exhibits

similar topographic and latitudinal gradients at continental
scales across the Northern Hemisphere (Fig. 5 and Fig. S4).
However, CLM spring onset generally occurs later than
MODIS across most temperate and boreal regions. In CLM,
the start of spring can be delayed for more than 30 days in
high-latitude regions where land cover is dominated by ever-
green needleleaf trees and more than 60 days in arid midlati-
tude regions dominated by grasslands and shrublands (Fig. 5).
The reasons for the delayed spring onset in CLM may be that
CLM onset flag for seasonal deciduous was calibrated using
50% threshold in remote sensing records, i.e., the critical
thresholds of growing degree days or soil moisture that deter-
mines spring onset was originally tuned to the timing when
50% threshold of NDVI is reached in remote sensing, and
the 30-day fixed onset period after that (White et al. 1997;
Lawrence et al. 2019), as well as the lack of seasonality in
evergreen phenology routine in CLM. Although spring onset
timing is later in CLM than in MODIS at high latitudes, inter-
annual variability of LAI thresholds shows the highest corre-
lation in high-latitude regions (Figs. 6 and 7). In addition,
although CLM5.0 represents the seasonal amplitude of LAI
better than CLM4.5 (Fig. 4 and Figs. S2 and S3), CLM5.0 also

FIG. 8. Peak growing season length as indicated by LAI 75% threshold averaged between 2003 and 2014.
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displays a larger difference in mean DOY of LAI thresholds
and weaker correlations when compared against MODIS LAI
(Fig. 7 and Fig. S5).

The phenology routines of CLM affect the start and dura-
tion of terrestrial productivity across a wide range of PFTs.
Mismatches between the start and end dates of the growing
season therefore can translate into large potential discrepan-
cies between the CLM carbon budget and MODIS carbon
budget. Differences between peak growing season lengths
average around 40 days each year, resulting in a large differ-
ence in terrestrial net primary productivity and hence the car-
bon cycle. Over the Northern Hemisphere, the total
difference in modeled NPP due to an excessively long peak
growing season length is 2.17 6 0.79 Pg carbon per year in
CLM5.0 and 2.85 6 1.37 Pg carbon per year in CLM4.5,
accounting for approximately 5% of total estimated Northern
Hemisphere NPP (Li et al. 2017). We note that the bias in
peak growing season length is about 33% in relative terms
(on average 40 days versus a mean peak growing season
length of 120 days); which is substantially larger than the 5%
bias in NPP. One explanation for this is that “extra” days in
autumn are less productive than those in summer, because the
reduced amount of available sunlight, and dry soils, both
serve to limit plant productivity.

Despite the large differences in the start of spring, phenol-
ogy schemes were largely the same in CLM4.5 and CLM5.0,
except for the added precipitation trigger in stress deciduous
phenology. Accordingly, the changes in phenology across
model versions as diagnosed here must primarily be due to

secondary impacts of new or revised CLM processes that
affect phenological triggers. For example, changes in pro-
cesses that affect soil moisture will have a direct influence on
modeled phenological transitions in stress deciduous ecosys-
tems. As a result, while we have seen major improvements
for a range of states and fluxes from CLM4.5 to CLM5.0
(Lawrence et al. 2019; Wieder et al. 2019), plant phenology
shows poorer agreement with MODIS even though the phe-
nology routines have not changed considerably. Because phe-
nology simulation can change without direct modification of
the phenology parameterizations and plant LAIs have impor-
tant implications for productivity and the carbon cycle, it is
important to evaluate not only LAI amplitudes but season
cycles of leaf activity using indicators of seasonal transitions
when assessing model outputs or comparing model performance.

Indeed, interactions among model components increase the
overall challenge of improving CLM phenology, and we
acknowledge that improving model performance for simulat-
ing the seasonality of LAI could have unforeseen ripple
effects that negatively impact model performance for other
key variables or metrics, some of which may be more impor-
tant than phenology itself. However, we argue that improving
modeled phenology should, ultimately, lead to overall better
model performance and enhanced realism. Improving pheno-
logical routines in CLM could be achieved in a variety of
ways. The basic elements of CLM’s phenology routines are
little-changed since the pioneering work of White et al.
(1997). But, in the last two decades, the quality of satellite
phenology data products has dramatically increased. The high

FIG. 9. Annual net primary production produced during the difference window between MODIS peak growing season as indicated by
LAI 75% threshold and that of (a) CLM5.0 and (b) CLM4.5 (i.e., DNPPpheno), averaged between 2003 and 2014.
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quality of MODIS and VIIRS phenological metrics are well
established (Moon et al. 2019; Richardson et al. 2018), and
newer high-resolution data products from the Harmonized
Landsat Sentinel-2 project should further reduce observational
uncertainties. Additionally, near-surface remote sensing now
provides consistent phenological data, at high spatial and tempo-
ral resolution, across a wide range of biomes (Richardson 2019).
These data can be leveraged for phenological model develop-
ment and independent validation (e.g., Melaas et al. 2016;
Hufkens et al. 2016).

A variety of reasons may be causing these differences in
CLM and MODIS plant phenology. One possible source of
differences in the observed and simulated annual cycle of
LAI is a mismatch between CLM PFTs and MODIS land
cover types due to both land cover heterogeneity and the
comparatively coarse spatial resolution of CLM. Another
potential explanation is the different procedures of how leaf
area index is estimated from MODIS products and simulated
in CLM. For example, evergreen phenology in land surface
models is usually designed to have a negligible annual cycle
because a substantial portion of foliage is retained from one
year to the next (Kim et al. 2015; Lawrence and Chase 2010).
By comparison, MODIS LAI is derived from assumptions
about land cover type and observed reflectance, which may
be affected by snow on the ground particularly in evergreen
systems. Therefore, differences between CLM and MODIS
LAI in evergreen-dominant boreal regions likely stem, at
least in part, from observational uncertainties in MODIS,
which tends to overestimate the magnitude of the winter

dormancy signal due to snow cover and hence overestimate
the annual dynamical range (Myneni et al. 2015; Yan et al.
2016). At the same time, constant production by evergreens
in CLM is also not physiologically accurate; the phenology
routines governing evergreen LAI in CLM constrain the tim-
ing and magnitude of phenology as there is no onset and off-
set trigger and growth can happen all year around (as shown
by the evergreen PFTs in Fig. S12). Uncertainties can also rise
from the curve fitting approach we adopted to interpolate the
8-day composite to daily LAI in MODIS (Klosterman et al.
2014). In addition, other problems in the phenology subrou-
tines in CLM may be causing the differences between LAI
observations and simulations. For instance, temperate and
boreal evergreen forests can maintain high LAI values and
exhibit low intra-annual variation, while grasslands at low- to
midlatitude regions experience multiple growing seasons
within one calendar year (Fig. S12).

Simulating terrestrial ecosystems globally with one single
land surface model can be challenging. Large heterogeneity is
present within terrestrial ecosystems, and yet only limited
observations are available to derive the parameters from and
constrained computational power is assigned to the land
surface components in Earth system models. CLM has full
parameter sets for 14 different natural plant functional
types and fitting the entire terrestrial natural ecosystems
with 14 sets of parameters can be hard. LAI biases have
improved from CLM4.5 to CLM5.0 and a few previously
simplified biogeophysical and biogeochemical processes
have been added into CLM5.0, such as fixation and uptake

FIG. 10. Fraction of total annual net primary production (DNPPpheno/total NPP) that is produced during the difference window between
MODIS peak growing season as indicated by LAI 75% threshold and that of (a) CLM5.0 and (b) CLM4.5, averaged between 2003 and 2014.
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of nitrogen and evaporative influences on plant hydrology.
However, compared to CLM4.5, CLM5.0 shows larger
disagreements with MODIS start of spring dates (Figs. 5
and 6), and leaf phenology modifies the simulated carbon
cycle in the model.

Model improvement can be envisioned at a variety of lev-
els. First, if the underlying theory is sound, improvement
might only require better model parameters (characterizing,
for example, temperature, photoperiod and moisture sensitiv-
ities or thresholds) that are more representative at the global
scale. These parameter estimates can be conditioned on
observational data to minimize the mismatch between obser-
vations and model simulations. Second, if the observational
data indicate that the existing process representation is inade-
quate, additional processes or functional representations of
processes can be incorporated in the model for specific pheno-
logical strategies or PFTs (Chen et al. 2016; Dahlin et al.
2015). Finally}and more ambitiously}the wealth of obser-
vational data now available should allow for careful evalua-
tion of whether additional phenological strategies or PFTs
need to be included, or whether phenological model parame-
ters and/or structure need to vary within existing PFTs. Data
assimilation (e.g., Stöckli et al. 2008; Ling et al. 2019) and
machine learning (Czernecki et al. 2018) methods may find
use in these efforts. In addition to mean and peak LAI, future
work should also compare seasonal variability of plant phe-
nology in LSMs with different phenology schemes or parame-
ters to assess the phenology simulations and their potential
influences on the carbon cycle. In this study, we present a
suite of indicators that facilitate the comparison of phenology
between models and observations and identify potential
biases induced by nonphenological changes in the model. We
believe that through rigorous model–data fusion (Williams
et al. 2009) it should be possible to develop improved pheno-
logical routines for CLM that are robust in both time and
space.

5. Conclusions

Spring onset indicators based on LAI thresholds are critical
for identifying sources of mismatch/bias in timing that would
be otherwise difficult to see in seasonal mean values at
monthly scales. Our results reveal large discrepancies in the
start of spring dates between MODIS and CLM as well as
between CLM4.5 and CLM5.0. Across the Northern Hemi-
sphere, CLM generally simulates later spring onset timing
and longer growing season than presented in MODIS.
Although CLM5.0 provides better representation of LAI
absolute values and seasonal amplitudes than CLM4.5, the
start of spring timing shows less agreement between CLM5.0
and MODIS. These disagreements in the start of spring and
growing season length can result in large biases in terrestrial
productivity simulations (approximately 5% of total esti-
mated Northern Hemisphere NPP). In addition, although the
phenology routines have not changed considerably from
CLM4.5 to CLM5.0 and despite the broad improvements for
a range of states and fluxes including LAI amplitudes,
CLM5.0 phenology shows large differences from CLM4.5 and

a poorer agreement with MODIS in the timing of the seasonal
cycle.

Temporal correlations between CLM and MODIS LAI
thresholds at each grid point are mostly not statistically signif-
icant except in high-latitude regions. These findings suggest
that there are fundamental differences in the environmental
sensitivity of phenology derived from MODIS and CLM,
especially for evergreen and grassland plant functional types
in the Northern Hemisphere. These differences need to be
resolved in order to increase confidence in model-based simu-
lations both of land–atmosphere coupling, and phenological
responses to climate change and climate variability. Model
improvement can be guided by the wealth of satellite and
near-surface remote sensing data now available at high spatial
resolution and temporal frequency, leveraging state-of-the-art
parameter estimation and data assimilation techniques that
have been developed and applied to land surface models over
the last decade. Improving phenological routines in CLM
should enable better representation of seasonal patterns of
land–atmosphere carbon, water, and energy fluxes and hence
land–atmosphere feedbacks more generally.
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