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Abstract— This paper presents an experimental evaluation
of different line extraction algorithms on 2D laser scans
for indoor environment. Six popular algorithms in mobile
robotics and computer vision are selected and tested. Exper-
iments are performed on 100 real data scans collected in an
office environment with a map size of 80m× 50m. Several
comparison criteria are proposed and discussed to highlight
the advantages and drawbacks of each algorithm, including
speed, complexity, correctness and precision. The results of
the algorithms are compared with the ground truth using
standard statistical methods.

Index Terms— Line Extraction, 2D Laser Rangefinder,
Vision, Mobile Robotics.

I. INTRODUCTION

It is usually important in mobile robotics that the robot

wants to know where it is in a known or unknown envi-

ronment. A precise position estimation always serves as

the heart in any navigation systems, such as localization,

dynamic map building, path planning. It is well known that

using solely the data from odometry is not sufficient since

the odometry provides unbounded position error [12]. The

problem gives rise to variety solutions of using different

exteroceptive sensors (sonar, infrared, laser, vision, etc.).

One of the possible choices is to use 2D laser rangefinder

as it becomes increasingly popular in mobile robotics. For

example, laser scanners have been used in localization [4],

[13], dynamic map building [14], [10], [3], [21], collision

avoidance [16]. There are many advantages of laser scanner

compared to other sensors: it provides dense and more

accurate range measurements, it has high sampling rate,

high angular resolution, good range distance and resolution.

The primary issue is how to accurately match sensed

data against information in a priori map or information that

has been collected so far. There are two common matching

techniques that have been used in mobile robotics: point-

based matching and feature-based matching. The early

work of Cox [4] uses range data in a small polygonal

environment to help the robot localizing. He proposes

a matching algorithm between point images and target

models in a priori map using an iterative least-squares

minimization method. Another work [14] addresses the

problem of self-localization in an unknown environment,

not necessarily polygonal. The proposed approach is to

approximate the alignment of two consecutive scans, and

then iteratively improve the alignment by defining and

minimizing some distance between the scans.

Instead of working directly with raw scan points, feature-

based matching first transforms the raw scans into geo-

metric features. These extracted features are used in the

matching in the next step. This approach has been studied

and employed intensively in recent research on robot lo-

calization, mapping, feature extraction, etc. [3], [11], [13].

Being more compact that they require much less storage

and still provide rich and accurate information, algorithms

based on parameterized geometric features are expected to

be more efficient compared to point-based algorithms.

Among many geometric primitives, line segment is the

simplest one. It is easy to describe most office environment

using line segments. Many algorithms have been proposed

using line features from 2D range data. Castellanos et

al. [3] propose a line segmentation method inspired from

an algorithm in computer vision, to use with a priori

map as an approach to robot localization. Vandorpe et al.

[22] introduce a dynamic map building algorithm based

on geometrical features (lines and circles) using a laser

scanner. Arras et al. [1] use a 2D scan segmentation method

based on line regression in map-based localization. Jensfelt

et al. [13] present a technique for acquisition and tracking

of the pose of a mobile robot with a laser scanner by

extracting orthogonal lines (walls) in an office environment.

Finally, Pfister et al. [17] suggest a line extraction algorithm

using weighted line fitting for line-based map building.

In the fact that many works have been done on line

extraction, there is a lack of a comprehensive comparison

of the so far proposed algorithms. Selecting a best method

to extract lines from scan data is the first task for anyone

who is going to build a line-based navigation system using

2D laser scanner. In term of speed, one would prefer the

fastest algorithm for his real time application. In term of

line extraction quality, it is primarily important for line-

based SLAM because bad feature extraction can lead the

system to divergence. Implementation complexity should

be also taken into consideration.

The work described in [11] gives a brief comparison

of 3 algorithms which are relatively out of date compared

to ones found in recent works. Moreover, the uncertainty

modeling of the parameters used is not mentioned. Borges

et al. [2] present an extended version of split-and-merge and

compare their method with a generic split-and-merge algo-



rithm and a line tracking (incremental) algorithm. However

the comparison on real data is indirectly interpreted from

the map built by the mapping process.

This paper presents a throughout evaluation of six line

extraction algorithms on range scans. The six selected algo-

rithms are the most commonly used in mobile robotics and

computer vision. Several comparison criteria are proposed

and discussed, including speed, complexity, correctness,

precision. Experiments are performed on 100 real data

scans collected in an office environment with a map size

of 80m×50m. The results of the algorithms are compared

with the ground truth using standard statistical methods.

II. PROBLEM DEFINITION

A range scan describes a 2D slice of the environment.

Points of a range scan are specified in polar coordinate

system (ρi, θi) whose origin is the location of the sensor. It

is common to assume that the noise on range measurement

follows a gaussian distribution with zero mean, variance

σ2
ρi

and the angular uncertainty is negligible [1]. (Note:

In this work, we focus on the performance of algorithms’

schema, we do not consider systematic errors as they

mainly depend on a specific hardware and testing envi-

ronment [5]. Sensor calibration can be further investigated

by a separate work.)

We choose the polar form to represent a line model:

x cosα + y sinα = r

where −π < α <= π is the angle between the x axis

and the normal of the line, r >= 0 is the perpendicular

distance of the line to the origin; (x, y) is the Cartesian

coordinates of a point on the line. The covariance matrix

of line parameters is:

cov(r, α) =

[

σ2
r σrα

σrα σ2
α

]

There are three main problems in line extraction in un-

known environment [9]. They are:

• How many lines are there ?

• Which points belong to which line ?

• Given the points that belong to a line, how to estimate

the line model parameters ?

In implementing the algorithms, we try to use as much

common routines as possible, so that the experimental

results reflect mainly the differences of the algorithms’

schema. Particularly for the third problem, we use a

common fitting method, called total-least-squares, for all

the algorithms since it has been used extensively in the

literature [1], [13], [7], [14], [18]. Hence, the algorithms

differ only in solving the first two problems.

III. SELECTED ALGORITHMS AND RELATED WORK

This section briefly presents the descriptions of the six

selected line extraction algorithms on 2D range scans. Our

selection is based on their performance and popularity in

both mobile robotics, especially feature extraction, and

computer vision. Only basic versions of the algorithms

are given, even though their details may vary in different

applications and implementations. Interested reader should

refer to the indicated references for more details. Our

implementation follows closely the pseudo-code described

below in most cases, otherwise it will be stated.

A. Split-and-Merge Algorithm

Split-and-Merge is probably the most popular line extrac-

tion algorithm which is originated from computer vision

[15]. It has been studied and used in many works [3], [7],

[18], [2], [23].

Algorithm 1: Split-and-Merge

Initial: set s1 consists of N points. Put s1 in a list L1

Fit a line to the next set si in L2

Detect point P with maximum distance dP to the line3

If dP is less than a threshold, continue (go to 2)4

Otherwise, split si at P into si1 and si2, replace si in5

L by si1 and si2, continue (go to 2)

When all sets (segments) in L have been checked,6

merge collinear segments.

We make a slight modification to line 3 so that we scan

for a splitting position where 2 adjacent points P1 and P2

are at the same side to the line and both have distances to

the line greater than the threshold (if only 1 such point is

found, it is ignored as a noisy point). Notice that in line 2,

we use a least-squares method for line fitting.

One can implement differently so that the line is con-

structed simply by connecting the first and the last points.

In this case, the algorithm is named Iterative-End-Point-Fit

[6], [18], [2], [23].

B. Line Regression Algorithm

This algorithm is proposed in [1] for map-based localiza-

tion. The key idea is inspired from the Hough Transform

algorithm so that the algorithm first transforms the line

extraction problem into a search problem in model space

(line parameter domain), then applies the Agglomerative

Hierarchical Clustering (AHC) algorithm to construct ad-

jacent line segments. One drawback of this algorithm is

that it is quite complex to implement.

Algorithm 2: Line-Regression

Initialize sliding window size Nf1

Fit a line to every Nf consecutive points (a window)2

Compute a line fidelity array, each is the sum of3

Mahalanobis distances between every 3 adjacent

windows

Construct line segments by scanning the fidelity array4

for consecutive elements having values less than a

threshold, using an AHC algorithm

Merge overlapped line segments and recompute line5

parameters for each segment

The sliding window size Nf is very dependent on environ-

ment and has great influence on the algorithm performance.



For our benchmark, Nf = 7 is used. A total-least-squares

fitting method is used in line 2.

C. Incremental Algorithm

Simplicity is the main advantage of this algorithm. It has

been used in many applications [9], [22], [20] and has a

different name as Line-Tracking [18].

Algorithm 3: Incremental

Start by the first 2 points, construct a line1

Add the next point to the current line model2

Recompute the line parameters3

If it satisfies line condition, continue (go to 2)4

Otherwise, put back the last point, recompute the line5

parameters, return the line

Continue with the next 2 points, go to 26

In our implementation, we add 5 points each step (line 2)

to speed up the incremental process. When the line does

not satisfy a predefined line condition, the last 5 points are

put back and it is switched back to adding individual point

at a time. Again, we use a total-least-squares method for

line fitting (line 3, 5).

D. RANSAC Algorithm

RANSAC - Random Sample Consensus [8] is an algorithm

for robust fitting of models in the presence of data outliers.

The main advantage of RANSAC is that it is a generic

segmentation method and can be used with many types

of features once we have the feature model. It is also

simple to implement. This algorithm is very popular in

computer vision to extract features [9]. Again, the same

fitting method is used in line 4, 7.

Algorithm 4: RANSAC

Initial: A set of N points1

repeat2

Choose a sample of 2 points uniformly at random3

Fit a line through the 2 points4

Compute the distances of other points to the line5

Construct the inlier set6

If there are enough inliers, recompute the line7

parameters, store the line, remove the inliers from

the set
until Max.N.Iterations reached or too few points left8

E. Hough Transform Algorithm

Hough Transform (HT) tends to be most successfully

applied to line finding on intensity images [9]. It has been

brought in to robotics for extracting line from scan images

[13], [17]. There are some drawbacks with HT:

• It is usually difficult to choose an appropriate grid

size.

• Basic HT does not take noise and uncertainty into

account when estimating the line parameters.

To overcome the second problem, we use a total-least-

squares method for line fitting (line 7).

Algorithm 5: Hough-Transform

Initial: A set of N points1

Initialize the accumulator array (model space)2

Construct values for the array3

Choose the element with max. votes Vmax4

If Vmax is less than a threshold, terminate5

Otherwise, determine the inliers6

Fit a line through the inliers and store the line7

Remove the inliers from the set, goto 28

F. EM Algorithm

This algorithm, Expectation-Maximization (EM), is a

probabilistic method and commonly used in missing vari-

able problems. EM has been used as a line extraction tool

in computer vision [9] and robotics [17]. There are some

drawbacks of EM algorithm:

• It can be trapped in local minima

• It is difficult to choose a good initial values

Algorithm 6: EM

Initial: A set of N points1

repeat2

Randomly generate parameters for a line3

Initialize weights for remaining points4

repeat5

E-Step: Compute the weights of the points6

from the line model

M-Step: Recompute the line model parameters7

until Max.N.Steps reached or convergence8

until Max.N.Trials reached or found a line9

If found, store the line, remove the inliers, go to 210

Otherwise, terminate11

G. Some extra

As already mentioned, we use the same total-least-

squares method to compute the line parameters of a line

and their covariance matrix once we have a set of inliers

extracted by the algorithms. This technique overcomes the

well known bias problem of least-squares method where it

tends to put more weight on noisy, outlying points [9]. For

the equation details, please refer to [1].

We make use of a simple clustering algorithm for filter-

ing largely noisy points and coarsely dividing a raw scan

into contiguous groups (clusters). The algorithm works

similarly to the Successive Edge Following - SEF algorithm

[18]. Briefly, it scans the raw scan points that are returned

in sequence from the hardware interface module, for big

jumps in radial differences of consecutive points and puts

break-points to those positions. As a result, the scan is seg-

mented into contiguous clusters of points. Clusters having
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Fig. 1. (a) The mobile base of the RoboX; (b) A laser rangefinder SICK
LMS291-S05

too few number of points are removed. To be conservative

and not to falsely break any true line segments, we use

very large values for the thresholds.

Due to occlusions, a line may be observed and extracted

as several segments. Localization algorithms usually use

line parameters (r, α) in position estimation [22], [1]. Thus,

it is usually a good idea to merge collinear line segments

into one line segment. It results in a longer, hence more

reliable, segment, reducing number of lines to process

and still containing the same information. Therefore, we

implement a merging routine that is applied at the output

end of each algorithm, after segments have been extracted.

The routine uses a standard statistical method, called Chi2-

test, to compute a Mahalanobis distance between each pair

of line segments based on already computed covariance

matrices of line parameters. If 2 line segments have statis-

tical distance less than a threshold, they are merged. The

new line parameters are recomputed from the raw scan

points that constitute the 2 segments.

IV. EXPERIMENTAL COMPARISON

A. The Experiment Setup

For the experiment, we use the mobile base of the

robot RoboX [19] which is equipped with 2 CPUs, 2 laser

sensors. The robot is running a real-time operating system

(RTAI Linux) with an embedded obstacle avoidance system

and a remote control module via wireless network (see

Fig.1).

The laser sensors are 2 laser rangefinders SICK-LMS

291-S05. Each sensor has a maximum measurement range

of 80m, a range resolution of 10mm and a statistical

error standard deviation of 10mm at normal reflectivity

condition. A sensor is able to scan an angle of 0◦ − 180◦

with selectable angular resolutions 0.25◦, 0.50◦, 1.00◦. The

maximum sampling frequency is 37Hz. Combination of 2

SICK laser scanners enables the robot to scan a full 360◦.

In our experiment, we use a maximum scan range of 7.0m,

an angular resolution of 0.5◦ and a sampling rate of 3Hz.

To collect the benchmarking dataset, we choose our lab-

oratory hallway which is a polygonal environment with a

map size of 80m×50m. The hallway contains many walls,

doors, cupboards that are good targets for line extraction.

There are also table legs, chair legs, glass windows. We let

the RoboX navigating the environment while the direction

and speed are being remotely controlled. The experiment
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Fig. 2. The ASL hallway map by accumulating 100 raw scans. The red
triangles represent the robot positions at which the scans are taken.

is carried out during the working hours so that the robot

observes people moving around regularly. During the whole

experiment, the robot makes 5122 observation steps. The

benchmarking dataset consists of 100 scans selected every

50 observation steps. The hallway map accumulated by

those 100 scans are shown in Fig.2.

The algorithms are programmed in C. The benchmarks

are performed on a laptop with PentiumM-1.7GHz and

1GB of memory.

Choosing parameter values is an important task since al-

gorithm performances are very sensitive to the values used.

We divide the parameters of each algorithm into 2 types:

common parameters and algorithm specific parameters.

Common parameters are those shared by all the algorithms.

Certainly to have a fair comparison, we want to use as many

common parameters as possible. The following values are

chosen according to the sensor hardware and the hallway

environment:

• MinNumPoints = 9: Minimum number of points

per line segment.

• MinLength = 40cm: Minimum physical length of a

line segment.

• σsensor = 1cm: Standard deviation of range measure-

ment uncertainty of laser rays.

• InlierThreshold = 2.0cm: Maximum distance from

a point to a line that the point is considered inlier to

the line.

• V alidGate = 2.77: The threshold used in the merging

routine (which corresponds to the 75% confidence

interval).

The value MinNumPoints = 9 is used for the reason

that the hallway is quite narrow, extracted line segments

tend to have highly concentrated points. We choose a quite

big value for MinLength (40cm) to get rid of spurious

scan points observed on moving people. The parameter

InlierThreshold is used in all the algorithms that only

inliers to the line will constitute the line model calculation.



TABLE I

EXPERIMENTAL RESULTS OF THE ALGORITHMS

Algorithm Complexity
Speed

N.Lines

Correctness Precision

TruePos FalsePos σ∆r σ∆α

[Hz] [%] [%] [cm] [deg]

Split-Merge + Clus. N × logN 1470 641 86.0 8.9 1.95 0.74

Incremental
S ×N2

344 561 77.8 5.9 2.04 0.72

Incremental + Clus. 617 567 79.2 5.1 2.04 0.76

Line Regression
N ×Nf

364 577 76.4 10.1 1.99 0.80

LR + Clus. 384 562 75.8 8.4 1.97 0.79

RANSAC
S ×N ×N.Trials

29 749 75.6 31.5 1.68 0.77

RANSAC + Clus. 93 547 70.7 12.2 1.37 0.70

Hough Transform
S×N×NC +S×NR×NC

8 825 82.0 32.5 1.63 0.76

HT + Clus. 9 600 79.5 10.0 1.51 0.67

EM
S ×N1×N2×N

0.6 1153 78.6 53.7 2.09 0.97

EM + Clus. 0.7 709 80.3 23.1 1.58 0.73

It is assumed that there is no noise error on angular

measurements.

Algorithm specific parameters are chosen based on ex-

perimental tuning so that a best performance is obtained

among several runs with different settings.

To determine the correctness of the lines extracted by

each algorithm, we define a set of “truth lines” that contains

manually extracted lines of the selected scans. The values

MinNumPoints = 9 and MinLength = 40cm are taken

into account during the manual extraction. The standard

deviations of line parameters are σT
r = 0.03m, σT

α =
0.03rad for all the true lines. In total of 100 selected scans,

there are 679 true lines (≈ 7 lines/scan in average). The

extracted lines by the algorithms are then compared with

the true lines to find the matched pairs using the Chi2-test

with a matching valid gate value MatchV alidGate = 2.77
(75% confidence interval).

B. The Results

In order to illustrate the experimental results, four quality

measures are evaluated: complexity, speed, correctness and

precision. The benchmark results are shown in Tab.I. There

are 11 candidates, in which 6 of them are the selected

algorithms combined with our simple clustering algorithm

(shown as “Clus.”). The other 5 candidates are the basic

versions of the corresponding algorithms. The terminology

used is explained as follows (the values used are in paren-

theses):

• N : Number of points in an input scans (722)

• S: Number of line segments extracted (7 in average,

depending on algorithm)

• Nf : Sliding window size for Line-Regression (9)

• N.Trials: Number of trials for RANSAC (1000)

• NC, NR: Number of columns, rows respectively for

the HT accumulator array (NC = 401, NR = 671 for

resolution rres = 1cm, αres = 0.9◦)

• N1, N2: Number of trials and convergence iterations,

respectively, for EM (N1 = 50, N2 = 200).

The common routines clustering, total-least-squares fitting

and merging all have a complexity of N .

The correctness measures are defined as follows:

TruePos = N.Matches
N.TrueLines

FalsePos = N.LineExByAlgo−N.Matches
N.LineExByAlgo

where N.LineExByAgo is the number of lines extracted

by an algorithm, N.Matches is the number of matches to

true lines and N.TrueLines is the number of true lines.

To determine the precision, we define the following two

sets of errors on line parameters:

{∆r : ∆ri = ri − rT
i , i = 1..n}

{∆α : ∆αi = αi − αT
i , i = 1..n}

where n is the number of matched pairs, rT
i , αT

i are line

parameters of a true line, ri, αi are line parameters of the

corresponding matched line (extracted by an algorithm).

Here we make an assumption that the error distributions

are gaussian. The variances of the two distributions are

computed as follows:

∆̄r = 1

n

∑

∆ri ; σ2

∆r = 1

n−1

∑

(∆ri − ∆̄r)2

∆̄α = 1

n

∑

∆αi ; σ2

∆α = 1

n−1

∑

(∆αi − ∆̄α)2

where n is approximately 400 − 600. (Notice that we use
1

n−1
instead of 1

n
for unbiased variances.)

For nondeterministic RANSAC-based and EM-based al-

gorithm, the values shown are the average after 10 runs.

As shown in the column 3, the first 5 algorithms,

which are based on Split-and-Merge, Incremental and Line-

Regression, perform much faster than the others. This

is mainly because these 5 algorithms are not based on

nondeterministic methods and especially, they make use

of the sequencing characteristic of the raw scan points.

Split-and-Merge algorithm, being in the class of divide-

and-conquer algorithms, takes the lead. The performance

1470Hz also agrees with the algorithm complexity as

being the fastest. Notice that with the clustering algorithm,

Incremental performs almost double the speed.



In term of correctness, the Incremental-based algorithms

seem to perform best, since they have very low number of

false positives, which is very important for SLAM. Being

better in TruePos, Split-and-Merge+Clus could be the

best choice for localization with a priori map. Again, the

algorithms based on RANSAC and EM perform poorly as

they make very high FalsePos. This can be explained by

the fact that, since they do not use the sequencing property

of the scan points, they often try to fit lines falsely across

the scan map. This could be reduced by increasing the

minimum number of points per line segment. However,

short segments maybe left out.

In spite of bad speed and correctness, algorithms based

on RANSAC, HT and EM+Clus. produce relatively more

precise lines. One of the reasons is that these algorithms

tend to include good inliers only, rather than to maximize

number of points following the scan sequence as in other

algorithms. For instance, with RANSAC, if more iterations

are performed, the fitted line is getting closer to the stable

position (local minimum), or in HT, a ’bad’ (largely noisy)

inlier of a line may put its vote into an adjacent grid cell

(of the cell representing the line) and does not get included.

Hence, the extracted line model parameters are not affected

by the noise error of ’bad’ inliers.

Overall, Split-and-Merge and Incremental are the pre-

ferred candidates for SLAM, because of their speed and

good correctness. For real-time applications, Split-and-

Merge is clearly the best choice by its superior speed. It is

also the first choice for localization problems with a priori

map, where FalsePos is not very important. However,

a right choice highly depends on the applications and

implementation details.

V. CONCLUSION AND FUTURE WORK

This paper has presented an experimental evaluation of

the six line extraction algorithms using 2D laser scanner

which are commonly used in feature extraction in mobile

robotics and computer vision. The basic versions of the

algorithms are implemented and tested on a benchmarking

dataset consisting of 100 real data scans which is collected

from an office environment with a map size of 80m×50m.

Line segments extracted by the algorithms are compared

with the manually extracted lines using standard statis-

tical methods. Several comparison criteria are proposed

and discussed in details to highlight their advantages and

drawbacks. The experimental results show that the two

algorithms Split-and-Merge and Incremental are preferred

by their superior speed and correctness.

For future work, we plan to investigate and validate

the results with different testing conditions, e.g. other

environments, different robot speeds, etc.
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