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A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining

Markus Brameier and Wolfgang Banzhaf

Abstract—We introduce a new form of linear genetic program-
ming (GP). Two methods of acceleration of our GP approach are
discussed: 1) an efficient algorithm that eliminates intron code and
2) a demetic approach to virtually parallelize the system on a single
processor. Acceleration of runtime is especially important when
operating with complex data sets, because they are occuring in
real-world applications. We compare GP performance on medical
classification problems from a benchmark database with results
obtained by neural networks. Our results show that GP performs
comparable in classification and generalization.

Index Terms—Data mining, evolutionary computation, genetic
programming, neural networks.

I. INTRODUCTION

GENETIC programming (GP) has been formulated origi-
nally as an evolutionary method for breeding programs

using expressions from the functional programming language
LISP [15]. We employ a new variant of linear GP (LGP) that
uses sequences of instructions of an imperative programming
language. More specifically, the method operates on genetic
programs that are represented as linear sequences of C instruc-
tions. One strength of our LGP system is that noneffective code,
called introns, i.e., dispensible instructions that do not affect
program behavior, can be removed before a genetic program
is executed during fitness calculation. This does not cause any
changes to the individuals in the population during evolution or
in behavior, but it results in an enormous acceleration in execu-
tion speed.

Introns are also found in biological genomes, in which they
appear in DNA of eucaryotic cells. It is interesting to realize that
these natural introns are also removed before proteins are syn-
thesized. Although eliminating introns reduces total runtime, a
demetic population has been employed to decrease the training
time further, even on a serial machine.

GP and artificial neural networks (NNs) can be seen as alter-
native techniques for the same tasks, like, e.g., classification and
approximation problems. In the analysis of medical data, NNs
have become an alternative to classic statistical methods in re-
cent years. Ripley and Ripley [23] have reviewed several NN
techniques in medicine, including methods for diagnosis and
prognosis tasks, especially survival analysis. Most applications
of NNs in medicine refer to classification tasks. A comprehen-
sive list of medical applications of NNs can be found in [4].
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In contrast to NNs, GP has not been used extensively for med-
ical applications to date. Grayet al. [11] report from an early
application of GP in cancer diagnosis, where the results had
been found to be better than with an NN. In [16], a grammar-
based GP variant is used for knowledge extraction from medical
databases. Rules for the diagnosis have been derived from the
program tree that uncover relationships among data attributes.
The outcomes of different types of classifiers, including NNs
and genetic programs, are combined in [25]. This strategy re-
sults in an improved prediction of thyroid normal and thyroid
carcinoma classes.

In the present paper, GP is applied to medical data widely
tested in the machine learning community. More specifically,
our linear variant of GP is tested on six diagnosis problems that
have been taken from the PROBEN1 benchmark set of real-world
problems [21]. The main objective here is to show that for these
problems, GP is able to achieve classification rates and gener-
alization performance similar to NNs. The application further
demonstrates the ability of GP in data mining, in which general
descriptions of information are to be found in large real-world
databases. For supervised learning tasks, this normally means to
create predictive models, i.e., classifiers or approximators, that
generalize from a set of learned data to a set of unknown data.

The paper is organized as follows. In Section II, the GP para-
digm in general and LGP in particular are introduced. We further
present an efficient algorithm that removes noneffective code
from linear genetic programs before execution. A detailed de-
scription of the medical data we have used can be found in Sec-
tion III. The setup of all experiments is described in Section IV,
whereas Section V presents results concerning intron elimina-
tion, classification ability, and training time. Finally, we discuss
some prospects for future research.

II. GENETIC PROGRAMMING

Evolutionary algorithms(EA) mimic aspects of natural evo-
lution to optimize a solution toward a defined goal. Following
Darwin’s principle of natural selection, differential fitness ad-
vantages are exploited in a population to lead to better solu-
tions. Different research subfields of evolutionary algorithms
have emerged, such asgenetic algorithms[12], evolution strate-
gies [24], andevolutionary programming[8]. In recent years,
these methods have been applied successfully to a wide spec-
trum of problem domains, especially in optimization. A general
evolutionary algorithm can be summarized as follows.

Algorithm 1 (Evolutionary Algorithm):

1) Randomly initialize a population of individual solutions.
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Fig. 1. Crossover in tree-based GP. Subtrees in parents are selected and exchanged.

2) Randomly select individuals from the population, and com-
pare them with respect to their fitness. Thefitnessmeasure
defines the problem the algorithm is expected to solve.

3) Modify fitter individuals using some or all of the following
variation operations:

• Reproduction—Copy an individual without change.
• Recombination—Exchange substructures between

two individuals.
• Mutation—Exchange a unit in an individual at a

random position.

4) If the termination criterion is not reached, .
5) Stop. The best individual represents the best solution found.

A comparatively young and growing research area in the
context of evolutionary algorithms is GP that uses computer
programs as individuals. In early work, Friedberg [9], [10]
attempted to solve simple problems by teaching a computer
to write computer programs. Because of his choice of search
strategy, however, he failed. Based on the success of EAs
in the 1980s, Cramer applied an evolutionary algorithm to
computer programs. Programs were already represented as
variable-length tree structures in his TB language [7]. It was
then with the seminal work of Koza [14], [15] that the field of
GP really took off.

In GP, the individual programs map-given input–output ex-
amples, calledfitness cases, whereas their fitness depends on the
mapping error. The inner nodes of the program trees are func-
tions, and the leafs areterminalsthat mean input variables or
constants. The operators applied to generate individual variants,
i.e., recombination and mutation, must guarantee that no syntac-
tically incorrect programs are allowed to be generated during
evolution (syntactic closure). Fig. 1 illustrates the recombina-
tion operation in atree-basedGP system.

In recent years, the scope of GP has expanded considerably
and now includes evolution of linear and graph representations
of programs as well, in addition to tree representations [3]. A
strong motivation for investigating different program represen-
tations in GP is that for each representation form as well as for
different learning methods in general, problem domains exist
that are more suitable than are others.

A. Linear Genetic Programming

In the experiments described below, we uselinear GP, a GP
approach with a linear representation of individuals. Its main
characteristic in comparison to tree-based GP is that expressions
of a functional programming language (like LISP) are substi-
tuted by programs of an imperative language (like C).

The use of linear bit sequences in GP again goes back to
Cramer and his JB language [7]. Cramer later discarded his
approach in favor of a tree representation. A more general
linear approach was introduced by Banzhaf [2]. Nordin’s idea
of using machine code for evolution was the most radical
“down-to-bones” approach [17] in this context. It was subse-
quently expanded [18] and led to the automatic induction of
machine code by genetic programming (AIMGP) system [3],
[20]. In AIMGP, individuals are manipulated directly as binary
machine code in memory and are executed directly without
passing an interpreter during fitness calculation. This results in
a significant speedup compared with interpreting systems. Be-
cause of their dependence on specific processor architectures,
however, AIMGP systems are restricted in portability.

Our LGP system implements another variant of LGP. An indi-
vidual program is represented as a variable-length string com-
posed of simple C instructions. An excerpt of a linear genetic
program is given as follows.
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Fig. 2. Crossover in LGP. Continuous sequences of instructions are selected and exchanged between parents.

{

}

The instruction set(or function set) of the system is com-
posed of arithmetic operations, conditional branches, and func-
tion calls. The general notation of eachinstruction typelisted
in Table I shows that—except for the branches—all instructions
implicitly include an assignment to a variable (destination
variable). This facilitates the use of multiple program outputs
in LGP, whereas in tree-based GP those side effects need to be
incorporated explicitly.

Instructions either operate on two variables (operand vari-
ables) or on one variable and one integer constant. At the be-
ginning of program execution, these variables hold the program
inputs, and at the end, the program output(s). Variables and con-
stants form the “terminal set” of LGP. Each instruction is en-
coded into a four-dimensional vector that holds the instruction
identifier, indexes of all participating variables, and a constant
value (optionally). For instance, is represented as

. Because each vector component uses one byte
of memory only, the maximum number of variables is restricted
to 256 and constants range from 0 to 255 at maximum. This rep-
resentation allows an efficient recombination of the programs as
well as an efficient interpretation.

TABLE I
INSTRUCTIONS INLGP

Partially defined operations and functions are protected by
returning a constant value (here, 1) for all undefined inputs. Se-
quences of branches are interpreted asnested brancheslike in
C that allows complex conditions to be evolved. If the condi-
tion of a branch or nested branch is false, only one instruction
is skipped, namely, the next nonbranch in the program. This
treatment of conditionals has enough expressive power because
leaving out or executing a single instruction can deactivate much
of the preceding effective code or reactivate preceding noneffec-
tive code, respectively (see Section II-B).

The evolutionary algorithm of our GP system appliestour-
nament selectionand puts the lowest selection pressure on the
individuals by allowing only two individuals to participate in a
tournament. The loser of each tournament is replaced by a copy
of the winner. In such asteady-stateEA, the population size is
always constant and determines the number of individuals cre-
ated in onegeneration.

Fig. 2 illustrates thetwo-point string crossoverused in LGP
for recombining two tournament winners. A segment of random
position and random length is selected in each of the two parents
and exchanged. If one of the resulting children would exceed
the maximum length, crossover is aborted and restarted with
exchanging equally sized segments.

The crossover points only occurbetweeninstructions.Inside
instructions, themutationoperation randomly replaces the in-
struction identifier, a variable, or the constant (if existent) by
equivalents from valid ranges. Constants are modified through
a certain standard deviation (mutation step size) from the current
value. Exchanging a variable, however, can have an enormous
effect on the program flow that might be the reason why in LGP,
high mutation rates have been experienced to produce better re-
sults.

In GP, the maximum size of the program is usually restricted
to prevent programs from growing without bound. In our LGP
system, the maximum number of instructions allowed per pro-
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Fig. 3. Elimination of intron code (white) in LGP. Only effective code (black) is copied to the execution buffer.

gram has been set to 256. For all tested problems, this configu-
ration has been experienced to be a sufficient maximum length.
Nevertheless, individual programs of maximum length can still
vary in size of their effective code (effective length; see Sec-
tion II-B). Because each instruction is encoded into four bytes
of memory, an individual holds at most 1 KB of memory. That
makes the system memory efficient as well.

B. Removing Introns at Runtime

In nature,intronsdenote DNA segments in genes with infor-
mation that is not expressed in proteins. The existence of introns
in eucaryotic genomes may be explained in different ways: 1)
because the information for one gene is often located on dif-
ferentexons(gene parts that are expressed), introns may help to
reduce the number of destructive recombinations between chro-
mosomes by simply reducing the probability that the recombi-
nation points will fall within an exon region [28]. In this way,
complete protein segments encoded by specific exons are more
frequently mixed than interrupted during evolution. 2) Perhaps
even more important for understanding the evolution of higher
organizms is the realization that new genetic material can be
“tested” while retaining a copy of the original information in
intron code.

After the DNA is copied, the introns are removed from the
resultingmessenger-RNA that actually participates in gene ex-
pression, i.e., protein biosynthesis. A biological reason for the
removal of introns might be that genes are more efficiently trans-
lated during protein biosynthesis in this way. Without being
in conflict with ancient information held in introns, this might
have an advantage, presumably through decoupling of DNA size
from direct evolutionary pressure.

In analogy, anintron in a genetic program is defined as
a program part without any influence on the calculation of
the output(s) for all possible inputs. Other intron definitions
common in GP postulate this to be true only for the fitness
cases [3], [19]. Introns in GP play a similar role as introns
in nature in that they act as redundant code segments that
protect advantageous building blocks from being destroyed by
crossover. Further, they also contribute to the preservation of
the diversity of the population by retaining genetic material
from direct evolutionary pressure.

Two types of introns can be distinguished in LGP.Structural
intronsdenote singlenoneffectiveinstructions that emerge from

manipulating variables that arenot usedfor the calculation of
the outputs at that program position. In contrast to that, ase-
mantical intronis an instruction or a sequence of instructions
that manipulate relevant variables in which the state of the vari-
ables remains constant. Three rather simple examples of seman-
tical introns are as follows:

1)
2)

3)

Example (3) is a special case because the operation isnot
executedat all because of the condition of the branch, which
is never fulfilled. Because it is much easier for the GP system
to implement structural introns, the rate of semantical introns
in linear genetic programs is usually low. In the following, the
term “intron” always denotes a structural intron.

The program structure in LGP allows introns to be detected
and eliminated much easier than in tree-based GP. In LGP, all
noneffective instructions are removed from a genetic program
before evaluating fitness cases. This is done by copying allef-
fectiveinstructions to a temporary program buffer. This action
does not affect the representation of the individuals in the pop-
ulation (see Fig. 3). Thus, the important property of the nonef-
fective code to protect the information holding code from being
disrupted is preserved. In analogy to the elimination of introns
in nature, the linear genetic code is interpreted more efficiently.
Because of this analogy, the term “intron” might be more justi-
fied here than in tree-based GP.

The following algorithm detects all structural introns in a
linear genetic program. Note that whether a branch is an in-
tron only depends on the status of the operation that directly
follows. In the example program from Section II-A, all instruc-
tions marked with an are introns, provided that the program
outputs are stored in and .

Algorithm 2 (Intron Detection):

1) Let the set always contain all program variables that have
an influence on the final program output at the current posi-
tion.

is output variable
Start at the last program instruction, and move backward.

2) Mark the next operation withdestinationvariable .
If such an instruction is not found, .
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TABLE II
MEDICAL DIAGNOSIS TASKS OFPROBEN1 BENCHMARK DATA SETS

3) If the operation directly follows a branch or a sequence of
branches, mark these instructions also; else, removefrom

.
4) Insert theoperandvariables of new marked instructions in

if not already contained, .
5) Stop. Allnonmarkedinstructions are introns.

All markedinstructions are copied to form theeffective pro-
gram. The algorithm needs linear runtime at worst, where

is the maximum length of the genetic program. Actually, de-
tecting and removing the noneffective code from a program only
requires about the same time as calculating one fitness case. The
more fitness cases that are calculated, the more this computa-
tional overhead will pay off.

By ignoring noneffective instructions during fitness evalua-
tion, a large amount of computation time can be saved. A good
estimate of the overall acceleration in runtime is the factor

(1)

where denotes the average intron percentage of a genetic
program and denotes the respective percentage of
effective code. The intron percentage of all individuals is com-
puted by this algorithm and can be put to further use, e.g., for
statistical analysis.

LGP programs can be transformed into functional expres-
sions by a successive replacement of variables starting with the
last effective instruction. It is obvious that such a tree would
grow exponentially with effective program length and could be-
come extremely large. These trees normally contain many iden-
tical subtrees, because the more they grow, the more instances
of a variable are likely to be replaced by the next assignment.
This might give an indication of what we believe is the expres-
sive power of a linear representation.

III. T HE MEDICAL DATA SETS

In this contribution, GP is applied to six medical problems.
Table II gives a brief description of the diagnosis problems and
the diseases that are to be predicted. Medical diagnosis problems
always describe classification tasks that are much more frequent
in medicine than approximation problems.

The data sets have been taken unchanged from an existing
collection of real-world benchmark problems, PROBEN1 [21],
that was established originally for NNs. The results obtained
with one of the fastest learning algorithms for feedforward NNs
(RPROP) accompany the PROBEN1 benchmark set to serve as

TABLE III
PROBLEM COMPLEXITY OF PROBEN1 MEDICAL DATA SETS

a direct comparison with other methods. Comparability and re-
producibility of the results are facilitated by careful documenta-
tion of the experiments. Following the benchmarking idea, the
results for NNs have been adopted completely from [21]. But
most results have been verified by test simulations. The main
objective of the project was to realize a fair comparison between
GP and NNs in medical classification and diagnosis. We will
show that for all problems discussed, the performance of GP in
generalization comes close to or is even better than the results
documented for NNs in [21].

All PROBEN1 data sets originate from theUCI Machine
Learning Repository[5]. They are organized as a sequence
of independent sample vectors divided into input and output
values. For better comparability of results, the representation
of the original (raw) data sets has been preprocessed in [21].
Values have been normalized, recoded, and completed. All
inputs are restricted to the continuous range [0, 1], except for
the data set that holds or only. For the outputs,
a binary1-of-m encodingis used in which each bit represents
one of the -possible output classes of the problem definition.
Only the correct output class carries a “1,” whereas all others
carry “0.” It is characteristic for medical data that they suffer
from unknown attributes. In PROBEN1, most of the UCI data
sets with missing inputs have been completed by 0 (30% in
case of the data set).

Table III gives an overview of the specific complexity of each
problem expressed in the number of attributes, divided into con-
tinuous and discrete inputs, plus output classes and number of
samples. Note that some attributes have been encoded into more
than one input value.

IV. EXPERIMENTAL SETUP

A. Genetic Programming

For each data set, an experiment with 30 runs has been per-
formed with LGP. Runs differ only in their choice of a random
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TABLE IV
PARAMETER SETTINGS FORLINEAR GP

seed. Table IV lists the common parameter settings used for all
problems.

For benchmarking, the partitioning of the data sets was
adopted from PROBEN1. The training setalways included the
first 50% of the samples from the data set, the next 25% were
defined as thevalidation set,and the last 25% were thetest
set. In PROBEN1, three different compositions of each data set
were prepared, each with a different order of samples. This
should increase the confidence that results are independent of
the particular distribution into training, validation, and test set.

The fitness of an individual program is always computed
using the complete training set. After each generation, general-
ization performance is checked by calculating the error of the
best-so-far individual using the validation set to check its ability
during training. The test set is used only for the individual with
minimum validation errorafter training.

Throughout this paper,fitness of an individual program
has two parts, themean square error(MSE) and theclassi-

fication error (CE). The MSE is calculated using the squared
difference between the predicted output and the desired
output for all -training samples and -outputs. Themean
classification error(MCE) is computed as the average number
of incorrectly classified examples

(2)

The mean CE is weighted by a parameter(see Table IV).
In this way, the classification performance of a program deter-
mines selection directly. The MSE allows additional continuous
fitness improvements.

For fair comparison, thewinner-takes-all classification
method has been adopted from [21]. Each output class cor-
responds to exactly one program output. The class with the
highest output value designates the response according to the
1-of-m output representation introduced in Section III.

Because only classification problems are dealt with in this
contribution, thetest classification errorcharacterizing the gen-
eralization performance and the generation in which the indi-

vidual with the minimum validation error appeared (effective
training time) are the quantities of main interests.

1) Population Structure:In evolutionary algorithms, the
population of individual solutions may be subdivided into
multiple subpopulations. Migration of individuals among the
subpopulations causes evolution to occur in the population as
a whole. Wright first described this mechanism as theisland
model in biology [29] and reasoned that in semi-isolated
subpopulations, calleddemes, evolution progresses faster than
in a single population of equal size. This inherent acceleration
of evolution by demes could be confirmed for evolutionary
algorithms [27] and for GP in particular [26], [1]. One reason
for this acceleration may be that genetic diversity is preserved
better in multiple demes with restricted migration. Diversity
in turn influences the probability that the evolutionary search
hits a local minimum. A local minimum in one deme might be
overcome by other demes with better search direction. A nearly
linear acceleration can be achieved in evolutionary algorithms
if demes are run in parallel on multiprocessor architectures [1],
[6].

A special form of the island model, thestepping-stone model
[13], assumes that migration of individuals is only possible be-
tween certain adjacent demes that are organized as graphs with
fixed connecting links. Individuals can reach remote popula-
tions only after passing through these neighbors. In this way, the
possibility that there will be an exchange of individuals between
two demes depends on their distance in the graph topology.
Common topologies are ring or matrix structures.

In our experiments, the population is subdivided into ten
demes, each holding 500 individuals. This partitioning has
been found to be sufficient for investigating the effect of
multiple demes. The demes are connected by a directed ring of
migration links by which every deme has exactly one successor
(see Fig. 4). After each generation, a certain percentage of
best individuals from each deme, determined by themigration
rate, emigrates into the successor deme, thereby replacing
the worst individuals. By reproducing locally best solutions
into several demes of the population, learning may accelerate
because these individuals might further develop simultaneously
in different demes. Care has to be taken, however, against
premature loss of diversity caused by a faster proliferation of
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TABLE V
PERCENTAGE OFINTRONS, EFFECTIVE CODE, AND BRANCHES PER RUN WITH SPEED-UP FACTORS FORREMOVING INTRONS BEFORE

PROGRAM EXECUTION. NOTABLE DIFFERENCESEXIST BETWEEN PROBLEMS

Fig. 4. Stepping-stone model of directed migration on a ring of demes.

best individuals in the population. Specifically, if the migration
between demes is not restricted to certain migration paths or
occurs too frequently, this might happen. Therefore, migration
between demes has been organized in a ring topology here with
a modest migration rate of about 5%.

B. Neural Networks

Experimental results in [21] have been achieved using stan-
dard multilayer perceptrons (MLPs) with fully connected layers.
A different number of hidden units and hidden layers (one or
two) had been tried before arriving at the best network architec-
ture for each data set. The training method was RPROP learning
[22], a fast and robust backpropagation variant. For further in-
formation on the RPROP parameter settings and the special net-
work architectures, the reader may consult [21].

The generalization performance on the test set was computed
for the state of the network with minimum validation error
during training. The number ofepochs, i.e., the number of
times the training samples were presented to the network, until
this state was reached measures theeffective training timeof
the network.

V. RESULTS AND COMPARISON

A. Intron Rate

Table V shows the average percentage of noneffective code
and effective code per run (in percent of the absolute program
length) as well as the resulting acceleration [using (1)] for the
medical problems under consideration. Regularly, an intron rate
of 80% has been observed that corresponds to an average de-
crease inruntimeby intron elimination of about a factor 5. This

speedup is of practical significance, especially when operating
with large data sets as they occur in medicine. A further ben-
efit of removing noneffective code is that the higherprocessing
speedof the genetic programs would make them more efficient
in time-critical problem environments. We emphasize again that
the elimination of introns as described in Section II-B cannot
have any influence on the fitness or classification performance
of a program.

From Table V, it can also be observed that the percentages
strongly vary with the problem. The differences in results be-
tween the three data sets tested for each problem were found to
be only tiny and are, therefore, not specified here. The standard
deviation of runs has proven to be amazingly small by compar-
ison.

For some problems, including , , and ,
the best classification results (see below) have been produced
without conditional branches. This might be because if branches
are not necessary for a good solution, they will promote rather
specialized solutions. Other problems, especially , have
worked considerably better with branches. Except for branch
instructions, all problems have been tried with the same func-
tion set and system configuration.

Compared with other operations and function calls, branches
are cheap in execution time. Additional computation is saved
with branches because not all (conditional) operations of a
program are executed for each training sample. The average
percentage of branches in a linear genetic program is given in
Table V for the benchmark problems solved with branches. In
general, the calculation of the relative speedup factors relies
on the assumption that different instructions of the instruction
set are homogeneously distributed in the population, including
both noneffective code and effective code of the programs.

B. Generalization Performance

Table VI shows the classification error rates obtained with
GP and NNs, respectively, for the medical data sets discussed in
Section III. Best and average CE of all GP runs are documented
on the validation and test set for each medical data set, together
with the standard deviation. A comparison with the test CE of
NNs (reprinted from [21]) is most interesting. For that purpose,
the difference between the average test errors of NN and GP
is printed in percent. Unfortunately, the classification results on
the validation set and the results of the best runs are not specified
in [21].

Our results demonstrate that LGP is able to reach a gener-
alization performance similar to multilayer perceptrons using



24 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY 2001

TABLE VI
CLASSIFICATION ERRORRATES OFGPAND NN FOR PROBEN1 MEDICAL DATA SETS. NN DATA TAKEN FROM [21]. DIFFERENCE� IN PERCENT FROMBASELINE

AVERAGE NN RESULTS. POSITIVE�s INDICATE IMPROVED GP RESULTS OVERNN

RPROP learning. The small number of runs performed for each
data set may, however, give an order of magnitude comparison
only. In addition, the results for GP are not expected to rank
among the best, because parameter settings have not been ad-
justed to each benchmark problem. This has deliberately not
been carried out to show that even a common choice of the
GP parameters can produce reasonable results. In contrast, the
NN architecture applied in [21] has been adapted specifically
for each data set. Finally, the PROBEN1 data sets, especially the
coding of input and output values (see Section III), are prepared
for being advantageous to NNs but not necessarily to GP ap-
proaches.

Notably, for the problem, the test CE (average and
standard deviation) has been found to be much better with GP.
This is another indication that GP is able to handle a very high
number of input dimensions efficiently (see Table III). On the
other hand, turned out to be considerably more difficult
for GP than for NN judged by the percentage difference in
average test error.

Looking closer, classification results for the three different
data sets of each problem show that the difficulty of a problem
may change significantly with the distribution of data into
training, validation, and test set. Especially, the test error
differs with the data distribution. For instance, the test error
is much smaller for data set than for . For
some data sets, the training, validation, and test sets cover the
data space differently. As a result, a strong difference between
validation and test error might occur, as in the and

examples discussed above.

C. Training Time

Theeffective training timespecifies the number of (effective)
generations or epochs, respectively, until the minimum valida-
tion error occured. We can deduce from Tables III and VII that

TABLE VII
EFFECTIVE TRAINING TIME OF GPAND NN (ROUNDED)

more complex problems cause more difficulty for GP and NN
and, thus, a longer effective training time. A comparison be-
tween generations and epochs is, admittedly, difficult, but it is
interesting to observe that effective training time for GP shows
lower variation than for NN.

Another important result of our GP experiments is that
effective training time can be reduced considerably by using
demes (as described in Section IV), without leading to a
decrease in generalization performance. A comparable series of
runs without demes but with the same population size has been
performed for the first data set of each problem. The average
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TABLE VIII
CE RATES OFGP WITHOUT DEMES. AVERAGE RESULTSSIMILAR TO RESULTS

WITH DEMES (SEE TABLE VI)

TABLE IX
EFFECTIVE TRAINING TIME OF GPWITH AND WITHOUT DEMES. SIGNIFICANT

ACCELERATION WITH DEMES

classification rates documented in Table VIII differ only
slightly from the results obtained with a demetic population
(see Table VI).

Table IX compares the effective training time using a pan-
mictic (nondemetic) population with the respective results from
Table VII after the same maximum number of 250 generations.
On average, the number of effective generations is reduced by
a factor of about three when using demes. Thus, a significantly
faster convergence of the runs is achieved with a demetic ap-
proach. This acceleration may be because of the elitist migra-
tion strategy applied here.

D. Further Comparison

Reducing the (relative) training time on a generational basis
also affects theabsolutetraining time, because runs may be
stopped earlier. Comparing the absolute runtime in GP and NNs,
the fast NN learning algorithm has been found to be superior. We
should keep in mind, however, that large populations have been
used with the GP runs to guarantee sufficient diversity and a suf-
ficient number of demes. Moreover, because we concentrated on
a comparison in classification performance, the configuration of
our LGP system has not been optimized for runtime. If a small
population size would be used, intron elimination that acceler-
ates LGP runs several times will help to relax the difference in
runtime between both techniques.

In contrast to NNs, GP is not only capable of predicting out-
comes, but it may also provide insight into and a better under-
standing of the medical diagnosis by allowing an analysis of the
resulting genetic programs [16]. Knowledge extraction from ge-
netic programs is more feasible with programs that are compact

in size and free from redundant information. Thus, the elimi-
nation of noneffective code in our LGP system serves another
purpose in generating more intelligible results than do NNs.

VI. DISCUSSION ANDFUTURE WORK

We have reported on LGP applied to a number of medical
classification tasks. All data sets originate from a set of real-
world benchmark problems established for NNs [21]. For GP, a
standard setof benchmark problems still does not exist. Such
a set would give researchers the opportunity for a better com-
parability of their published methods and results. An appro-
priate benchmark set should be composed of real-world data sets
taken from real problem domains as well as artificial problems
in which the characteristics of the data are exactly known.

But a set of benchmark problems is not enough to guarantee
comparability and reproducibility of results. A parameter that
is not published or an ambiguous description can make an ex-
periment irreproducible and may lead to erratic results. In many
published contributions, either comparisons with other methods
were not given at all or experiments with the methods compared
to had to be reimplemented first. In order to make a direct com-
parison of published results easier, a set ofbenchmarking con-
ventionshas to be defined, along with the benchmark problems.
These conventions should describe standard ways of setting up
and documenting an experiment, as well as measuring and doc-
umenting the results. A step in this direction has been taken by
Prechelt for NNs [21].

We have presented an efficient algorithm for the detection of
noneffective instructions in linear genetic programs. The elim-
ination of these introns before fitness evaluations results in a
significant decrease in runtime. In addition, the number of rele-
vant generations of the evolutionary algorithm was reduced by
using a demetic population in tandem with an elitist migration
strategy. Increasing the runtime performance of GP with these
techniques is especially important when operating with large
data sets from real-world domains like medicine.

By using demes in GP, we observed that the best generaliza-
tion on the validation set is reached long before the final gen-
eration. Wasted training time can be saved if runs are stopped
earlier. However, appropriatestopping rulesthat monitor the
progress in fitness and generalization over a period of gener-
ations need to be defined.

Information about the effective size of the genetic programs
could be used forparsimony pressure. In contrast to punishing
absolute size, this would not counteract intron growth. Rather,
introns may fulfill their function as a protection device against
destructive crossover operations, whereas programs with short
effective code still would be favored by evolution.
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