IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY 2001 17

A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining

Markus Brameier and Wolfgang Banzhaf

Abstract—We introduce a new form of linear genetic program- In contrast to NNs, GP has not been used extensively for med-
ming (GP). Two methods of acceleration of our GP approach are jcal applications to date. Grast al. [11] report from an early
discussed: 1) an efficient algorithm that eliminates intron code and application of GP in cancer diagnosis, where the results had
2) ademetic approac_h to virtuall_y par_allelize the system on asingle been found to be better than with an N’N In [16], a grammar-
processor. Acceleration of runtime is especially important when .) ’ e 9)
operating with complex data sets, because they are occuring in Pased GP variantis used for knowledge extraction from medical
real-world applications. We compare GP performance on medical databases. Rules for the diagnosis have been derived from the
classification problems from a benchmark database with results program tree that uncover relationships among data attributes.
Obta'”edtﬁy Deulfa' r?]?t""(.’rks' Od“r res”'tft show that GP performs e gytcomes of different types of classifiers, including NNs
comparable in classi 'Ca_t'c_m an gengra ization. _ ~and genetic programs, are combined in [25]. This strategy re-

Index Terms—bata mining, evolutionary computation, genetic . gits jn an improved prediction of thyroid normal and thyroid
programming, neural networks. carcinoma classes

In the present paper, GP is applied to medical data widely
|. INTRODUCTION tested in the machine learning community. More specifically,

ENETIC programming (GP) has been formulated origfgur linear variant of GP is tested on six diagnosis problems that
G nally as an evolutionary method for breeding progranﬁa"e been taken from th&kBBENL benchmark set of real-world
using expressions from the functional programming languafE°PIems [21]. The main objective here is to show that for these
LISP [15]. We employ a new variant of linear GP (LGP) thakroblems, GP is able to achieve classification rates and gener-
uses sequences of instructions of an imperative programmffation performance similar to NNs. The application further
language. More specifically, the method operates on geneq%monstrates the ability of GP in data mining, in which general

programs that are represented as linear sequences of C instigocriPtions of information are to be found in large real-world

tions. One strength of our LGP system is that noneffective codidtabases. For supervised learning tasks, this normally means to
ate predictive models, i.e., classifiers or approximators, that

called introns, i.e., dispensible instructions that do not affett® X
program behavior, can be removed before a genetic progrgﬁperallze frqm a set'of learned data to a sgt of unknown data.
is executed during fitness calculation. This does not cause an h? Paperis organlzeo_l as foI_Iows. In S_eCt'OH Il, the GP para-
changes to the individuals in the population during evolution gigmin generql and LGP n particular are introduced. W? further
in behavior, but it results in an enormous acceleration in exed[€Sent an efficient algorithm that removes noneffective code
tion speed. from I.|near genetic programs before execution. A detallt_ed de-

Introns are also found in biological genomes, in which the3FTiPtion of the medical data we have used can be found in Sec-
appear in DNA of eucaryotic cells. Itis interesting to realize th&P" !!I- The setup of all experiments is described in Section 1V,
these natural introns are also removed before proteins are S\S\/H_ereas S,QC“F’” v prgsents resfu!ts concerning intron gllmlna-
thesized. Although eliminating introns reduces total runtime, @M classification ability, and training time. Finally, we discuss
demetic population has been employed to decrease the trainiRg'€ Prospects for future research.
time further, even on a serial machine.

GP and artificial neural networks (NNs) can be seen as alter-
native techniques for the same tasks, like, e.qg., classification and Il. GENETIC PROGRAMMING
approximation problems. In the analysis of medical data, NNs] . o
have become an alternative to classic statistical methods in reEVvolutionary algorithmgEA) mimic aspects of natural evo-
cent years. Ripley and Ripley [23] have reviewed several NINtlon_ to opt_lml_ze a solution toward_a def_lned g(_)al._Followmg
technigues in medicine, including methods for diagnosis akfrwin’s principle o.f na’gural selectlo.n, differential fithess ad-
prognosis tasks, especially survival analysis. Most applicatiofgntages are exploited in a population to lead to better solu-
of NNs in medicine refer to classification tasks. A comprehe#ions. Different research subfields of evolutionary algorithms

sive list of medical applications of NNs can be found in [4]. have emerged, such genetic algorithm§l2], evolution strate-
gies[24], andevolutionary programming8]. In recent years,

))) these methods have been applied successfully to a wide spec-
Manuscript received September 30, 1998; revised July 13, 1999. This

h
work was supported by the Deutsche Forschungsgemeinschaft, under Sonﬁé‘rm of problem domains, especially in optimization. A general
forschungsbereich SFB 531, Project B2. evolutionary algorithm can be summarized as follows.
The authors are with the Fachbereich Informatik, Universitat Dortmund, Algorithm 1 (Evolutionary Algorithm):
44221 Dortmund, Germany (e-mail: brameier@LS11.cs.uni-dortmund.de).
Publisher Item Identifier S 1089-778X(01)02135-X. 1) Randomly initialize a population of individual solutions.

1089-778X/01$10.00 © 2001 IEEE

18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY 2001

Parents

Children

*-2xx)

4 ¢+yDx)

Fig. 1. Crossover in tree-based GP. Subtrees in parents are selected and exchanged.

2) Randomly select individuals from the population, and com- In recent years, the scope of GP has expanded considerably
pare them with respect to their fitness. Titaessmeasure and now includes evolution of linear and graph representations
defines the problem the algorithm is expected to solve. of programs as well, in addition to tree representations [3]. A

3) Modify fitter individuals using some or all of the following strong motivation for investigating different program represen-
variation operations: tations in GP is that for each representation form as well as for

« Reproductior—Copy an individual without change. different learning methods in general, problem domains exist
« Recombinatior-Exchange substructures betweethat are more suitable than are others.

two individuals.
* Mutation—Exchange a unit in an individual at aa | inear Genetic Programming

random position.)) .
In the experiments described below, we lisear GP, a GP

4) If the termmaﬂo_n c.:r|.ter|0n is not reachee 2. i approach with a linear representation of individuals. Its main
5) Stop. The bestindividual represents the best solution four& -aracteristic in comparison to tree-based GP is that expressions
A comparatively young and growing research area in th a functional programming language (like LISP) are substi-
context of evolutionary algorithms is GP that uses computerted by programs of an imperative language (like C).
programs as individuals. In early work, Friedberg [9], [10] The use of linear bit sequences in GP again goes back to
attempted to solve simple problems by teaching a computeramer and his JB language [7]. Cramer later discarded his
to write computer programs. Because of his choice of searapproach in favor of a tree representation. A more general
strategy, however, he failed. Based on the success of Elkgar approach was introduced by Banzhaf [2]. Nordin’s idea
in the 1980s, Cramer applied an evolutionary algorithm f using machine code for evolution was the most radical
computer programs. Programs were already represented‘disvn-to-bones” approach [17] in this context. It was subse-
variable-length tree structures in his TB language [7]. It waguently expanded [18] and led to the automatic induction of
then with the seminal work of Koza [14], [15] that the field ofmachine code by genetic programming (AIMGP) system [3],
GP really took off. [20]. In AIMGP, individuals are manipulated directly as binary
In GP, the individual programs map-given input—output exnachine code in memory and are executed directly without
amples, callefitness casgsvhereas their fithess depends on thpassing an interpreter during fithess calculation. This results in
mapping error. The inner nodes of the program trees are furcsignificant speedup compared with interpreting systems. Be-
tions, and the leafs arerminalsthat mean input variables or cause of their dependence on specific processor architectures,
constants. The operators applied to generate individual variarfitsyever, AIMGP systems are restricted in portability.
i.e., recombination and mutation, must guarantee that no syntacOur LGP system implements another variant of LGP. An indi-
tically incorrect programs are allowed to be generated duringlual program is represented as a variable-length string com-
evolution gyntactic closurk Fig. 1 illustrates the recombina-posed of simple C instructions. An excerpt of a linear genetic
tion operation in dree-basedsP system. program is given as follows.

BRAMEIER AND BANZHAF: A COMPARISON OF LINEAR GENETIC PROGRAMMING AND NEURAL NETWORKS IN MEDICAL DATA MINING 19

Parent 1

Parent 2

vi0o] = v{1l] + 16;

Child 1

Child 2

Fig. 2. Crossover in LGP. Continuous sequences of instructions are selected and exchanged between parents.

void ind(v) TABLE |
double v [8] ; INSTRUCTIONS INLGP
{ Instruction Type General notation
e Arithmetic operation | v; := v; op vgle op € {+,—,%,/}
. Conditional branch if (v; emp vple) cm, ,<
XE% : XE% i_ ;S: (I) Function call vj: :(: f(v]p) e f ep{ii{r;co_s,}sqrt,exp, log}
£ (v[1] > 0)
if (v[s] > 21) Partially defined operations and functions are protected by
v[4] = v[2] * v[1]; returning a constant value (here, 1) for all undefined inputs. Se-
v[2] = v[5] +v[4]; (D) guences of branches are interpretechested branchelike in
v[6] = v[0] + 25; C that allows complex conditions to be evolved. If the condi-
v[6] = v[4] — 4; tion of a branch or nested branch is false, only one instruction
v[1] = sin(v[6]); is skipped, namely, the next nonbranch in the program. This
if (v[0] > v[1]) (I) treatment of conditionals has enough expressive power because
v[3] = v[5] = v([5]; (I) leaving out or executing a single instruction can deactivate much
v[7] = v[6] * 2; of the preceding effective code or reactivate preceding noneffec-
v[5] = v[7] + 115; (I) tive code, respectively (see Section 1I-B).
if (v[1] <= v[6]) The evolutionary algorithm of our GP system appliesr-
v[1] = sin(v[7]); nament selectioand puts the lowest selection pressure on the

individuals by allowing only two individuals to participate in a
tournament. The loser of each tournament is replaced by a copy
The instruction set(or function sek of the system is com- of the winner. In such ateady-stat&A, the population size is
posed of arithmetic operations, conditional branches, and furadways constant and determines the number of individuals cre-
tion calls. The general notation of eattstruction typelisted ated in onegeneration
in Table | shows that—except for the branches—all instructionsFig. 2 illustrates théwo-point string crossoveused in LGP
implicitly include an assignment to a variable (destination for recombining two tournament winners. A segment of random
variable). This facilitates the use of multiple program outputgosition and random length is selected in each of the two parents
in LGP, whereas in tree-based GP those side effects need t@hd exchanged. If one of the resulting children would exceed
incorporated explicitly. the maximum length, crossover is aborted and restarted with
Instructions either operate on two variablepdérand vari- exchanging equally sized segments.

ableg or on one variable and one integer constarit the be- The crossover points only occhetweennstructionsinside
ginning of program execution, these variables hold the progranstructions, thenutationoperation randomly replaces the in-
inputs, and at the end, the program output(s). Variables and cetruction identifier, a variable, or the constant (if existent) by
stants form the “terminal set” of LGP. Each instruction is erequivalents from valid ranges. Constants are modified through
coded into a four-dimensional vector that holds the instructi@certain standard deviatiom(tation step si2dérom the current
identifier, indexes of all participating variables, and a constamalue. Exchanging a variable, however, can have an enormous
value (optionally). For instance; := v, + ¢ is represented as effect on the program flow that might be the reason why in LGP,
(id(+), 1,7, c). Because each vector component uses one byligh mutation rates have been experienced to produce better re-
of memory only, the maximum number of variables is restrictesuilts.
to 256 and constants range from 0 to 255 at maximum. This repdn GP, the maximum size of the program is usually restricted
resentation allows an efficient recombination of the programs sprevent programs from growing without bound. In our LGP
well as an efficient interpretation. system, the maximum number of instructions allowed per pro-

20 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY 2001

Population

Elimination Evaluation

Intron I Fitness
—_—

effective Program

Individual

Fig. 3. Elimination of intron code (white) in LGP. Only effective code (black) is copied to the execution buffer.

gram has been set to 256. For all tested problems, this configuanipulating variables that aret usedfor the calculation of
ration has been experienced to be a sufficient maximum lengtihe outputs at that program position. In contrast to thatea
Nevertheless, individual programs of maximum length can stithantical intronis an instruction or a sequence of instructions
vary in size of their effective codeeffective lengthsee Sec- that manipulate relevant variables in which the state of the vari-
tion 11-B). Because each instruction is encoded into four bytebles remains constant. Three rather simple examples of seman-
of memory, an individual holds at most 1 KB of memory. Thatical introns are as follows:

makes the system memory efficient as well. 1) v[0] = v[0] +0;
2) v[0] = v[1] + 1;
B. Removing Introns at Runtime v[0] = v[1] — 1;

In nature jintronsdenote DNA segments in genes with infor- 3) lf, (v(o] > v[o])
mation that is not expressed in proteins. The existence of introns viil=vlil+e o
in eucaryotic genomes may be explained in different ways: 1)EXample (3) is a special case because the operationtis
because the information for one gene is often located on di¥ecutedat all because of the condition of the branch, which
ferentexong(gene parts that are expressed), introns may helpfo"€Ver fulfilled. Becaus_e it is much easier for the _GP §ystem
reduce the number of destructive recombinations between chi®implement structural introns, the rate of semantical introns
mosomes by simply reducing the probability that the recomt!! I'n‘i,ar genetic programs is usually low. In the following, the
nation points will fall within an exon region [28]. In this way, "M “intron” always denotes a structural intron.
complete protein segments encoded by specific exons are moréhe program structure in LGP allows introns to be detected
frequently mixed than interrupted during evolution. 2) Perhag§!d eliminated much easier than in tree-based GP. In LGP, all
even more important for understanding the evolution of highBPneffective instructions are removed from a genetic program
organizms is the realization that new genetic material can Before evaluating fitness cases. This is done by copyinefall
“tested” while retaining a copy of the original information infectiveinstructions to a temporary program buffer. This action
intron code. does not affect the representation of the individuals in the pop-

After the DNA is copied, the introns are removed from th&lation (see Fig. 3). Thus, the important property of the nonef-
resultingmessengeRNA that actually participates in gene ex_fgctlve code to protect the information holdlrjg'cod'e from being
pression, i.e., protein biosynthesis. A biological reason for tifiSrupted is preserved. In analogy to the elimination of introns
removal of introns might be that genes are more efficiently trani-nature, the linear genetic code is interpreted more efficiently.
lated during protein biosynthesis in this way. Without bein§ecause of this analogy, the term “intron” might be more justi-
in conflict with ancient information held in introns, this mighted here than in tree-based GP.

have an advantage, presumably through decoupling of DNA sizel he following algorithm detects all structural introns in a
from direct evolutionary pressure. linear genetic program. Note that whether a branch is an in-

dron only depends on the status of the operation that directly

a program part without any influence on the calculation 6_pllows. In the e_xample program from S(_ectlon [I-A, all instruc-

the output(s) for all possible inputs. Other intron definitionions marked with aI) are introns, provided that the program

common in GP postulate this to be true only for the fitned/tPuts are stored in[0] andv[1].

cases [3], [19]. Introns in GP play a similar role as introns Algorithm 2 (Intron Detection):

in nature in that they act as redundant code segments thatLetthe se¥” always contain all program variables that have

protect advantageous building blocks from being destroyed by an influence on the final program output at the current posi-

crossover. Further, they also contribute to the preservation of tion.

the diversity of the population by retaining genetic material V := {v; | v; is output variablé.

from direct evolutionary pressure. Start at the last program instruction, and move backward.
Two types of introns can be distinguished in LGRuctural 2) Mark the next operation witdestinatiorvariablev; € V.

intronsdenote singl@oneffectivenstructions that emerge from If such an instruction is not found;: 5.

In analogy, anintron in a genetic program is defined a

BRAMEIER AND BANZHAF: A COMPARISON OF LINEAR GENETIC PROGRAMMING AND NEURAL NETWORKS IN MEDICAL DATA MINING 21

TABLE I
MEDICAL DIAGNOSIS TASKS OF PROBENL BENCHMARK DATA SETS

Problem | Diagnosis task

cancer benign or malignant breast tumor

diabetes | diabetes positive or negative

gene intron-exon, exon-intron or no boundary in DNA sequence
heart diameter of a heart vessel is reduced by more than 50% or not
horse horse with a colic will die, survive or must be killed

thyroid | thyroid hyperfunction, hypofunction or normal function

3) If the operation directly follows a branch or a sequence of TABLE Il
branches, mark these instructions also: else, remgfrem PROBLEM COMPLEXITY OF PROBENL MEDICAL DATA SETS
V.) . . . Problem | Attributes Inputs Classes | Examples
4) Insert theoperandvariables of new marked instructions in continuous discrete
V' if not already contained; 2. cancer |9 9 0 2 699
5) Stop. Allnonmarkednstructions are introns. diabetes | 8 8 0 2 690
. . . . 60 0 120 3 3175
All markedinstructions are copied to form tiedfective pro- 0 | [, 6 50 5 203
gram The algorithm needs linear runti_nik(n) atworst, where 1,0 20 14 44 3 364
n is the maximum length of the genetic program. Actually, de thyroid | 21 6 15 3 7200

tecting and removing the noneffective code from a program only
requires about the same time as calculating one f|tne_ss case. T%‘lerect comparison with other methods. Comparability and re-
more fithess cases that are calculated, the more this computa-,“". . y

. ; producibility of the results are facilitated by careful documenta-
tional overhead will pay off.

By ignoring noneffective instructions during fithess evalua}lon of the experiments. Following the benchmarking idea, the

. B results for NNs have been adopted completely from [21]. But
tion, a large amount of computation time can be saved. A goQ - . .)

. S T most results have been verified by test simulations. The main
estimate of the overall acceleration in runtime is the factor

objective of the project was to realize a fair comparison between
1 GP and NNs in medical classification and diagnosis. We will
Yace = 1~ Pintron (1) show that for all problems discussed, the performance of GP in
generalization comes close to or is even better than the results
wherepin.:on denotes the average intron percentage of a genetiecumented for NNs in [21].
program andl — pi.i.on denotes the respective percentage of All PROBENL data sets originate from theCl Machine
effective code. The intron percentage of all individuals is conh-earning Repositoryf5]. They are organized as a sequence
puted by this algorithm and can be put to further use, e.g., fof independent sample vectors divided into input and output
statistical analysis. values. For better comparability of results, the representation
LGP programs can be transformed into functional exprest the original (raw) data sets has been preprocessed in [21].
sions by a successive replacement of variables starting with ¥aues have been normalized, recoded, and completed. All
last effective instruction. It is obvious that such a tree woul#iputs are restricted to the continuous range [0, 1], except for
grow exponentially with effective program length and could béhe gene data set that holds-1 or +1 only. For the outputs,
come extremely large. These trees normally contain many idenbinary1-of-m encodings used in which each bit represents
tical subtrees, because the more they grow, the more instangeg of them-possible output classes of the problem definition.
of a variable are likely to be replaced by the next assignmefinly the correct output class carries a “1,” whereas all others
This might give an indication of what we believe is the expresarry “0.” It is characteristic for medical data that they suffer
sive power of a linear representation. from unknown attributes. In ®ROBENL, most of the UCI data
sets with missing inputs have been completed by 0 (30% in
case of theworse data set).
) o)))) Table Il gives an overview of the specific complexity of each
In this contribution, GP is applied to six medical problems,roplem expressed in the number of attributes, divided into con-
Table Il gives a brief description of the diagnosis problems aggh,ous and discrete inputs, plus output classes and number of

the diseases that are to be predicted. Medical diagnosis proble@iples. Note that some attributes have been encoded into more
always describe classification tasks that are much more frequgin one input value.

in medicine than approximation problems.
The data sets have been taken unchanged from an existing IV. EXPERIMENTAL SETUP
collection of real-world benchmark problemsRdBeENL [21], ,)
that was established originally for NNs. The results obtaindti G€netic Programming
with one of the fastest learning algorithms for feedforward NNs For each data set, an experiment with 30 runs has been per-
(RPROP) accompany therBBENL benchmark set to serve aformed with LGP. Runs differ only in their choice of a random

lll. THE MEDICAL DATA SETS

22 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY 2001

TABLE IV
PARAMETER SETTINGS FORLINEAR GP

Parameter Setting

Population size 5000

Number of demes 10

Migration rate 5%

Classification error weight in fitness 1.0

Maximum number of generations 250

Crossover probability 90%

Mutation probability 90%

Maximum mutation step size for constants | +5

Maximum program size 256 instructions

Initial maximum program size 25 instructions

Function set {+,—,*,/,sin,exp,if >,if <}
Terminal set {0,..,255}U {vo, .., vk—1} (k inputs)
Random seed system time

seed. Table IV lists the common parameter settings used fonatual with the minimum validation error appearesfféctive
problems. training time are the quantities of main interests.

For benchmarking, the partitioning of the data sets wasl1) Population Structure:In evolutionary algorithms, the
adopted from RoBENL. Thetraining setalways included the population of individual solutions may be subdivided into
first 50% of the samples from the data set, the next 25% weralltiple subpopulations. Migration of individuals among the
defined as thevalidation set,and the last 25% were thest subpopulations causes evolution to occur in the population as
set In PROBENL, three different compositions of each data set whole. Wright first described this mechanism as igland
were prepared, each with a different order of samples. Thisodel in biology [29] and reasoned that in semi-isolated
should increase the confidence that results are independensufpopulations, calledemesevolution progresses faster than
the particular distribution into training, validation, and test sein a single population of equal size. This inherent acceleration

The fitness of an individual program is always computedf evolution by demes could be confirmed for evolutionary
using the complete training set. After each generation, generllgorithms [27] and for GP in particular [26], [1]. One reason
ization performance is checked by calculating the error of tlier this acceleration may be that genetic diversity is preserved
best-so-far individual using the validation set to check its abilityetter in multiple demes with restricted migration. Diversity
during training. The test set is used only for the individual withn turn influences the probability that the evolutionary search
minimum validation erroafter training. hits a local minimum. A local minimum in one deme might be

Throughout this papefitnessF'(p) of an individual program overcome by other demes with better search direction. A nearly
p has two parts, thenean square erro(MSE) and theclassi- linear acceleration can be achieved in evolutionary algorithms
fication error (CE). The MSE is calculated using the squaredl demes are run in parallel on multiprocessor architectures [1],
difference between the predicted ou'qa:l‘iijfe‘l and the desired [6].
outputo;ljes for all n-training samples anek-outputs. Thanean A special form of the island model, tlstepping-stone model
classification error(MCE) is computed as the average numbdd.3], assumes that migration of individuals is only possible be-
of incorrectly classified examples tween certain adjacent demes that are organized as graphs with
fixed connecting links. Individuals can reach remote popula-
tions only after passing through these neighbors. In this way, the

n m

1 pred des 2 w P " . ..
F(p)=— Z Z (oij — 0) +—CE possibility that there will be an exchange of individuals between
nemeT 4 " two demes depends on their distance in the graph topology.
=MSE + w - MCE. (2) Common topologies are ring or matrix structures.

In our experiments, the population is subdivided into ten
The mean CE is weighted by a parametefsee Table IV). demes, each holding 500 individuals. This partitioning has
In this way, the classification performance of a program detdseen found to be sufficient for investigating the effect of
mines selection directly. The MSE allows additional continuousultiple demes. The demes are connected by a directed ring of
fitness improvements. migration links by which every deme has exactly one successor
For fair comparison, thewinner-takes-all classification (see Fig. 4). After each generation, a certain percentage of
method has been adopted from [21]. Each output class cbest individuals from each deme, determined byrttigration
responds to exactly one program output. The class with thete, emigrates into the successor deme, thereby replacing
highest output value designates the response according tottiee worst individuals. By reproducing locally best solutions
1-of-m output representation introduced in Section IlI. into several demes of the population, learning may accelerate
Because only classification problems are dealt with in thizecause these individuals might further develop simultaneously
contribution, theest classification errocharacterizing the gen- in different demes. Care has to be taken, however, against
eralization performance and the generation in which the ingiremature loss of diversity caused by a faster proliferation of

BRAMEIER AND BANZHAF: A COMPARISON OF LINEAR GENETIC PROGRAMMING AND NEURAL NETWORKS IN MEDICAL DATA MINING 23

TABLE V
PERCENTAGE OFINTRONS EFFECTIVE CODE, AND BRANCHES PER RUN WITH SPEED-UP FACTORS FORREMOVING INTRONS BEFORE
PROGRAM EXECUTION. NOTABLE DIFFERENCESEXIST BETWEEN PROBLEMS

Problem Introns (%) Effective Code (%) | Branches (%) | Speedup
average stddev | average stddev | average stddev
cancer 65.45 2.79 34.55 2.79 23.19 0.85 2.9

diabetes | 74.50 0.62 25.50 0.62 — — 3.9
gene 90.49 1.07 9.51 1.07 21.74 0.73 10.5
heart 88.17 0.91 11.83 0.91 — — 8.5
horse 90.82 0.42 9.18 0.42 — — 10.9

thyroid 72.24 1.83 2776 . 1.83 20.12 0.77 3.6

Q\ speedup is of practical significance, especially when operating
with large data sets as they occur in medicine. A further ben-

efit of removing noneffective code is that the higlpeocessing
speedf the genetic programs would make them more efficient
in time-critical problem environments. We emphasize again that
the elimination of introns as described in Section 1I-B cannot
have any influence on the fitness or classification performance
of a program.

From Table V, it can also be observed that the percentages
strongly vary with the problem. The differences in results be-
tween the three data sets tested for each problem were found to
be only tiny and are, therefore, not specified here. The standard
deviation of runs has proven to be amazingly small by compar-
ison.

For some problems, includirtjabetes, heart, andhorse,
best individuals in the population. Specifically, if the migratiorthe best classification results (see below) have been produced
between demes is not restricted to certain migration pathswithout conditional branches. This might be because if branches
occurs too frequently, this might happen. Therefore, migrati@me not necessary for a good solution, they will promote rather
between demes has been organized in a ring topology here veiiecialized solutions. Other problems, especigbyie, have

Migration path

Deme

Fig. 4. Stepping-stone model of directed migration on a ring of demes.

a modest migration rate of about 5%. worked considerably better with branches. Except for branch
instructions, all problems have been tried with the same func-
B. Neural Networks tion set and system configuration.

Experimental results in [21] have been achieved using stan-Compared with other operations and function calls, branches
dard multilayer perceptrons (MLPs) with fully connected layer&r® cheap in execution time. Additional computation is saved
A different number of hidden units and hidden layers (one ¥fith branches because not all (conditional) operations of a
two) had been tried before arriving at the best network architg0gram are executed for each training sample. The average
ture for each data set. The training method was RPROP learnifjcentage of branches in a linear genetic program is given in
[22], a fast and robust backpropagation variant. For further if@ble V for the benchmark problems solved with branches. In
formation on the RPROP parameter settings and the special g&0€ral, the calculation of the relative speedup factors relies
work architectures, the reader may consult [21]. on the assumption that different instructions of the instruction

The generalization performance on the test set was compu#d are homogeneously distributed in the population, including
for the state of the network with minimum validation erroPOth noneffective code and effective code of the programs.
during training. The number oépochs i.e., the number of
times the training samples were presented to the network, u
this state was reached measuresaéffective training timeof Table VI shows the classification error rates obtained with
the network. GP and NNs, respectively, for the medical data sets discussed in

Section Ill. Best and average CE of all GP runs are documented
V. RESULTS AND COMPARISON on the validation and test set for each medical data set, together

with the standard deviation. A comparison with the test CE of

NNs (reprinted from [21]) is most interesting. For that purpose,

Table V shows the average percentage of noneffective catle differenceA between the average test errors of NN and GP
and effective code per run (in percent of the absolute prograsrprinted in percent. Unfortunately, the classification results on
length) as well as the resulting acceleration [using (1)] for thhe validation set and the results of the best runs are not specified
medical problems under consideration. Regularly, an intron rate[21].
of 80% has been observed that corresponds to an average d®ur results demonstrate that LGP is able to reach a gener-
crease imuntimeby intron elimination of about a factor 5. Thisalization performance similar to multilayer perceptrons using

r%il Generalization Performance

A. Intron Rate

24 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY 2001

TABLE VI
CLASSIFICATION ERRORRATES OF GPAND NN FOR PROBENL MEDICAL DATA SETS. NN DATA TAKEN FROM [21]. DIFFERENCEA IN PERCENT FROMBASELINE
AVERAGE NN RESULTS POSITIVE AS INDICATE IMPROVED GP RESULTS OVERNN

GP NN
Problem Validation CE (%) Test CE (%) Test CE (%) A (%)
best average stddev | best average stddev | average stddev
cancerl 1.71 2.45 0.34 0.57 2.18 0.59 1.38 0.49 -36.70
cancer2 0.57 1.39 0.40 4.02 5.72 0.66 4.77 0.94 -16.61
cancerd - 1.71 2.62 0.45 3.45 4.93 0.65 3.70 0.52 -24.95
diabetesl | 20.31 22.19 1.09 | 21.35 23.96 1.42 24.10 1.91 +0.58
diabetes2 | 21.35 = 23.21 1.33 | 25.00 27.85 1.49 26.42 2.26 -5.14
diabetes3 | 25.52 26.69 0.65 | 19.27 23.09 1.27 22.59 2.23 -2.17

genel 7.81 11.16 2.30 9.21 12.97 2.24 16.67 3.75 | 4+22.20
gene2 9.07 12.93 2.30 8.45 11.95 2.15 18.41 6.93 | +35.09
gene3 7.18 10.77 2.11 | 10.09 13.84 2.09 21.82 7.53 | +36.57

heartl 7.89 10.53 2.38 | 18.67 21.12 2.02 20.82 1.47 -1.42
heart2 14.47 18.58 2.39 1.33 7.31 3.31 5.13 1.63 | -29.82
heart3 15.79 18.81 1.47 | 10.67 13.98 2.03 15.40 3.20 +9.22
horsel 28.57 32.40 2.22 | 23.08 30.55 2.24 29.19 2.62 -4.45
horse2 29.67 34.30 2.65 | 31.87 36.12 1.95 35.86 2.46 -0.72
horse3 2747 32.65 1.94 | 31.87 35.44 .77 34.16 2.32 -3.61
thyroidl 0.83 1.31 0.34 1.28 1.91 0.42 2.38 0.35 | +19.75
thyroid2 1.11 1.62 0.31 1.44 2.31 0.39 1.91 0.24 | -17.32
thyroid3 0.89 1.47 0.23 0.89 1.88 0.36 2.27 0.32 | +17.18

RPROP learning. The small number of runs performed for each TABLE VII
data set may, however, give an order of magnitude comparison EFFECTIVE TRAINING TIME OF GPAND NN (ROUNDED)
only. In addition, the results for GP are not expected to rank GP NN
among the best, because parameter settings have not been ad- p 55iem [effective Cenerations | offective Epochs
justed to each benchmark problem. This has deliberately not average stddev | average stddev
been carried out to show that even a common choice of the “cancerl 26 21 95 115
GP parameters can produce reasonable results. In contrast, the cancer2 26 25 14 28
NN architecture applied in [21] has been adapted specifically ~ cancer3 17 11 41 17
for each data set. Finally, thekBBENL data sets, especially the diabetesl 23 14 117 83
coding of input and output values (see Section Il1), are prepared ~ diabetes2 | 28 25 70 26
for being advantageous to NNs but not necessarily to GP ap- ~ diabetes3 | 21 15 164 85
genel 77 21 101 53
proaches.
gene?2 90 20 250 255

Notably, for thegene problem, the test CE (average and sene3 36 14 199 163
standard deviation) has been found to be much better with GP. 17 14 30 9
This is another indication that GP is able to handle a very high 1..:t2 20 14 18 9
number of input dimensions efficiently (see Table Ill). On the heart3 21 18 11 5
other handgcancer turned out to be considerably more difficult horsel 18 16 13 3
for GP than for NN judged by the percentage difference in horse2 19 16 18 6
average test error. horse3 15 14 14 5

Looking closer, classification results for the three different thyroid1 55 18 341 280
data sets of each problem show that the difficulty of a problem ~ thyroid2 64 15 388 246
may change significantly with the distribution of data into thyroid3 pl 14 298 223

training, validation, and test set. Especially, the test error

differs with the data distribution. For instance, the test err@fiore complex problems cause more difficulty for GP and NN
is much smaller for data sefeart2 than forheartl. For and, thus, a longer effective training time. A comparison be-
some data sets, the training, validation, and test sets cover#figen generations and epochs is, admittedly, difficult, but it is

data space differently. As a result, a strong difference betwe@feresting to observe that effective training time for GP shows
validation and test error might occur, as in thencer and |ower variation than for NN.

heart examples discussed above. Another important result of our GP experiments is that
n i effective training time can be reduced considerably by using
C. Training Time demes (as described in Section 1V), without leading to a

Theeffective training timapecifies the number oéffectivé decrease in generalization performance. A comparable series of
generations or epochs, respectively, until the minimum validains without demes but with the same population size has been
tion error occured. We can deduce from Tables Il and VIl thaterformed for the first data set of each problem. The average

BRAMEIER AND BANZHAF: A COMPARISON OF LINEAR GENETIC PROGRAMMING AND NEURAL NETWORKS IN MEDICAL DATA MINING 25

TABLE Vil in size and free from redundant information. Thus, the elimi-
CE RaTES OFGP W‘T”%IHDS“E"REAESA(\;:%Z?EE?:)”SS‘“’”LAR TO RESULTS nation of noneffective code in our LGP system serves another
purpose in generating more intelligible results than do NNs.

GP without Demes

Problem Validation CE (%) Test CE (%) V1. DISCUSSION ANDFUTURE WORK

best average stddev | best average stddev
cancerl 114 2.05 050 | 115 2.8 1.22 We have reported on LGP applied to a number of medical
diabetes1 | 19.27 2143 072 | 2031 2439 175 classification tasks. All data sets originate from a set of real-
genel 768 1103 299 | 8.95 1256 3.09 world benchmark problems established for NNs [21]. For GP, a
heart] 789 1101 3.00 1 1867 2227 2.94 standard sebf benchmark problems still does not exist. Such
horsel 2637 3240 192 12198 30.73 351 a set would give researchers the opportunity for a better com-
thyroidl | 072 1.27 043 | 1.22 1.96 0.54

parability of their published methods and results. An appro-
priate benchmark set should be composed of real-world data sets
taken from real problem domains as well as artificial problems
TABLE IX in which the characteristics of the data are exactly known.
EFFECTIVE TRAINING TIME OF GPWITH AND WITHOUT DEMES. SGNIFICANT But a set of benchmark problems is not enough to guarantee
ACCELERATION WITH DEMES .- T
comparability and reproducibility of results. A parameter that

GP with Demes GP without Demes is not published or an ambiguous description can make an ex-
Problem | effective Generations | effective Generations | Speedup perimentirreproducible and may lead to erratic results. In many
average stddev | average stddev published contributions, either comparisons with other methods

cancerl 26 24 62 67 2.4

were not given at all or experiments with the methods compared

gjﬁteﬂ ?? ;éf 26027 ig ;; to had to be reimplemented first. In order to make a direct com-
heartl 17 14 68 75 4.0 parison of published results easier, a seéb@fichmarking con-
horsel 18 16 59 63 3.3 ventionshas to be defined, along with the benchmark problems.
thyroid1l 55 18 200 36 3.6 These conventions should describe standard ways of setting up

and documenting an experiment, as well as measuring and doc-
umenting the results. A step in this direction has been taken by
classification rates documented in Table VIII differ onlyPrechelt for NNs [21].
slightly from the results obtained with a demetic population We have presented an efficient algorithm for the detection of
(see Table VI). noneffective instructions in linear genetic programs. The elim-
Table IX compares the effective training time using a pafmmation of these introns before fithess evaluations results in a
mictic (nondemetic) population with the respective results frosignificant decrease in runtime. In addition, the number of rele-
Table VII after the same maximum number of 250 generationgant generations of the evolutionary algorithm was reduced by
On average, the number of effective generations is reducedusyng a demetic population in tandem with an elitist migration
a factor of about three when using demes. Thus, a significangliyategy. Increasing the runtime performance of GP with these
faster convergence of the runs is achieved with a demetic apehniques is especially important when operating with large
proach. This acceleration may be because of the elitist migdata sets from real-world domains like medicine.
tion strategy applied here. By using demes in GP, we observed that the best generaliza-
tion on the validation set is reached long before the final gen-
eration. Wasted training time can be saved if runs are stopped
earlier. However, appropriatg&topping rulesthat monitor the
Reducing therglative) training time on a generational basigprogress in fitness and generalization over a period of gener-
also affects theabsolutetraining time, because runs may beations need to be defined.
stopped earlier. Comparing the absolute runtime in GP and NNs|nformation about the effective size of the genetic programs
the fast NN learning algorithm has been found to be superior. Weuld be used foparsimony pressurén contrast to punishing
should keep in mind, however, that large populations have begpsolute size, this would not counteract intron growth. Rather,
used with the GP runs to guarantee sufficient diversity and a sufftrons may fulfill their function as a protection device against
ficient number of demes. Moreover, because we concentratedd@structive crossover operations, whereas programs with short
a comparison in classification performance, the configuration effective code still would be favored by evolution.
our LGP system has not been optimized for runtime. If a small
population size would be used, intron elimination that acceler-
ates LGP runs several times will help to relax the difference in
runtime between both techniques. [1] D. Andre and J. R. Koza, “Parallel genetic programming: A fqalable
In contrast to NN, GP is not only capable of predicting out- implementation using the transputer network architecture,’Ath
vances in Genetic Programming B. J. Angeline and K. E. Kinnear,
comes, but it may also provide insight into and a better under- Eds. Cambridge, MA: MIT Press, 1996, pp. 317—337.
standing of the medical diagnosis by allowing an analysis of thel2] W. Banzhaf, “Genetic programming for pedestrians, Froc. Sth Int.
. . . Conf. Genetic Algorithmsrol. 628, 1993.
resulting genetic programs [16]. Knowledge extraction from ge- 3]

;) : : Genetic Programming—An Introduction. On the Automatic Evolution of
netic programs is more feasible with programs that are compact = Computer Programs and Its Applicatiph998.

D. Further Comparison

REFERENCES

26

[4] W. G. Baxt, “Applications of artificial neural networks to clinical

(5]

(6]

(7]

El
(10]

(11]

(12]

(13]

(14]

[15]
(16]

(17]

(18]

(19]

(20]

[21]

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 1, FEBRUARY 2001

[22]
medicine,”Lancet vol. 346, pp. 1135-1138, 1995.

C. Blake, E. Keogh, and C. J. Merz. (1998) UCI repository of machine
learning databases. Dept. Inform. Comput. Sci., Univ. California,[23]
Irvine, CA. [Online]. Available: [http://www.ics.uci.edu/~mlearn/ML-
Repository.html]

M. Brameier, F. Hoffmann, P. Nordin, W. Banzhaf, and F. D. Francone,
“Parallel machine code genetic programming,’Aroc. Int. Conf. Ge-
netic Evolutionary Computatiori999.

N. L. Cramer, “A representation for the adaptive generation of simple[25]
sequential programs,” iRroc. 1st Int. Conf. Genetic Algorithm$985,

pp. 183-187.

L.J. Fogel, A. J. Owens, and M. J. Walgkrtificial Intelligence through
Simulated Evolution New York: Wiley, 1966.

R. Friedberg, “A learning machine—Part IBM J. Res. Developvol.

2, pp. 2-13, 1958.

R. Friedberg, B. Dunham, and J. North, “A learning machine, part II,”
IBM J. Res. Developvol. 3, pp. 282-287, 1959.

H. F. Gray, R. J. Maxwell, |. Martinez-Perez, C. Arus, and S. Cerdan,[27]
“Genetic programming for classification of brain tumours from nuclear
magnetic resonance biopsy spectra,"Genetic Programming 1996:
Proc. 1st Annu. Conf1996.

J. Holland Adaption in Natural and Artificial Systems Ann Arbor, MI:
Univ. Michigan Press, 1975.

M. Kimura and G. H. Weiss, “The stepping stone model of population
structure and the decrease of genetic correlation with dista@e;”
netics vol. 49, pp. 313-326, 1964.

J. R. Koza, “Hierarchical genetic algorithms operating on populations
of computer programs,” iProc. 11th Int. Joint Conf. Atrtificial Intelli-
gence 1989, pp. 768—774.

——, Genetic Programming Cambridge, MA: MIT Press, 1992.

[24]

(26]

(28]

[29]

M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,Hroc. IEEE Int. Conf.
Neural NetworksSan Francisco, CA, 1993, pp. 586-591.

B. D. Ripley and R. M. Ripley, “Neural networks as statistical methods
in survival analysis,” inAtrtificial Neural Networks: Prospects for
Medicine R. Dybowski and V. Grant, Eds. Texas: Landes Bio-
sciences, 1997.

H.-P. SchwefelEvolution and Optimum SeekingNew York: Wiley,
1995.

R. L. Somorjai, A. E. Nikulin, N. Pizzi, D. Jackson, G. Scarth, B.
Dolenko, H. Gordon, P. Russell, C. L. Lean, L. Delbridge, C. E.
Mountford, and I. C. P. Smith, “Computerized consensus diagnosis—A
classification strategy for the robust analysis of MR spectra. 1. Appli-
cation to H-1 spectra of thyroid neoplasm&Jagn. Reson. Medvol.

33, pp. 257-263, 1995.

W. A. Tackett, “Recombination, selection and the genetic construction of
computer programs,” Ph.D. dissertation, Dept. Elect. Eng. Syst., Univ.
Southern California, Los Angeles, 1994.

R. Tanese, “Distributed genetic algorithms,"Rroc. 3rd Int. Conf. Ge-
netic Algorithms 1989, pp. 434-439.

J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M.
Weiner,Molecular Biology of the Gene New York: Benjamin/Cum-
mings, 1987.

S. Wright, “Isolation by distanceGeneticsvol. 28, pp. 114-138, 1943.

Markus Brameier was born in Witten, Germany, in August 1970. He received
the diploma degree in computer science from the University of Dortmund, Ger-
many, in 1997. He is currently working toward the Ph.D. degree in computer

P. S. Ngan, M. L. Wong, K. S. Leung, and J. C. Y. Cheng, “Usingcience at the same university.
grammar based genetic programming for data mining of medical He is currently with the Chair of Systems Analysis, Department of Com-
knowledge,” inGenetic Programming 1998: Proc. 3rd Annu. Conf. puter Science, University of Dortmund. Since 1997, he has been working on

1998.

the Collaborative Research Center SFB 531 “Design and Management of Com-

P. Nordin, “A compiling genetic programming system that directly maplex Technical Processes and Systems by Means of Computational Intelligence

nipulates the machine-code,” Advances in Genetic Programmirig.
E. Kinnear, Ed. Cambridge, MA: MIT Press, 1994, pp. 311-331.
P. Nordin and W. Banzhaf, “Evolving turing-complete programs for a
register machine with self-modifying code,” Rroc. 6th Int. Conf. Ge-
netic Algorithms 1995, pp. 318-325.

P. Nordin, F. Francone, and W. Banzhaf, “Explicitly defined introns and

Methods” (sponsored by the Deutsche Forschungsgemeinschaft [DFG]). His
current research interests include genetic programming and neural networks.

destructive crossover in genetic programming,Afvances in Genetic Wolfgang Banzhafreceived the Ph.D. degree in physics.

Programming || P. Angeline and K. Kinnear, Eds.
MIT Press, 1996, pp. 111-134.

Cambridge, MA: He has been an Associate Professor of Applied Computer Science at the
University of Dortmund, Germany, since 1993. He was with the University of

P. J. Nordin, “Evolutionary program induction of binary machine cod&tuttgart, Germany, where he conducted research on computers and synergetics.
and its applications,” Ph.D. dissertation, Dept. Comput. Sci., Univ. DorHe was also a Senior Researcher at the Mitsubishi Electric Research Laborato-
mund, 1997. ries, Cambridge, MA, and a Member of the Neurocomputing Group, Mitsubishi

L. Prechelt, “ROBENL—A set of neural network benchmark problemsElectric Central Research Laboratory, Japan. His current research interests in-
and benchmarking rules,” Tech. Rep. 21/94, Univ. Karlsruhe, Karlsruhelude artificial neural networks, evolutionary algorithms, genetic programming
Germany, 1994. and artificial life, and self-organization.

