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Abstract

Background: Dementia with Lewy bodies (DLB) is the second most common subtype of neurodegenerative

dementia in humans following Alzheimer’s disease (AD). Present clinical diagnosis of DLB has high specificity and

low sensitivity and finding potential biomarkers of prodromal DLB is still challenging. MicroRNAs (miRNAs) have

recently received a lot of attention as a source of novel biomarkers.

Methods: In this study, using serum miRNA expression of 478 Japanese individuals, we investigated potential

miRNA biomarkers and constructed an optimal risk prediction model based on several machine learning methods:

penalized regression, random forest, support vector machine, and gradient boosting decision tree.

Results: The final risk prediction model, constructed via a gradient boosting decision tree using 180 miRNAs and

two clinical features, achieved an accuracy of 0.829 on an independent test set. We further predicted candidate

target genes from the miRNAs. Gene set enrichment analysis of the miRNA target genes revealed 6 functional

genes included in the DHA signaling pathway associated with DLB pathology. Two of them were further supported

by gene-based association studies using a large number of single nucleotide polymorphism markers (BCL2L1: P =

0.012, PIK3R2: P = 0.021).

Conclusions: Our proposed prediction model provides an effective tool for DLB classification. Also, a gene-based

association test of rare variants revealed that BCL2L1 and PIK3R2 were statistically significantly associated with DLB.
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Background
Dementia with Lewy bodies (DLB) is the second most com-

mon subtype of neurodegenerative dementia in humans

following Alzheimer’s disease (AD) [1] and accounts for

around 4.6% of all dementia cases [2]. The main pathological

lesions in DLB are Lewy bodies and neurites, containing ab-

normal α-synuclein (α Syn) [3]. The characteristic features

of DLB are different to those in AD, with less marked mem-

ory impairment and more severe impairments of visuo-

spatial, attentional and frontal-executive functions [3].

Present clinical diagnosis of DLB has high specificity

and low sensitivity [4], and finding DLB patients in the

prodromal phase is still challenging. An accurate diagno-

sis of DLB at the prodromal stage would be an import-

ant advance in the pharmacological management, as

cholinesterase inhibitors (ChEIs) have good responsive-

ness for patients with Lewy body dementia (LBD) in-

cluding DLB and Parkinson’s disease dementia (PDD),

although a careful monitoring of treatment compliance

and side effects is required [5]. Therefore, as potential

biomarkers for prodromal DLB are required in clinical

implication, our findings might enable DLB to be one of

the most treatable neurodegenerative disorders.

MicroRNAs (miRNAs) are small non-coding RNAs,

which play key roles in many biological or pathological

processes by regulating the expression of their target

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: d.shigemizu@gmail.com
1Laboratory Chief, Division of Genomic Medicine, Medical Genome Center,

National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu,

Aichi 474-8511, Japan
2Department of Medical Science Mathematics, Medical Research Institute,

Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan

Full list of author information is available at the end of the article

Shigemizu et al. BMC Medical Genomics          (2019) 12:150 

https://doi.org/10.1186/s12920-019-0607-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-019-0607-3&domain=pdf
http://orcid.org/0000-0002-4412-0552
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:d.shigemizu@gmail.com


transcripts. Previous studies have reported that alter-

ations in miRNA expression have be associated with

several neurodegenerative diseases [6–8]. We also re-

ported potential biomarkers for earlier diagnosis and

therapeutic intervention through comprehensive miRNA

expression analyses and constructed a risk prediction

model using the biomarkers based on supervised princi-

pal component analysis (PCA) logistic regression, a ma-

chine learning (ML) method [9].

Current studies for disease prediction models imple-

mented several ML methods. For example, Lebedev

et al. reported a random forest model that predicted

MCI-to-AD conversion with high accuracy using mor-

phometric measures from 3D brain MRI images and

clinical information [10]. Wei et al. developed a promis-

ing support vector machine method that detected

persons with diabetes and pre-diabetes using compre-

hensive clinical information [11]. We have also reported

several efficient risk prediction models for not only type

II diabetes based on a penalized regression method

(LASSO) incorporating clinical information and genetic

data [12], but also postoperative overall survival and

disease-free survival in patients with breast cancer based

on a Cox proportional hazard model [13]. However,

there is, as of yet, no clear consensus of which ML

method is most appropriate for application to disease

prediction models.

Here, we applied several ML methods to comprehen-

sive miRNA expression data of serum samples, com-

posed of DLB patients and individuals with cognitive

normal function (referred to as normal controls: NC)

and investigated an optimal risk prediction model from

among these ML methods. We used 10-fold cross-

validation on a training set consisting of half of the

Japanese individuals, separated from a test set. We con-

structed risk prediction models using four ML methods,

penalized regression [14–16], random forest (RF) [17],

support vector machine (SVM) [18], and gradient

boosted decision tree (GBDT) [19], and evaluated the

predictive performance of the ML models on an inde-

pendent test set. This final model based on GBDT

showed better accuracy than the model based on super-

vised PCA logistic regression constructed in our previ-

ous studies [9].

Methods
Clinical samples

All of 457 serum subjects and their clinical data were

obtained from the National Center for Geriatrics and

Gerontology (NCGG) Biobank. The total set of subjects

was composed of 169 DLB patients and 288 normal

control (NC) subjects with normal cognitive function

[9]. The DLB subjects were diagnosed on basis of the

criteria of the fourth report of the DLB Consortium [20].

The NC subjects were confirmed with a Mini-Mental

State Examination (MMSE) score ≥ 27. The APOE ε4

genotype and MMSE score of all subjects were avail-

able. These miRNA expression data are publicly avail-

able through the Gene Expression Omnibus (GEO)

database at the National Center for Biotechnology

Information (GSE120584, http://www.ncbi.nlm.nih.gov/

projects/geo/).

Sixty-nine DLB cases and 2008 NCs used in the

genetic association studies were also selected from the

subjects enrolled in the NCGG Biobank. All subjects

were ≥ 60 years in age and were genotyped using Japonica

arrays [21]. We excluded all SNPs with a genotype call

rate < 0.99, a Hardy-Weinberg equilibrium p-value < 1.0 ×

10−3 in NCs or a minor allele frequency (MAF) < 0.01.

Target gene annotation using miRNAs

The target genes of miRNAs were determined using the

microRNA Target Prediction and Functional Study

Database (miRDB version 5.0, [22], where MirTarget V3

predicted the miRNA-target genes with a prediction

score in the range between 0 and 100. In this study, tar-

get genes with a score of > 90 were used in further gene-

based association studies.

Parameter selection in several machine learning methods

Top-ranked miRNAs were detected using a logistic re-

gression method after adjustment for age, sex and APOE

ε4 genotype on the training set. All ML model optimiza-

tions were performed against each pre-selected top-

ranked p miRNA using 10-fold cross-validation on the

training set. The hyper-parameter optimizations were

implemented in the scikit-learn library (version 0.19.1)

in Python. Precision, recall, F-measure, and accuracy

were used to evaluate the four ML methods: penalized

regression, RF, SVM, GBDT. The precision, recall, F-

measure, and accuracy were calculated using the counts

of true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN) as follows:

Precision ¼
TP

TP þ FP

Recall ¼
TP

TP þ FN

F−measure ¼
2Recall∙Precision

Recall þ Precision

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN

Random forest (RF)

Using the best prediction model based on random forest

method, we investigated the optimal combination of the
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following five hyper-parameters: maxdepth, ntree, minsplit,

minsample, and criterion. The maxdepth parameter is max-

imum number of levels in each decision tree (maxdepth =

2, 3, 4, 5). The ntree parameter is the number of decision

trees (ntree = 100, 200, 300, 400, 500, 600, 700, 800, 900,

and 1000). The minsplit parameter is minimum number

of data points placed in a node before the node is split

(minsplit = 2, 3, 5, 10, 15, 20). The minsample parameter is

the minimum number of samples in a leaf (minsample = 1,

3, 5). The criterion parameters, ‘gini impurity’ and ‘infor-

mation gain entropy’, are used for splitting the data.

Penalized regression

We implemented ridge regression [14], elastic net [15]

and lasso methods [16], known as penalized regression

methods. The phenotype of subject i = 1, ⋯, n was set as

the dependent variables (case = 1, control = 0) and the

expression Xi, j of each miRNA j = 1, ⋯, m for a subject

i. Let Xi = (X1,⋯, Xp) be the values of pre-selected top-

ranked p miRNA for a subject i and let l(β; γi, Xi) be the

logistic log-likelihood:

l β; γ i;X i

� �

−λPα βð Þ;

where PαðβÞ ¼ ð1−αÞ 1
2
β2 þ α j β j, and α was set to 1 for

lasso, 0 for ridge regression, and 0 to 0.9 at 0.1 intervals

for elastic net, and λ are selected using 10-fold cross-

validation. For the best prediction model based on pe-

nalized regression methods, we investigated optimal

combinations of above two hyper-parameters: α and λ.

Support vector machine (SVM)

To construct prediction models, we applied a support

vector machine method with the radial basis function

(RBF) kernel defined as:

K x; x0ð Þ ¼ exp −γ x−x0k k
2

� �

min
β;ξ

1

2
βk k2 þ C

X

n

i¼1

ξ i

We investigated the optimal combinations of the

above two hyper-parameters: gamma (γ) and cost (C).

The parameters C and γ affect model complexity and

model smoothness, respectively. Increasing C and γ

cause over-fitting, and range of those parameters we im-

plemented were C = {2−15, 2−14,…, 214, 215} and γ = {2−15,

2−14,…, 214, 215}. The terms β and
Pn

i¼1 ξ i were then co-

efficients of classifier resulting from a separating hyper-

plane and the amount of misclassified data.

Gradient boosting decision tree (GBDT)

Significantly different from the similar ensemble method,

random forest, the tree-based models of GBDT were

trained sequentially, and each base model was updated to

correct the error produced by its previous tree models,

called a learning rate. To optimize parameters in this

method, we examined combinations of the following five

hyper-parameters: maxdepth, ntree, minsplit, minsample, and

learning rate. The first four parameters were the same as

those used in random forest. The learning rate was opti-

mized across {0.001, 0.01, 0.05, 0.1, 0.2}.

Results
Data collection of Japanese individuals

We split the 457 Japanese individuals (169 DLB cases,

288 controls) into a training set of 229 individuals (85

DLB cases, 144 controls) and a test set of 228 individuals

(84 DLB cases, 144 controls). This separation was per-

formed to result in a similar distribution in the age be-

tween the training and test sets (Table 1).

Comparison of classifier performance

All approaches were performed using a data set of the p

most significant miRNAs in a stepwise manner (p ≤ 500).

The most significant miRNAs (top-ranked miRNAs)

were determined in nine-tenths of entire training set

using a logistic regression method. Note that top-ranked

miRNAs were determined for each cross-validation step.

The adjusted model was constructed using the nine-

tenths of the training set and was evaluated using the

remaining one-tenth. Four ML methods, penalized re-

gression (ridge regression, elastic net and least absolute

shrinkage and selection operator: LASSO), RF, SVM,

and GBDT, were used for model construction. Using 10-

fold cross validation estimation, we determined the opti-

mal number of miRNAs for the final model construction

for each ML method (Fig. 1). Final models were con-

structed using the complete training set. The number of

top-ranked miRNAs and the tuning hyper-parameters

are shown in Table 2. The adjusted models constructed

with the entire training set were then evaluated on a

completely independent test set (Fig. 2). Among the four

MLs, a final risk prediction model based on the GBDT

method achieved the highest accuracy of 0.829 when

pre-selecting the top-ranked 216 miRNAs and three

clinical features. The other methods were 0.825 for pe-

nalized regression with 434 miRNAs, 0.820 for SVM

with 27 miRNAs, and 0.789 for RF with 60 miRNAs

(Table 2 and Fig. 2). The hyper-parameters used in the

final risk prediction model with GBDT were then opti-

mized: (maxdepth, ntree, minsplit, minsample, learning rate) =

(4, 200, 20, 5, 0.1) (see the Methods).

We also constructed a GBDT risk prediction model

using another feature selection algorithm, μHEM [23],

publicly available at http://www.isical.ac.in/~bibl/results/

mihem/mihem.html, and investigated whether this fea-

ture selection methodology can further improve the
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predictive ability of our model. The GBDT risk predic-

tion model was performed using a data set of the top-

ranked p miRNAs in a stepwise manner (p ≤ 500). This

final risk prediction model using μHEM algorithm

achieved an accuracy of 0.803 on an independent test set

when pre-selecting the top-ranked 330 miRNAs and

three clinical features. Although the final risk prediction

model showed a lower accuracy than that using a logistic

regression method (Additional file 1: Table S1), imple-

mentation of feature selection algorithms might contrib-

ute to further improvement of the GBDT risk prediction

model.

We also compared the run time of the four ML

methods on a 7-core Intel Xeon 2.40GHz CPU with 256

GB of memory. While runtimes for SVM and RF were

independent of the number of top-ranked miRNAs used,

the runtimes for GBDT and penalized regression in-

creased with the number of top-ranked miRNAs. SVM

was the fastest ML method, which spent 1.5 min to con-

struct the risk prediction model when using top-ranked

500 miRNAs. RF took 30min, GBDT took 2.2 h, and pe-

nalized regression took 2.9 h (Fig. 3). This result shows

that difficulties may arise when implementing GBDT

and penalized regression with larger numbers of top-

ranked miRNAs in the risk prediction model construc-

tion compared with SVM and RF.

Effective features used in risk prediction model

The final GBDT risk prediction model was constructed

by pre-selecting the 216 top-ranked miRNAs and three

clinical features (‘age’, ‘APOE ε4 genotype’, and ‘sex’). Of

the 219 features, 182 were used in the final risk predic-

tion model construction as effective features with a

feature importance > 0 (180 miRNAs and 2 clinical fea-

tures: ‘age’ and ‘APOE ε4 genotype’) (Additional file 2:

Table S2).

To examine the biological significance of our findings

(180 miRNAs), we further predicted the miRNA

functional target genes using miRDB [22]. The miRNAs

were predicted to target 4119 genes (see the Methods),

of which 423 genes were predicted by the 7 miRNAs

(MIMAT0014984, MIMAT0027624, MIMAT0016852,

MIMAT0023713, MIMAT0019849, MIMAT0022491,

and MIMAT0007882) with a feature importance > 0.015

in the final GBDT risk prediction model (Additional file 2:

Table S2). The rank of miRNAs’ feature importance

Table 1 Average age, sex and APOE ε4 genotype information in the training and test data

Training data set Test data set

Phenotype #Sample Age Sex (Male) APOE ε4
a #Sample Age Sex (Male) APOE ε4

a

DLB 85 79.5 0.45 0.34 84 79.5 0.36 0.30

NC 144 71.7 0.49 0.22 144 71.8 0.56 0.15

aAPOE ε4 shows the average of the number of APOE ε4 genotype

Fig. 1 Outline of the risk prediction model construction and the validation
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in the final GBDT risk prediction model was also cor-

related with that of miRNAs chosen by the logistic

regression method (Spearman’s ρ =0.21 and p-value =

0.006).

Functional pathways using gene set enrichment analysis

(GSEA)

In order to elucidate any enrichment of functional units

or categories, we applied GSEA to the 423 target genes

of the 7 miRNAs described above. GSEA was performed

using Ingenuity Pathways analysis software (IPA; In-

genuity Systems). We identified six statistically signifi-

cant canonical pathways: protein kinase A signaling (21

genes), ERK/MAPK signaling (14 genes), molecular

mechanisms of cancer (20 genes), p38 MAPK signaling

(10 genes), glucocorticoid receptor signaling (18 genes),

and docosahexaenoic acid (DHA) signaling (6 genes),

with a q-value < 0.05 (Table 3 and Additional file 3:

Table S3). One of them, the DHA signaling pathway

(Fig. 4), has been reported to be associated with DLB

pathology; high levels of alpha-synuclein oligomers were

induced by high levels of DHA in vitro and in vivo [24].

This result suggests that six genes (PNPLA2, PIK3C2B,

PIK3R2, GSK3A, GSK3B, and BCL2L1) included in this

DHA signaling pathway, could be associated with DLB

pathology (Fig. 4).

Gene-based association studies using large numbers of

SNP markers

To check the genetic associations of the six genes in the

DHA signaling pathway, we examined genetic differ-

ences using single nucleotide polymorphism (SNP)

markers from 69 DLB cases and 2008 controls. A gene-

based association test of rare variants, SNP-set Kernel

Association Test (SKAT) [25], was applied to the gene

coding sequence six genes including 1Mb of sequence

up and downstream, since expression quantitative trait

loci (eQTL) SNPs [26] have a major effect on gene ex-

pression regulation. Several thousand SNPs were used

for the association tests, which showed statistically sig-

nificant association with BCL2L1 (p-value = 0.012) and

PIK3R2 (p-value = 0.021) (Table 4). Furthermore, the ex-

pression of these two genes was observed in several

brain tissues in the Genotype-Tissue Expression (GTEx)

database [27].

Discussion
Early diagnosis and therapeutic intervention could pre-

vent severe disease manifestations in patients suffering

from several diseases including DLB, and miRNAs have

attracted a lot of attention as novel biomarkers [28–30].

In fact, risk prediction models using miRNA biomarkers

have been developed for early diagnosis prediction in

several types of dementia [9], including sporadic AD

[31], as well as cancers [32, 33]. However, more accurate

prediction models are required for practical clinical use.

To construct a more accurate risk prediction model

for DLB, we, in this study, used comprehensive miRNA

expression data of serum samples and applied several

Fig. 2 Precision, Recall, F-measure, and Accuracy values listed four ML methods. Performance of four ML methods on training (a) and test

(b) data

Table 2 Hyperparameter values in each final model

Method #top-ranked miRNA Hyperparameter Value

Penalized regression 434 α 0.1

λ 0.10882

RF 60 maxdepth 4

ntree 100

minsplit 10

minsample 3

SVM 27 C 2.14355

γ 0.001122

GBDT 216 maxdepth 4

ntree 200

minsplit 20

minsample 5

learning rate 0.1
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ML methods. We investigated which combination of ML

method and miRNA sets resulted in the best predictive

model. We found that the GBDT method achieved the

highest accuracy among four ML methods examined, al-

though the performance of all ML methods was similar

(Fig. 2). Other studies have recently reported the power-

ful classification performance of GBDT [34], which

produces a prediction model in the form of an ensemble

of weak prediction models (decision trees), constructs

the model in a stage-wise fashion, and generalizes

them by allowing optimization of an arbitrary differ-

entiable loss function. It has also been reported that

for this ML model, the arbitrary customization of the

loss function contributes to the recent success of pre-

diction models [35].

Our final GBDT risk prediction model was con-

structed using 216 pre-selected top-ranked miRNAs, se-

lected through a logistic regression method, and three

clinical features. However, only 180 of the 216 miRNAs

contributed to the risk prediction model construction as

efficient features. Of the 180 miRNAs, 7 showed a high

feature importance in the final GBDT model. GSEA

using the target gens of the 7 miRNAs detected a signifi-

cantly enriched biological pathway, the DHA signaling

pathway, which has been previously reported to be asso-

ciated with DLB pathology [24]. In particular, six target

genes were involved in the biological pathway, two of

which, BCL2L1 and PIK3R2, were further supported by

gene-based association studies using a large number of

SNP markers. BCL2L1 belongs to the family of BDL-2

proteins, which is involved in not only in the control of

apoptosis, but also in mitochondrial damage protection

[36], modulation of immune response [37], and DNA re-

pair [38]. Borras et al. have reported that the over-

expression of BCL2L1 in PBMCs was confirmed in cen-

tenarians, compared with septuagenarians and young

people [39]. This evidence supports that BCL2L1 plays

an important role in healthy aging. In other words, de-

fects in BCL2L1 could exert an adverse influence on the

healthy aging (e.g. cognitive impairment). On the other

hand, PIK3R2 (phosphoinositide-3-kinase regulatory

Table 3 Canonical pathways associated with DLB pathology

Canonical pathway #genes related q-value

protein kinase a signaling 21 7.08E-3

ERK/MAPK signaling 14 7.08E-3

molecular mechanisms of cancer 20 7.6E-3

p38 MAPK signaling 10 7.6E-3

glucocorticoid receptor signaling 18 8.92E-3

docosahexaenoic acid (DHA) signaling 6 3.19E-2

Fig. 3 Runtimes of four ML methods
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subunit 2) is a lipid kinase that functions in growth

signaling pathways and a known as a tumor suppressor

gene [40]. There are no reports of it being associated

with DLB pathology. However, Shu et al. reported that

the PI3K/ANK pathway containing PIK3R2 is involved

in cognitive impairment [41]. These miRNAs were also

used to perform DIANA-miRPath v3.0 [42], a web-based

functional analysis tool incorporating biological

pathways, and three statistically significant Kyoto

Encyclopedia of Genes and Genomes (KEGG) biological

pathways [43, 44] were detected with a q-value < 0.001:

Metabolism of xenobiotics by cytochrome P450 (8

genes), Vasopressin-regulated water reabsorption (14

genes), and thyroid hormone signaling pathway (25

genes) (Additional file 4: Table S4). One of them, the

thyroid hormone signaling pathway, has been reported

to be associated with neurodegenerative diseases; the

administration of thyroid hormone in AD model mice

prevented cognitive deficit and improved the neuro-

logical function [45]. In future work, we will perform

further refinement of our model, and investigations with

larger sample size will further validate the effectiveness

of this classifier.

The most efficient features have a weaker correlation

between the ranking of feature importance of the final

method and the top-ranked miRNAs than we expected

(Spearman’s ρ =0.21). This implies that there is still room

for improvement in our prediction model. One way may

be to integrate functional units, such as metabolic path-

ways, into our final risk prediction model, as miRNAs with

high feature importance in the GBDT were associated

with several biological pathways. Another way may be to

Fig. 4 Docosahexaenoic acid (DHA) signaling pathway detected by GSEA. The DHA signalling pathway was generated through the use of IPA

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis)

Table 4 Gene-based association studies for the six genes in the

DHA signaling pathway

Gene on pathway Gene symbol #SNPs p-value

PNPLA PNPLA2 376 0.059

PI3K PIK3C2B 560 0.915

PIK3R2 364 0.021*

GSK3 GSK3A 174 0.371

GSK3B 429 0.451

BCL-XL BCL2L1 135 0.012*

*statistically significant association
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integrate interactions among miRNAs into our final risk

prediction model. Interaction effects have been reported

to increase the power of risk prediction models [46]. Fi-

nally, artificial intelligence (AI) technology, in particular

deep learning, is a recent and fast-growing field of ma-

chine learning. AI technology could also contribute to an

improvement of this risk prediction model. Some poten-

tial applications have been proposed for novel diagnostic

and treatment options in medical imaging and genomics

[47, 48]. However, this technology relies on large amounts

of data to learn automatically, and it has certain advan-

tages for dealing with big data [49, 50]. At least several

thousand unique training data sets would be required for

successful application [50]. Although at present, our data

sets were too small to effectively apply these AI technolo-

gies, we expect that these technologies will contribute to

improvement of our prediction model in the future.

Next generation sequencing technology (NGS) has en-

abled comprehensive detection of coding and non-

coding RNAs as well as genetic variants. Integrative ana-

lysis of these genetic variations and gene expressions,

such as expression quantitative trait loci (eQTL), has re-

vealed potential target genes for associations of genetic

susceptibility risk loci. We believe that these omics data

would also play an important role for improvement of

risk prediction models.

Conclusions
In this study, we investigated potential miRNA biomarkers

using serum miRNA expression and constructed an opti-

mal risk prediction model using several machine learning

methods. The final risk prediction model based on a GBDT

achieved an accuracy of 0.829 on an independent test set.

GSEA of the miRNA candidate target genes revealed 6

functional genes in the DHA signaling pathway associated

with DLB pathology. For two of them (BCL2L1 and

PIK3R2), this was further supported by gene-based associ-

ation studies using a large numbers of SNP markers. Our

study provides an effective tool for DLB classification, and

with further improvement, such as integrative analyses of

genomic and/or transcriptomic data, it has the potential to

contribute to practical clinical application in DLB.
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