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Abstract

This paper proposes a reliable monitoring scheme that can assist medical specialists in watching over the patient’s condition.

Although several technologies are traditionally used to acquire motion data of patients, the high costs as well as the large

spaces they require make them difficult to be applied in a home context for rehabilitation. A reliable patient monitoring

technique, which can automatically record and classify patient movements, is mandatory for a telemedicine protocol. In

this paper, a comparison of several state-of-the-art machine learning classifiers is proposed, where stride data are collected

by using a smartphone. The main goal is to identify a robust methodology able to assure a suited classification of gait

movements, in order to allow the monitoring of patients in time as well as to discriminate among a pathological and

physiological gait. Additionally, the advantages of smartphones of being compact, cost-effective and relatively easy to

operate make these devices particularly suited for home-based rehabilitation programs.

Keywords Gait analysis · Machine learning classifier · Smartphone technology · Wavelet-based feature extraction ·
Home-based telemedicine

1 Introduction

An important field of application for data classification

and screening is the one concerning human motion, in

particular the one required in gait analysis, defined as
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the systematic study of human walking [1–5]. As far as

we know, considerable information can be extracted by

analyzing patients’ walking because it contains important

biometric features. In effect, gait is related to the walker’s

physical and, sometimes, psychological state [6].

Decision-making for gait analysis could be supported

by the use of computational intelligence techniques for

automatic determining the status of a patient. For instance,

in [7–9] several classification algorithms are evaluated and

compared in terms of their ability to discriminate among

physiological and pathological gait.

Generally, the most adopted tools for gait analysis

are based on high complexity motion capture systems

exploiting active or passive markers, electromyography

(EMG), dynamometric platforms, and so on [10–14].

Unfortunately, the high cost and the complexity they

require make them suitable only for specific clinicians and

hospitals.

To ease the monitoring of patients’ motion, while

keeping the cost low, a lot of researchers focus their

attention on IMU sensors [15–17]. Unfortunately, these

sensors have severe drift problems, making necessary their

usage in parallel with other technologies [18]. To overcome

these issues, some studies have analyzed the impact that new

technologies based on both visual and non visual systems
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could bring on the related research and application fields [6,

19–21].

In effect, in the last decade, everyday life has been power-

fully influenced by technology, like tablets or smartphones

ceaselessly connected through mobile networks. Research is

increasingly striving towards the exploitation and the evolu-

tion of daily experiences by improving and developing new

functionality that people could ask for.

A current and quite recent trend of research has seen the

investigation of smartphone-based applications for move-

ment monitoring and analysis, as for example considered

in [22]. Gait analysis experiments using a smartphone

to demonstrate the capability to accurately quantify gait

parameters with a sufficient level of consistency have been

performed in [23] and in several other works as, for instance,

in [24–27]. However, these approaches mainly rely on

human experts (i.e., doctors) for the clinical analysis of

smartphone data and making a decision accordingly. The

feasibility, efficacy and usefulness of machine learning

techniques for discriminating automatically the gait move-

ments and for assessing the main extracted features have not

been systematically evaluated so far.

In this work, we extend the use of sensors contained

in a smartphone to realize a work particularly suited for a

future home-based rehabilitation approach. In particular, its

advantages of being compact, cost-effective and relatively

easy to operate automatically, compared to the other

onerous and expensive technologies, make this device

particularly suited for this context. As for the biomedical

context, a low-cost smartphone-based system could bring

great advantages to both diseased people and clinicians,

by upgrading the patients’ quality of life and reducing

the average rehabilitation cost. Despite this approach

being interesting for the treatment of many diseases like

Parkinson’s, multiple sclerosis and Coxarthrosis, we will

describe a specific solution tailored to the monitoring of

people recovering from a stroke. In effect, post-stroke

rehabilitation has been proven to be essential and effective

in helping stroke patients to gradually regain part of their

body functionality. In particular, gait analysis, which is the

standard practice for diagnosis, assessment, monitoring and

discussion of diseases that affect gait, is used to detect the

walking patterns and posture that are unique for hemiplegic

patients at different recovery stages.

We propose a reliable remote monitoring scheme that

can assist medical specialist in watching over the patient’s

condition. A smartphone is used to collect stride data and

obtain useful information from these data by means of

advanced features extraction methods. The system should

be used to assist medical specialists in analyzing the

rehabilitation path at range, also when the patient is not

in the hospital anymore. In this way, assuming that the

approach is inserted in a well-scheduled program of “home”

rehabilitation, it will be possible to reduce costs, while

improving the patient’s life quality and allowing clinicians

to evaluate patient’s improvements in a safer and faster

manner.

The novelty, with respect to state-of-the-art applications,

is the combination of the data acquisition and filtering

from the device, with data fusion and pattern recognition

techniques that provide a correct definition of the gait

movements, allowing to monitor the patient in time, as well

as discriminate among a pathological and a physiological

gait.

The rest of the paper is organized as follows. We intro-

duce the proposed approach in Section 2. The application is

ascertained by extensive computer simulations and several

benchmark results, which are reported in Section 3 and dis-

cussed in Section 4. Finally, our conclusions are drawn in

Section 5.

2Methods

2.1 Selection and description of patients

In the experimental process, which will be described in

the detail successively, we evaluate the gait of two set

of individuals. A group of both healthy people and post-

stroke patients took part in the experiment. We collected 60

different walking trials through heterogeneous smartphone

devices of different manufacturers. Among these 60 records,

25 of them belong to voluntary unhealthy patients from

the Rehabilitation Medical Center of the 2nd Hospital of

Jiaxing, Zhejiang province, China; the remaining 35 are

healthy persons among academic researchers and doctors

of the previously cited Medical Center. Additionally, data

differ for the length of the recording session: 41 of them

(respectively 13 from patients and 28 from healthy people)

are recorded in 10 s, the remaining 19 (12 of which are

patients) are recorded in 20 s. People are asked to perform a

walking in a straight path, without deviation.

All research activities in this study were conducted in

accordance with the ethical principles of the Declaration

of Helsinki. As it involves human participants, the present

study was performed in accordance with the relevant

institutional and national guidelines, with informed written

consent from all human subjects involved in the study

including for publication of the results. However, the

study is exempt from the explicit ethics approval of

appropriate institutional Committees, as it is mainly focused

on the engineering aspects pertaining to the use of

specific ICT technologies as well as signal processing

and analysis of the related data. All subject anonymity is

preserved as identifying information is not included in the

manuscript.
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Fig. 1 Position of the smartphone device during the clinical trials

2.2 Procedural information

In this study, we perform an analysis of the user’s stride in

order to extract suitable features for a classification purpose.

A low-cost smartphone device (i.e., Samsung’s Galaxy A3

2017 SM-A320F with Android v6.0.1) is put in the pocket

of a band and ties around the user’s calf as shown in

Fig. 1. In fact, most of the gait information and lower limb’s

angle movements are linked to this muscle. One device

only is adopted, so as to represent a realistic scenario in a

home-based context where a user has one smartphone only.

In order to implement a simple and cheap approach,

we decided to use one smartphone only in the clinical

trials. Further researches might investigate on the use

of two or more devices, although dealing with severe

issues as time synchronization and sensor mismatch among

smartphones. Consequently, we are not able to provide a

full representation of the gait cycle, which is represented

in Fig. 2, since one sensor node is not able to achieve

this. Rather, our aim is to evaluate some additional features

that could be used for a possible home-based lower limb

rehabilitation, by focusing on the features in Table 1 that

should be easy to recover using the adopted hardware setup.

The proposed system for gait monitoring is illustrated in

the flow chart of Fig. 3 and it can be summarized into several

main operations, described in the following subsections.

2.2.1 Raw data collection from sensors

Firstly, data acquisition is performed as follows:

– the user opens the application (we worked in this case

on an Android® device but any operating system can be

adopted) and sets the recording time;

– the smartphone is put into the band’s pocket and fasten

around the calf;

– the user taps the “Start” command on the screen and,

after a countdown of 3 s, the app begins to record data;

– during the recording time, the user performs the

walking test and a device’s vibration will advise him/her

that recording is terminated;

– at the end of the trial, the user uploads data into the

database after explicit consensus granted via the

application.

If the user is a voluntary hemiplegic patient, an

assistant helps him/her in any demands. Accelerometer,

gyroscope, and magnetometer data are captured during

each trial. However, in the following we will not consider

magnetometer data because they are too sensitive to the

presence of metal objects in the environment.

2.2.2 Data resampling

Once data are collected from sensors, the second main

step consists in resampling them in order to reduce the

Fig. 2 The general gait cycle
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Table 1 Spatio-temporal

features adopted for the gait

analysis

Feature Unit Description

Mean cycle duration s Mean value of the stride duration during a trial

Cycle regularity s Standard deviation of the stride duration during a trial

Cadence step/min Number of strides executed in a given time

PSD peak acceleration dB Maximum value of the acceleration’s PSD

PSD peak gyroscope dB Maximum value of the gyroscope’s PSD

differences caused by the fact that acquisition is carried

out using different smartphones with heterogeneous control

hardware and sensor technologies. In addition, the app code

usually cannot set the sampling rate at software level, as it

depends on the hardware available on the adopted device.

Depending on which device is used, each sensor data is

sampled at a different rate (i.e., from 50 to 350 Hz). In order

to apply the same denoising algorithm to the whole set of

data, we need a common sampling rate. Since 200 Hz is a

reasonable trade-off, also considering the final target rate

after wavelet filtering discussed successively, depending on

the starting rate we did resampling or low-pass filtering to

obtain the same rate.

Fig. 3 Flow chart of the proposed processing system

2.2.3 Denoising and filtering

The successive step consists in denoising both acceleration

and gyroscope data by a wavelet-based estimation algorithm

and, successively, in low-pass filtering the reconstructed

signals in order to make easier the feature extraction

process.

A wavelet-based denoising algorithm is firstly applied by

using the following model [28]:

s(n) = f (n) + σe(n) , (1)

where n is the sample (time) index, s(n) is the noisy signal,

f (n) is the signal to be recovered, e(n) is a zero-mean, unit-

variance Gaussian white noise and σ is the noise level. The

adopted algorithm is able to suppress the noise part of the

signal s(n) and to recover f (n) through the following steps:

1. a wavelet decomposition of s(n) at level W is evaluated

(we used the family of Daubechies’ least asymmetric

wavelets as default option);

2. a thresholding operation is performed to detail coeffi-

cients for each computed level from 1 to W ;

3. the wavelet reconstruction is computed based on the

level W original approximation coefficients and on the

modified detail coefficients from level 1 to W .

In the following, we will consider W = 4 levels taking

into account a minimum of 128 samples per data recording

trial. Noise estimate is performed at each wavelet level

to scale the reference noise model σ = 1, then a soft

thresholding is performed by using a “universal threshold”

approach for minimax performance [29], using a threshold

proportional to
√

2 ln(L) where L is the length of the

considered signal.

After denoising, acceleration and gyroscope signals are

passed through a 4-level Mallat’s filter bank [30] for low-

pass filtering and downsampling. In fact, average walking

frequency of healthy people is about 1.8 Hz [31] and hence,

as shown in Fig. 4, a final sampling frequency of 12.5 Hz

is suitable to make easier the subsequent feature extraction

process without loosing any useful information.
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Fig. 4 An example of denoising

and filtering on the absolute

value of the acceleration signal

2.2.4 Power spectrum density estimation

As a well-known result achieved in the literature [32],

the feature extraction for gait classification analysis should

be based also on the power spectrum density (PSD)

of considered signals, which coincide with the absolute

values of acceleration and gyroscope signals after denoising

and filtering. PSD estimation is then performed by the

“Periodogram” method and we used the maximum PSD

magnitude values (i.e., peaks) for both acceleration and

gyroscope data. An example in this regard is shown in

Fig. 5, where input denoised unfiltered data are shown.

It is worth to point out that the average stride frequency of

every stride can be estimated and used as a parameter to find

the walking cycle in each trial; in most cases, the accelera-

tion’s average frequency (PSD peak) is located at the gyro-

scope’s second harmonic (see Fig. 5). However, because of

relevant fluctuations due to the mechanism through which

data are measured, this rule could not be always satisfied.

2.2.5 Gait feature extraction

In addition to the PSD peaks introduced before, other

three features are used for gait cycles discrimination:

cycle duration (Cd ), cycle regularity (Cr ), and cadence or

revolutions per minute (Rm).

Those features are generally used by the clinicians, in

combination with other information on the subjects, to

Fig. 5 An example of PSD

extraction and peak detection on

denoised acceleration and

gyroscope data at the original

sampling rate of 200 Hz
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monitor the progress of a therapy or the evolution of a

disease [5, 33, 34]. By the proposed approach, we propose a

novel use of these features through the synergy of extracting

gait features by low-cost devices and making classification

automatically by means of machine learning models.

Each stride is recognizable from the acceleration pattern

as the time between two “valleys”. In fact, when the foot hits

the ground, the sudden acceleration causes a spike followed

by a deceleration that is represented by a valley; then, the

successive leg swinging causes a new acceleration and the

process is repeated cyclically. However, this behavior is

more evident in healthy people rather than hemiplegic ones,

as shown in Fig. 6.

In order to find out the time instants of foot contacts,

both accelerometer and gyroscope data are considered.

First, the absolute PSD’s peak of both accelerometer and

gyroscope data is measured; from the related frequency we

can obtain a gross estimate of the average time between

two steps considering either acceleration or gyroscope data,

respectively. The average of these time intervals is then used

as a rolling window to find a minimum in a small interval

around an initial guess in accelerometer data, the final result

is shown in Fig. 6.

Since we assume that the first valley is the starting point

of the first stride and that one stride is performed during the

time gap between two consecutive valleys, we can define

the cycle (stride) duration as:

Cd [k] = V [k + 1] − V [k] , (2)

where V [k] is the array containing the valleys’ locations

(in seconds) and k is their index. So, Cd [k] will represent

the time difference between two valleys of a gait cycle.

The cycle (stride) regularity is expressed as the standard

deviation of the elements in the vector Cd , it is measured in

second and proves regularity when the value of Cr tends to

zero. Finally, the cadence is defined as:

Rm =
60Nc

Vl − Vf

, (3)

where Nc is the number of cycles taken from recorded array,

Vl is the last element of the valley location (in seconds)

and Vf is the first one. Consequently, the cadence is the

projection of how many strides could be performed in a

minute and it is thus expressed in cycles/min.

All of the features adopted in this paper are summarized

in Table 1; for the cycle duration representing a recorded

trial we consider the average value of the elements in the

vector Cd .

Fig. 6 An example of stride

recognition using the absolute

value of the time acceleration

pattern for a healthy and

unhealthy user
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2.2.6 Feature normalization

Before using data for classification purposes it is helpful

to perform data normalization in order to scale the features

in the same numerical range, which in this case is chosen

between 0 and 1. Let M be the number of patterns in the

available dataset, where each pattern xm, m = 1 . . . M ,

is a collection of N features (i.e., N = 5 in the present

approach) associated with a specific recorded trial:

xm = [xm1
xm2

. . . xmN
] , m = 1 . . . M . (4)

Since data features are completely heterogeneous, patterns

cannot be normalized globally but with different affine

transformations of features independent from one another:

xmj
←

xmj
− bj

aj − bj

, j = 1 . . . N , m = 1 . . . M , (5)

where the terms are defined as aj = maxm{xmj
} and

bj = minm{xmj
}, with j = 1 . . . N .

2.2.7 Data classification and results

The last step of the proposed algorithm consists in training

a binary classifier by using well-known machine learning

paradigms in order to categorize data and discriminate

between healthy and unhealthy people. This is useful also to

understand if the considered gait features are able to support

this kind of classification, as for many other application

fields [35–38].

We have investigated in our experiments all of the pos-

sible combinations of input features, therefore considering

25 − 1 = 31 different datasets. A 10-fold stratified valida-

tion is performed and several classification algorithms are

compared in terms of classification error for each dataset.

2.3 Statistics

Several classification algorithms are used to assess the

validity of the proposed approach:

– Linear Discriminant Analysis (LDA): tries to charac-

terize data using a linear polynomial in order to sep-

arate patterns into two or more classes. It maximizes

the inter-class discriminatory information by using the

Fisher Discriminant technique for surface separation

[39, 40]. For the method to perform well data should

satisfy the homoscedastic hypothesis, no hyperparame-

ters are to be set in advance.

– Quadratic Discriminant Analysis (QDA): similarly to

the LDA, tries to characterize a dataset using a quadratic

polynomial based on Gaussian density conditional

functions [41, 42]. It does not require any assumption

on data, so it is more suitable for real contexts, no

hyperparameters are to be set in advance.

– K-Nearest Neighbor (KNN): classifies a pattern

depending on the most frequent class in the neighbor-

hood of the pattern itself [43]. It does not require any

assumptions on data and, in the following, we will use

the Euclidean distance between patterns and K = 5 as

a default value.

– Naive Bayes (NB): is a statistical technique that seeks to

verify if an element belongs to a class based on Bayes’

Theorem [44, 45]. The algorithm calculates various

conditional probabilities and assigns the patterns to the

class with the highest probability. In the following we

will use Gaussian kernel smoothing to estimate and

model the data density.

– Support Vector Machine (SVM): is a particular

supervised learning approach that can be applied for

both regression and classification problems [46, 47].

Based on the solution of a quadratic convex problem,

it is used for finding global minimum also in nonlinear

complex problems. In the following we will adopt as

default options a Radial Basis Function (RBF) kernel

with Sequential Minimal Optimization (SMO) solver.

– Neuro-Fuzzy classifier (NF): is used to partition

the feature space into fuzzy sets and assign non

mutually exclusive membership values representing the

reliability of the pattern of belonging to each class [48,

49]. In the following the model will be trained by a

scaled conjugate gradient method with 100 maximum

epochs and one cluster per class.

– Classification and Regression Tree (CART): operates

by recursively splitting data until ending points, defined

by some predefined criteria, are achieved [50, 51]. It

should handle with nonlinear relations between features

and classes [52], finding a correct trade-off among

computational complexity and accuracy. Prior class

probabilities will be estimated in the following based on

class frequencies.

– Probabilistic Neural Network (PNN): this approach

is based on a four-layer neural network employ-

ing Bayesian decision-making theory and data-driven

learning [53, 54]. The spread of radial basis functions

will be set by default to 0.1.

– Fuzzy Inference System (FIS): this method adopts

first-order fuzzy rules and a data-driven inference

system trained by means of the Substractive Clustering

method [48, 55]. Gaussian membership functions will

be adopted with one rule per fuzzy cluster and 0.5

influence of the cluster center (normalized data space).

All the classifiers use the same set of data, no ad hoc

changes are made to make every dataset suited for the

specific classification model. It can be underlined, however,
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Fig. 7 Maximum PSD

magnitude of acceleration and

gyroscope of healthy (blue) and

unhealthy (red) subjects

that some general differences exist in the way by which each

algorithm extract information from the data. For instance,

KNN and SVM classifiers do not provide from training

data a mathematical model of the classifier. In fact, SVM

classifier gives as output the support vectors, while KNN

seeks, for each pattern to be classified, the nearest patterns

which the output label is extracted from.

On the contrary, statistical and fuzzy logic-based

classification algorithms aim at finding, by using training

data, the parameters of a mathematical model that is able

to infer the probability of or the fuzzy membership to a

class, respectively, for the pattern under classification. An

intermediate behavior is the one of CART classifiers, where

a decision tree is obtained by training data rather than

a parametric model. Further details can be found in the

references cited for each classifier listed above.

3 Results

In this section we report the obtained numerical results.

For the sake of illustration, let us consider firstly the

PSD magnitude of acceleration and gyroscope for healthy

classification. Looking at Fig. 7, where the first 35 (blue)

records are from the healthy group while the successive

25 (red) records are of the post-stroke patients, by the

differences of the maximum PSD magnitude the reader

could have a sufficient but not so accurate estimation of the

Table 2 Best feature subset per classifier and number of times a feature is adopted

Feature LDA QDA KNN NB SVM NF CART PNN FIS Occurrences

Mean cycle duration 0 1 1 0 0 1 0 0 0 3

Cycle regularity 0 0 0 1 0 0 0 0 0 1

Cadence 0 1 0 0 1 0 0 1 0 3

PSD peak acceleration 0 0 1 0 0 0 0 0 0 1

PSD peak gyroscope 1 1 1 1 1 1 1 1 1 9
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healthy status. Consequently, a more accurate classification

approach is required in order to perform a robust analysis.

To this end, we considered the classification models

introduced in Section 2.3 and we performed an exhaustive

search considering all the 31 sets of possible combinations

of the 5 features listed in Table 1. A stratified 10-

fold validation procedure was adopted for evaluating the

classification accuracy; for each subset of features a

classifier is trained 6 times, by classifying each time 10

different patterns (i.e., subjects or recorded trials) and using

the remaining 50 patterns for training. As most of the

classification models depend upon a random initialization of

model parameters, and the 10-fold partitioning of the dataset

is random as well, we repeated the above procedure 10 times

and the ones considered in the following are the average

values of accuracy obtained over the 10 different trials.

For each classifier we report in Table 2 the subset

of features that yielded the best (average) classification

accuracy, among all of the possible combination of features.

More precisely, there are 5 rows (one per feature) and 10

columns (one per each algorithm plus the number of times

that each feature is selected in an optimal dataset); each

element of the table takes value 1 if the corresponding

feature is selected and 0 otherwise. In case of identical

values we chose the subset with the lower number of

features according to a regularization approach [56].

The numerical classification results are summarized in

Table 3 where, for each classification algorithm, there are

reported the average classification accuracy and the related

standard deviation over the 10 trials carried out in correspon-

dence of the subset of features that yielded the best (average)

accuracy. The number of adopted features is obtained by

summing the ones in the related column of Table 2.

4 Discussion

By analyzing the results obtained in Table 2, it is evident that

the acceleration is not a useful feature while the gyroscope

must be taken into account for a good discrimination. In

fact, the sole use of the PSD Peak Gyroscope feature is

the best option for LDA, CART, and FIS classifiers. On

the other hand, QDA, SVM, and PNN are able to achieve

a good classification by using some other features, such as

Cadence, which is sufficient for SVM and PNN. It is worth

to point out that these results are quite in accordance with

current medical practices.

Looking at the overall performance of the proposed

classification approaches, we note that the accuracy in

discriminating among pathological and physiological gait

is always maintained at high levels, from 80 to 90%. In

addition to PSD peak gyroscope, cadence is the feature that

by means of PNN is able to obtain the best accuracy of

91.13%. Cycle regularity allows NB classifier to achieve

a 90.38%, which the second score in the ranking. In all

cases, the performance volatility measured by the standard

deviation is adequate. Overall, the great performance of

PNN with only 2 features does suggest that a data-driven

machine learning approach can bring improvements with

respect to statistical approaches based, for instance, on

Discriminant Analysis and to non-parametric models as

KNN as well.

As a final remark, we note that the previous numerical

results are strictly dependent on the uncertainty of measures

through which data are gathered and then processed. In

the present case, error in measurements depends by two

main factors: accuracy and precision of hardware sensors;

objectivity of the experimental setup, mainly depending on

the application of the smartphone on a same point of the

body as well as on the reproducibility of clinical trials (same

walking, same movements, etc.). In this work, the influence

of such errors is mitigated by the use of several and different

hardware devices and by the adoption of a relatively large

number of patients during the clinical tests.

5 Conclusions

The novelty with respect to state-of-the-art applications is

the combination of data acquisition and filtering on the

Table 3 Average classification

accuracy and standard

deviation for the best feature

subset

Classifier Average accuracy (%) Std. deviation (%) Adopted features

LDA 83.23 ±1.28 1

QDA 88.39 ±1.35 3

KNN 87.47 ±1.25 3

NB 90.38 ±0.89 2

SVM 89.84 ±1.38 2

NF 89.41 ±1.12 2

CART 87.74 ±1.07 1

PNN 91.13 ±1.12 2

FIS 86.40 ±1.19 1
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device, with pattern recognition and data fusion techniques

that provide a correct discrimination of gait movements. An

exhaustive feature selection approach is considered in order

to find out the best subset of features able to discriminate

among healthy and unhealthy subjects.

The procedure has been used also for evaluating the

performance of several classification models in terms

of classification accuracy. Very good performances, even

achieving a 100% of accuracy, are obtained on the clinical

trials performed in this research. It is important to point out

that this is a feasibility study, not a clinical trial of a model.

However, the results are very promising for making possible

to assist medical specialists in analyzing the rehabilitation

path in the near future.

In particular, the model could be extended for using it in

specific and personalized programs for home rehabilitation

meant to improve the patient’s quality of the life while

boosting the treatment effectiveness and thus shortening the

patient’s recovery time.
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Schöllhorn WI (2016) Daily changes of individual gait patterns

identified by means of support vector machines. Gait Posture

49:309–314
9. Liparulo L, Zhang Z, Panella M, Gu X, Fang Q (2017)

A novel fuzzy approach for automatic Brunnstrom stage

classification using surface electromyography. Med Biol Eng

Comput 55(8):1367–1378
10. Samuel OW, Li X, Fang P, Li G (2016) Examining the effect

of subjects’ mobility on upper-limb motion identification based

on emg-pattern recognition. In: Asia-Pacific Conference on

Intelligent Robot Systems (ACIRS). IEEE, pp 137–141
11. Cesqui B, Tropea P, Micera S, Krebs HI (2013) Emg-based pattern

recognition approach in post stroke robot-aided rehabilitation: a

feasibility study. J Neuroeng Rehab 10(1):75
12. Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N

(2005) Customized interactive robotic treatment for stroke: Emg-

triggered therapy. IEEE Trans Neural Syst Rehab Eng 13(3):325–

334
13. Shusong X, Xia Z (2010) Emg-driven computer game for post-

stroke rehabilitation. In: 2010 IEEE Conference on Robotics

Automation and Mechatronics (RAM). IEEE, pp 32–36
14. Zhang X, Zhou P (2012) High-density myoelectric pattern

recognition toward improved stroke rehabilitation. IEEE Trans

Biomed Eng 59(6):1649–1657
15. Mantyjarvi J, Lindholm M, Vildjiounaite E, Makela S-M, Ailisto

HA (2005) Identifying users of portable devices from gait

pattern with accelerometers. In: 2005. Proceedings.(ICASSP’05).

IEEE International Conference on Acoustics, Speech, and Signal

Processing, vol 2. IEEE, pp ii–973
16. Thang HM, Viet VQ, Thuc ND, Choi D (2012) Gait identification

using accelerometer on mobile phone. In: 2012 International

Conference on Control, Automation and Information Sciences

(ICCAIS). IEEE, pp 344–348
17. Zhang Z, Liparulo L, Panella M, Gu X, Fang Q (2016) A fuzzy

kernel motion classifier for autonomous stroke rehabilitation.

IEEE J Biomed Health Inf 20(3):893–901
18. Li J, Besada JA, Bernardos AM, Tarrı́o P, Casar JR (2017) A novel

system for object pose estimation using fused vision and inertial

data. Inf Fusion 33:15–28
19. Niyogi SA, Adelson EH et al (1994) Analyzing and recognizing

walking figures in xyt. In: CVPR, vol 94, pp 469–474
20. Qin L, Ma H, Liao W-H (2015) Insole plantar pressure systems

in the gait analysis of post-stroke rehabilitation. In: 2015 IEEE

International Conference on Information and Automation. IEEE,

pp 1784–1789
21. Zhang Z, Fang Q, Ferry F (2011) Upper limb motion capturing and

classification for unsupervised stroke rehabilitation. In: IECON

2011-37th Annual Conference on IEEE Industrial Electronics

Society. IEEE, pp 3832–3836
22. DelRosario MB, Redmond SJ, Lovell NH (2015) Tracking

the evolution of smartphone sensing for monitoring human

movement. Sensors 15(8):18901–18933
23. LeMoyne R, Mastroianni T, Cozza M, Coroian C, Grundfest W

(2010) Implementation of an iPhone as a wireless accelerometer

for quantifying gait characteristics. In: 2010 Annual International

Conference of the IEEE Engineering in Medicine and Biology.

IEEE, pp 3847–3851
24. Nishiguchi S, Yamada M, Nagai K, Mori S, Kajiwara Y,

Sonoda T, Yoshimura K, Yoshitomi H, Ito H, Okamoto K et al

(2012) Reliability and validity of gait analysis by android-based

smartphone. Telemed e-Health 18(4):292–296
25. LeMoyne R, Mastroianni T (2017) Wearable and wireless gait

analysis platforms: smartphones and portable media devices.

544 Med Biol Eng Comput (2021) 59:535–546

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/


In: Wireless MEMS Networks and Applications. Elsevier, pp 129–

152
26. Yamada M, Aoyama T, Mori S, Nishiguchi S, Okamoto K, Ito

T, Muto S, Ishihara T, Yoshitomi H, Ito H (2012) Objective

assessment of abnormal gait in patients with rheumatoid arthritis

using a smartphone. Rheumatol Int 32(12):3869–3874
27. Ellis RJ, Ng YS, Zhu S, Tan DM, Anderson B, Schlaug G, Wang Y

(2015) A validated smartphone-based assessment of gait and gait

variability in Parkinson’s disease. PLoS one 10(10):e0141694
28. Abramovich F, Benjamini Y, Donoho DL, Johnstone IM (2006)

Adapting to unknown sparsity by controlling the false discovery

rate. Ann Stat 34(2):584–653

29. Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by

wavelet shrinkage. Biometrika 81(3):425–455

30. Mallat SG (1989) A theory for multiresolution signal decomposi-

tion: The wavelet representation. IEEE Trans Pattern Anal Mach

Intell 11(7):674–693

31. Ji T et al (2005) Frequency and velocity of people walking. Struct

Eng 84(3):36–40

32. Preece SJ, Goulermas JY, Kenney LPJ, Howard D (2009) A

comparison of feature extraction methods for the classification of

dynamic activities from accelerometer data. IEEE Trans Biomed

Eng 56(3):871–879

33. Perry J, Davids JR, etal. (1992) Gait analysis: normal and

pathological function. J Pediatr Orthop 12(6):815

34. Vaughan CL, Davis BL, O’Connor JC (1992) Dynamics of human

gait. Human Kinetics Publishers

35. Dash M, Liu H (1997) Feature selection for classification. Intell

Data Anal 1(1):131–156

36. Rizzi A, Buccino NM, Panella M, Uncini A (2008) Genre

classification of compressed audio data. In: 2008 IEEE 10th

Workshop on Multimedia Signal Processing, pp 654–659

37. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction

to statistical learning. Springer

38. Proietti A, Liparulo L, Leccese F, Panella M (2016) Shapes clas-

sification of dust deposition using fuzzy kernel-based approaches.

Measurement 77:344–350

39. Fisher RA (1936) The use of multiple measurements in taxonomic

problems. Ann Eugenics 7:179–188

40. Balakrishnama S, Ganapathiraju A (1998) Linear discriminant

analysis-a brief tutorial. Inst Signal Inf Process 18

41. Srivastava S, Gupta MR, Frigyik BA (2007) Bayesian quadratic

discriminant analysis. J Mach Learn Res 8:1277–1305

42. Hastie T, Tibshirani R, Friedman J (2009) The elements of

statistical learning: Data mining, inference, and prediction, 2nd

edn. Springer

43. Cover T, Hart P (1967) Nearest neighbor pattern classification.

IEEE Trans Inf Theory 13(1):21–27

44. Manning CD, Raghavan P, Schütze M (2008) Introduction to

information retrieval. Cambridge University Press

45. Rish I (2001) An empirical study of the naive bayes classifier.

In: IJCAI 2001 workshop on empirical methods in artificial

intelligence, vol 3. IBM New York, pp 41–46

46. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

47. Suykens JohanAK, Vandewalle J (1999) Least squares support

vector machine classifiers. Neural Process Lett 9(3):293–300

48. Sun C-T, Jang J-S (1993) A neuro-fuzzy classifier and its

applications. In: 1993., Second IEEE International Conference on

Fuzzy Systems. IEEE, pp 94–98
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