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Abstract 

Precise and efficient ozone ( O3 ) concentration prediction is crucial for weather moni-
toring and environmental policymaking due to the harmful effects of high O3 pollu-
tion levels on human health and ecosystems. However, the complexity of O3 forma-
tion mechanisms in the troposphere presents a significant challenge in modeling 
O3 accurately and quickly, especially in the absence of a process model. Data-driven 
machine-learning techniques have demonstrated promising performance in mod-
eling air pollution, mainly when a process model is unavailable. This study evaluates 
the predictive performance of nineteen machine learning models for ozone pollution 
prediction. Specifically, we assess how incorporating features using Random Forest 
affects O3 concentration prediction and investigate using time-lagged measurements 
to improve prediction accuracy. Air pollution and meteorological data collected at King 
Abdullah University of Science and Technology are used. Results show that dynamic 
models using time-lagged data outperform static and reduced machine learning mod-
els. Incorporating time-lagged data improves the accuracy of machine learning models 
by 300% and 200%, respectively, compared to static and reduced models, under RMSE 
metrics. And importantly, the best dynamic model with time-lagged information only 
requires 0.01 s, indicating its practical use. The Diebold-Mariano Test, a statistical test 
used to compare the forecasting accuracy of models, is also conducted.
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Introduction
Background and motivation

Atmospheric pollution is becoming a global problem with a harmful influence on 
human health and ecoecosystems [1, 2]. Ground-level ozone pollution could cause 
substantial damage to crops, forests, and native plants. There were plenty of nega-
tive cases concerning the globally decreasing yields of crops caused by the gradu-
ally increasing concentration of ground-level ozone pollution, such as 2.2-−5.5% for 
maize to 3.9–15% and 8.5–14% for wheat and soybean, respectively [3]. It is consid-
ered one of the important greenhouse gases that would exacerbate global warming 
[2]. For instance, the heatwave that occurred in France during the summer of 2003 
was associated with an atypical ozone pollution that had an impact on the whole 
European population [4]. In addition, ozone can damage the tissues of the respiratory 
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tract, causing inflammation and irritation and resulting in symptoms such as cough-
ing, chest tightness, and worsening asthma symptoms [5]. Therefore, it would be 
meaningful to accurately predict the concentration of the ground level of the zone, 
which is beneficial for people’s daily activities.

Accurately predicting Ground-level ozone levels is a key step for the safety of 
humans and ecosystems. Towards this end, different methods have been proposed in 
the literature to predict ozone concentrations in the past two decades [6, 7]. Two main 
approaches are used to predict ozone concentrations: physical-based and data-driven 
models [8–10]. Various physical-driven methods have been presented in the litera-
ture, including the Comprehensive Air Quality Model with Extensions model (CAMx) 
[11], Weather Research and Forecasting with Chemistry model (WRF-Chem) [12], and 
Weather Research and Forecasting coupled with Community Multi-scale Air Quality 
(WRF-CMAQ) [13]. However, due to the heavily intensive computation and the diffi-
culty in accurately collecting the environmental and pollutant data, the use of physical 
methods is challenging to meet the requirements in the real world [8].

Precise air quality forecasting offers valuable insights that can assist individuals in tak-
ing necessary precautions to avert unfavorable outcomes. However, developing accurate 
models of ozone concentration is challenging due to multiple factors, including the com-
plex mechanisms responsible for ozone formation in the troposphere [14], the intricacies 
of meteorological conditions in urban areas, and the uncertainty in the measurements of 
all the involved parameters. When fundamental process models are unavailable, data-
driven techniques, such as machine learning, can reveal the linear relationships among 
the process variables. Data-driven approaches are not limited to describing the exact 
relationship between pollutants and environmental variables as physical models do [6]. 
In contrast to physical models, data-driven methods exploit available measurements to 
learn the underlying reference empirical model. With large available and easily collected 
data from sensors, the data-driven methods attempt to learn this relationship from the 
data with different algorithms, which enclose statistical models and machine learning-
based methods. Statistical models have the advantage of being highly interpretable, 
and a measure of uncertainty in the results, and these advantages have made statistical 
models shine in environmental analysis [15, 16]. Several statistical techniques aimed at 
predicting and monitoring ozone pollution levels have been presented in the literature, 
including the autoregressive (AR) model and autoregressive integrated moving average 
(ARIMA) and its variants model [17, 18], multivariate linear regression [19, 20], the least 
absolute shrinkage, and selection operator (Lasso) [21], and principal component regres-
sion (PCR) [22, 23]. Unlike model-based methods, machine learning methods are within 
a nonparametric framework and do not require prior information about data distribu-
tions. In recent years, machine learning methods have become more appealing due to 
their flexibility and capability to explicitly learn relevant features from multivariate data. 
Thus. machine learning have been applied in wide range of application, in engineering 
applications, such as predicting the axial compressive strength of concrete-filled steel 
tubular (CFST) columns [24, 25], as well as in biomedical applications [26] and air qual-
ity monitoring [27, 28]. Also, numerous machine learning methods have been used to 
model and predict ozone prediction, such as artificial neural networks [29], Support Vec-
tor Regression (SVR) [30], Random Forests (RF) [31], and (XGBoost) eXtreme Gradient 
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Boosting [32]. Previous studies have demonstrated that machine-learning techniques 
can be employed for ozone pollution modeling and prediction.

Contributions

With the advantages of computing efficiency and simplified modeling, machine learn-
ing algorithms have achieved significant progress in the prediction, classification, outlier 
detection, and generation tasks. As presented above, several machine learning algo-
rithms have been implemented in the prediction of the concentration of ozone. In this 
paper, we attempt to compare the performance of different machine learning algorithms, 
such as their accuracy and consumed time. Here we studied nineteen machine learning-
based models for ozone pollution prediction, aiming to find the most efficient and accu-
rate model. By involving more input variables, we anticipate the model will incorporate 
more information and be more accurate. By involving fewer water parameters, we antici-
pate the model is more efficient and requires less computational power. Somehow there 
should be a trade-off between accuracy and efficiency. The main contributions of this 
work are recapitulated as follows.

• This study’s first contribution is to explore machine learning models’ capabilities 
in predicting Ozone pollution levels at KAUST based on environmental factors as 
input, such as absolute humidity, air temperature, ambient pressure, global radia-
tion, wind direction, and wind speed. Here, the performance of nineteen models was 
investigated to predict Ozone concentration, including linear models, support vector 
regression (SVR), Gaussian Processes Regression (GPR), Multi-layer perceptron, and 
ensemble methods. Specifically, in the linear model, we use linear regression, linear 
regression with l2 norm regularization, Lasso and partial least square regression; in 
the GPR and SVR, we choose different kernels such as exponential function, radius 
basis function, Matern function; in the MLP, the combination of different depth and 
width is adopted; and in ensemble methods, we used bagging, boosting and random 
forest models. Five performance evaluation metrics are employed to assess the good-
ness of predictions. However, the results showed that using only weather conditions 
to predict ozone levels, the machine learning models did not provide satisfactory 
predictions. This suggests that other factors, such as atmospheric pollutants, also sig-
nificantly affect ozone pollution.

• The second contribution of this study focused on improving the predictive capabil-
ity of the machine learning models in predicting ozone pollution levels by investi-
gating the use of weather and pollution data (such as NO2 , SO2 , and PM) as input. 
Additionally, feature selection techniques based on the random forest algorithm were 
used to identify the most important variables significantly influencing the models’ 
predictive capability. Results revealed that using only a subset of the features, spe-
cifically NO2 , absolute humidity, air temperature, absolute pressure, wind direction, 
and SO2 , led to parsimonious prediction models with slightly improved accuracy. 
This highlights the importance of feature selection in reducing overfitting, improving 
model accuracy, and speeding up computation in machine learning model building.

• However, it is worth noting that the investigated machine learning-driven approaches 
do not consider information from past data in predicting ozone concentration lev-
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els. This study’s final contribution involves investigating the effect of incorporating 
lagged ozone data with other input variables and selecting important features to pre-
dict ozone pollution levels. We proposed dynamic machine learning models incorpo-
rating information from past data to predict ozone concentrations, providing useful 
insights into trends and patterns that can help predict future ozone pollution lev-
els. The results demonstrated that incorporating lagged data considerably improved 
the accuracy of the machine learning models in predicting ozone concentrations. 
Overall, this study highlights the potential of dynamic machine learning models that 
incorporate past data and important features in predicting ozone pollution levels and 
underscores the importance of considering multiple factors when developing such 
models.

The rest of the paper consists of five sections.  "Related works" section gives the related 
works in the prediction task of ozone concentration.   "Materials and methods" section 
briefly describes the machine learning methods used in this study and the evaluation 
metric.  "Results and discussion" section presents the exploratory data analysis. "Ozone 
prediction results" section is the results and discussion of the machine learning algo-
rithms within our datasets. Lastly, "Conclusion" section summarizes the paper and pro-
vides future directions for possible improvements.

Related works
Accurate prediction of ozone concentrations is needed to enhance ozone control, plan 
for implementing preventive measures, and manage public health. Thus, ground-level 
ozone prediction in different conditions was the subject of several research studies in 
the last two decades. Machine learning-based techniques have recently risen in popu-
larity in numerous applications, including ozone pollution modeling, prediction, and 
monitoring, owing to their flexibility and feature extraction capacity without the need 
to understand the underlying mechanisms for constructing empirical models. Machine 
learning methods, such as RF, SVR, Decision Tree (DT), and XGBoost, have been used 
to predict ozone concentration levels [33–35]. For example, Jiang et al. adopted the RF 
with a large amount of feature engineering in the task of ozone prediction [36]. How-
ever, the naive RF algorithm is complicated to interpret and takes much time to build 
trees, with the time complexity being O(v × n log(n)) where n is the number of samples, 
and v is the number of attributes [36]. In [37], Allu et al. applied multiple linear regres-
sion (MLR) models to predict surface ozone levels based on air pollutants and mete-
orological parameters in Hyderabad, India, in 2016. Results showed that the adjusted 
R2 for the MLR models ranged from 0.6 to 0.9 for precursor gases and 0.9 for meteoro-
logical variables. However, MLR assumes a linear relationship between the dependent 
variable and independent variables, and as a result, it may not be able to capture nonlin-
ear relationships between variables. Chelani et al. conducted an empirical study on pre-
dicting ozone levels using the standard SVM based solely on environmental variables. 
The results show that the SVM outperformed the MLP and linear regression in terms 
of three evaluation metrics [38]. The study in [39] focused on predicting ground-level 
ozone concentration in the air near Zrenjanin, Serbia, using MLR and artificial neural 
networks (ANNs). Results revealed that the ANNs model outperformed MLRA with 
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coefficient of determination of 0.919 during training and 0.873 during testing, compared 
to MLRA’s 0.663 and 0.672 for training and testing, respectively. In [40], Hosh et al. com-
pared two models, deterministic (WRF-Chem) and ANN, for predicting ground-level 
ozone concentration in São Paulo, Brazil. WRF-Chem simulations satisfactorily pre-
dicted CO concentrations and correlated with O3 and NOx measurements at air quality 
monitoring stations. The FS-ANN model achieved correlation coefficients of 0.84 and 
0.75 for the daily mean and 0.64 and 0.67 for the daily peak ozone during testing. While 
WRF-Chem performed better in predicting mean and peak ozone concentrations, FS-
ANN was advantageous due to its lower computational costs and ease of development 
and implementation.

Braik et al. considered three models, recurrent multilayer perceptron (RMLP), recur-
rent fuzzy neural network (RFNN), and hybridization of RFNN and grey wolf optimizer 
(GWO), to forecast daily ozone, particulate matter (PM10 and PM2.5) concentrations in 
a highly polluted city in the Republic of China [41]. They showed that the hybrid RFNN-
GWO model achieved the best results in the modeling of ozone, PM10, and PM2.5 com-
pared with the RMLP-ANN and RFNN models. In [42], Ren et  al. compared thirteen 
machine learning algorithms with linear land-use regression (LUR) for modeling ozone 
concentrations across the contiguous United States. The nonlinear machine learning 
methods achieved higher prediction accuracy than LUR, with the improvements being 
more significant for spatiotemporal modeling (nearly 10%-40% decrease of predicted 
RMSE). By tuning the sample weights, spatiotemporal models can predict concentra-
tions used to calculate ozone design values that are comparable or even better than spa-
tial models (nearly 30% decrease of cross-validated RMSE). Random Forest and Extreme 
Gradient Boosting were found to be the two best-performing machine learning algo-
rithms. In [43], Oufdou et  al. explored the advantages and disadvantages of paramet-
ric and non-parametric statistical models, such as Sparse Partial Least Squares (SPLS), 
Lasso, RF, bagging, and Classification and Regression Tree (CART), in forecasting daily 
ozone concentration. Results indicate that the parametric models have more accurate 
predictions than that non-parametric approaches [43]. Juarez et  al. applied several 
machine learning methods, including XGBoost, Random Forest, K-Nearest Neighbor 
Regression, Support Vector Regression, Decision Trees, AdaBoost, and linear regression, 
for ozone prediction using data comprising twelve air pollutants and five weather vari-
ables over one year in Delhi. They showed the importance of training machine learning 
methods with season-specific data sets [44]. To build on the interpretability of decision 
trees on ozone prediction, Jumin et al. further considered the Boosted DT and compared 
its performance with a deep neural network (DNN) model and the linear regression 
model [33]. However, the problem of large-time complexity was not well addressed, even 
though the accuracy is improved when predicting ground-level ozone concentration. In 
[34], Yilmaz et al. applied the XGBoost and used a reweighted ensembled model to com-
bine SVR, RF, and DNN to improve the model’s stability and performance [34]. More-
over, Marvin et  al. considered comparing machine learning methods and conducted 
experiments to verify the performance of LR, LASSO, ARIMA, RF, XGboost, and Natu-
ral Gradient Boosting (NGBoost) in predicting ozone concentration levels [45]. Results 
showed that least-squares boosting and NGBoost dominate the other tested forecasting 
models.
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Most of pthe revious studies on machine learning methods for ozone pollution predic-
tion have neglected to utilize information from past data and have included both rele-
vant and irrelevant features in their models. As a result, this study aims to investigate the 
impact of incorporating lagged data and feature selection on the performance of differ-
ent machine learning methods in predicting ozone pollution. By considering the infor-
mation from past data and selecting only important features, this study aims to develop 
more parsimonious models with improved prediction accuracy.

Materials and methods
This section presents the models investigated in this study for ozone concentration pre-
diction. Machine learning methods compared in this paper are summarized into five cat-
egories: linear models, GPR, SVR, MLP, and ensemble methods. This section will cover 
each model’s setting and its variants. In total, nineteen methods are investigated in this 
study.

Linear models

Linear regression is the classic statistical and machine learning model and has devel-
oped various variants nowadays. The variants we will implement in our experiment are 
Least absolute shrinkage and selection operator (LASSO) [46] and Partial Least Squares 
Regression (PLSR) [47, 48]. The Lasso is introduced for the feature selection, and PLSR 
is for multicollinearity between different features. Letting X = (x1, x2, . . . , xn) be the 
covariate matrix and Y = (y1, y2, . . . , yn) be the outcome of X , then the expression of 
lasso can be written as:

where β0 is the constant coefficient, β := (β1,β2, . . . ,βp) is the coefficient vector, and 
t > 0 is a prespecified hyperparameter that determines the degree of regularization, ‖u‖p 
is the standard ℓp norm. The complexity of linear regression is only concerned with the 
dimension of features; mathematically, O(p3) and p is the dimension of features. The lim-
itation of linear regression models is the difficulty of modeling the nonlinearity in the 
data, where it is necessary for manual manipulation of selecting degrees of variables or 
transformation functions.

GPR models

GPR models are nonparametric kernel-driven learning models; this approach has shown 
extended modeling ability for handling nonlinear prediction problems because of its 
nonlinear approximation capabilities [49, 50]. Importantly, a Gaussian process is fully 
specified by its mean function m(x) and covariance function k(x, x′) . The Gaussian dis-
tribution is over vectors, whereas the Gaussian process is over functions [51], which is 
written as,

where ǫ = (ǫ1, ǫ2, . . . , ǫn) ∼ N (0, σ 2
n I) , and f (x) ∼ N (m(X), k(X,X)) , for abbreviation, 

µ := m(X) and � := k(X,X)) . Without loss of generality, the m(X) is set 0 or constant, 

(1)min
β0,β

{

∥

∥y− β0 − Xβ
∥

∥

2

2

}

s.t. �β�1 ≤ t,

(2)yi = f (xi)+ ǫi,
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and k(X,X) could be any kernel that fits the data, such as Matern kernel or (non-)sta-
tionary kernels (see more kernels in [52]). In addition, the complexity of GPR increases 
cubically with the number of samples, that is O(n3) , which is an important limitation of 
the GRP. In the big data case, the computation is heavily intensive, whereas parallel com-
puting cannot help when computing the inverse of a large matrix.

SVR models

This subsection briefly presents another widely used approach, the SVR model, a flexible 
kernel-based method with good learning ability through kernel tricks. The SVR model is 
widely used for nonlinear regression problems. It maps the training data into a higher-
dimensional space and accomplishes linear regression, enabling efficient handling of 
nonlinear data through the kernel trick [53, 54]. Moreover, structural risk minimization 
is the relevant concept used in designing the SVR model. It is demonstrated that SVR 
performs satisfactorily with limited samples [55].

The key concept used in designing the SVR model is structural risk minimization. The 
SVR model seeks the combination of different features to approximate the target value 
by support vectors, which is formulated in Eq.  (3) [55], where ǫ means the tolerated 
error, that is, the soft margin; ζi , ζ ∗i  are the introduced slack variables to transform the 
inequality optimization into equality optimization. The solution to Eq.(3) and its kernel 
selection methods can be found at [55].

There are several types of kernel functions, including linear, polynomial, radial basis 
function (RBF), and sigmoid. The linear kernel simply computes the dot product 
between two data points, while the polynomial kernel calculates the dot product raised 
to a power. The RBF kernel, on the other hand, measures the distance between two data 
points using a Gaussian distribution. The choice of kernel function can significantly 
impact the performance of the machine-learning model. For example, the linear kernel 
is often used for linearly separable data, while the RBF kernel is more effective for non-
linearly separable data. However, selecting the appropriate kernel function is not always 
straightforward and often requires trial and error. Overall, the SVR provides satisfactory 
performance with limited samples [55]. However, the SVR has some limitations, includ-
ing difficulty in selecting the kernel to model nonlinearity and the complexity of O(n2).

MLP models

A multilayer perceptron (MLP) is a type of feedforward neural network consisting of an 
input layer, multiple hidden layers, and an output layer. The design objective of an MLP 
is to enhance prediction accuracy for nonlinear functions by stacking multiple layers 
of linear transformations and activation functions in the hidden layers. MLPs are effec-
tive models for approximating nonlinear functions and have been successfully applied in 

(3)

min
w,ξ ,ξ∗

1

2
�w�2 + C

n
�

i=1

(ξi + ξ∗)

subject to







yi − wTφ(xi)− b ≤ ǫ + ξi
wTφ(xi)+ b− yi ≤ ǫ + ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, . . . , n
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various applications, such as image recognition and natural language processing. The ability 
to learn complex relationships between input and output data and the flexibility to adjust 
the number of hidden layers and nodes makes MLPs a popular choice for solving complex 
problems. In [56], an MLP with two hidden layers exhibited good capability in nonlinear 
predictions. Importantlly, MLP is seeking approximate the target value in nonlinear func-
tion by stacking the multiple linear transformations and activation functions layer by layer. 
The MLP’s predictive Equation can be expressed as shown in Eq. (4).

where f and g represent activation and linear transformation functions, respectively. The 
target value yi is estimated by the MLP for each input vector xi , with the weights and 
biases learned during the training process. Stochastic gradient descent and Adam are 
common optimization algorithms used in training MLPs [57].

Ensemble models

Ensemble methods train multiple models to solve the problem, where there are well-trained 
weak and strong learners. How to combine and select the strong and weak learners divides 
the ensemble methods into three parts: bagging, stacking, and boosting [58]. The boost-
ing builds a strong learner from several base learners, where training samples are allocated 
different weights based on their prediction, truly predicted samples with small weight and 
falsely predicted samples with large weight, until the boosting algorithm converges. The 
bagging combines bootstrapping and aggregation, where several base learners are trained 
before aggregating multiple base learners. The stacking method contains a cardinal learner 
and meta learner, where meta learners receive the data preprocessed by the cardinal learner 
with the training dataset before giving the output [59]. While having the advantages the 
easy deployment and fast computation, the over-fitting and under-fitting are still haunting 
many researchers.

Evaluation metrics

The metrics used in our evaluation are as follows: n means the number of samples in the 
training dataset, ǫ is a small value set as 10−8 in case of the denominator as 0. The small 
value means good performance in terms of the RMSE, MAPE, MAE and J2 , while the large 
value represents a good performance for R2 . In addition, for RMSE and MAE, the value 
solely indicates the absolute difference, while MAPE measures the relative difference. R2 
gives an illustration of predicted variance compared to the average, but cannot guarantee 
good performance on the prediction task. J2 has a measure of the performance of models 
but cannot give a concrete value. Thus, it is reasonable to consider several metrics together 
when evaluating the performance of algorithms.

(4)yi = fm(gm(fm−1(gm−1)...f1(g1(xi)))), i = 1, 2, 3, . . . , n,

(5)RMSE(y, ŷ) =

√

√

√

√

1

n

n−1
∑

i=0

(yi − ŷi)2,
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Algorithm framework

This study compares the prediction accuracy and efficiency of nineteen machine learn-
ing models for ozone concentration prediction. The whole process in our experiment is 
shown in Fig. 1. At first, the data was preprocessed by eliminating outliers and imputing 
missing values. Specifically, due to the sensors malfunction, it failed to obtain the ozone 
concentration from May 2020 to September 2022; we thus chose to remove this part 
of the data from the training even though we have the data for other variables. After 
carrying out an exploratory data analysis, we designed three experiment cases: ozone 
prediction using 1) only environmental factors, 2) environmental and pollutant factors 
with the selection method, and 3) the second case with time-lagged ozone data. For each 
case study, we construct machine-learning models using training data and evaluate the 
accuracy of the trained models for ozone prediction. Five evaluations scores are consid-
ered for the comparison. In each experiment, we implement the machine learning algo-
rithms, such as linear model, GRP, SVR, MLP, ensemble methods and different metrics.

Results and discussion
This section presents the investigated data and some exploratory data analysis. More-
over, the performance of the studied prediction methods is compared and results are 
discussed.

Data description and analysis

The ambient air pollution datasets used in this study were gathered at KAUST (located 
in Thuwal, Saudi Arabia) by the KAUST weather team [60]. These data comprise ambi-
ent pollution data ( PM10 , PM2.5 , CO, NO2 , O3 , SO2 ) and weather data (i.e., absolute 
humidity, air temperature, ambient pressure, global radiation, precipitation, and wind 
speed). Table 1 lists the collected variables and their units of measurement. The moni-
toring periods start from May 20, 2020, to Dec 20, 2020, and from Jan 21, 2021, to Oct 
21, 2021. The data are collected every fifteen minutes. Figure  2 exhibits the monitor 
equipment used to colled pollution data at KAUST.

(6)MAPE(y, ŷ) = 1

n

n−1
∑

i=0

�yi − ŷi�1
max(ǫ, �yi�1)

,

(7)MAE(y, ŷ) = 1

n

n−1
∑

i=0

�yi − ŷi�1,

(8)R2 = 1−
∑n−1

i=0 (ŷi − ȳi)
2

∑n−1
i=0 (yi − ȳi)2

,

(9)J2 = RMSE2
test

RMSE2
train

.
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Fig. 1 Data prepossessing and modeling procedure
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Data analysis

The investigated datasets comprise some measurements with outliers. Outliers in pollu-
tion and weather data could be caused by malfunctioning sensors. Thus, the first essen-
tial step before building machine learning models is data cleaning. Essentially, outliers 
are removed and missing data points are imputed for enhancing data quality. Moreo-
ver, eliminating outliers helps increase the prediction accuracy of the considered models 
[61]. In this study, we replaced outliers with the median of the training dataset.

Another important and often unavoidable challenge impacting the data quality 
when working with real-world data is missing data [62]. Missing values frequently 
happen in air pollutant measurement. Different factors can cause missing data, such 

Fig. 2 One of the equipment for monitoring the local weather index at KAUST, Thuwal, Saudi Arabia [60]

Table 1 Measured Variables and units of measurement

Variable Unit

PM10 µg/m3

PM2.5 µg/m3

CO ppm

NO2 ppb

O3 ppb

SO2 ppb

absolute humidity g/m3

air temperature ◦C

ambient pressure hPa

global radiation W/m2

precipitation l/m2/h

relative humidity %

wind speed m/s

Wind Direction Correction Deg
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as sensor malfunction, incorrect data recording, power outages, and faults in data 
acquisition [62, 63]. The presence of missing values can affect study understandings 
and findings and influence the operation of air quality-related public services. To alle-
viate this problem, various procedures were employed in the literature for missing 
value imputation [64]. We can distinguish two types of missing values in air pollution 
data: long-consecutive periods or short gaps. Generally, short periods of missing val-
ues can be caused by routine maintenance and temporary power outages; while long 
gaps of missing values could be due to sensor malfunctions or other critical failures in 
the data acquisition process [65].

Here, missing values exist in each dimension of the dataset, accounting for approxi-
mately 1%-10% of each variable. In the short term, there are no significant polynomial 
and linear trends in the dataset, so the mean values are used to fill in the missing 
values. In the long term, there is a huge missing portion of the ozone timeline due to 
equipment failure, so the latter half of the dataset is chosen for the experiment in this 
study.

Figure  3 depicts the distribution of the collected data, which indicates that these 
datasets are non-Gaussian distributed.

The temporal evolution of ozone concentrations is generally controlled by seasonal 
and diurnal factors, such as weather conditions, and industrial activities. Figure  4 
presents the variation of ozone concentration per hour for each day. We observe the 
presence of a daily cycle in the concentration of ozone [66]. Specifically, we observe 
the formation of high concentrations of ozone in the heat of the afternoon and early 
evening and the destruction during the night.

Essentially, the gradual formation of ozone results from chemical reactions of nitro-
gen oxides (NOx) and volatile organic compounds (VOC) under the action of solar 
radiation [67]. On the other hand, the destruction of ozone at night is mainly due to 

Fig. 3 Distribution of the KAUST pollution dataset
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its reaction with nitric oxide, which is generally emitted by vehicles, to produce nitro-
gen dioxide.

Now, to visually analyze the monthly ozone trend Fig.  5a-b the monthly distribu-
tions of ozone concentrations by boxplot and line plot, respectively. From Fig. 5a, we 
observe that important peaks mainly appear in June, July, August, and September. 
Indeed, the weather in Saudi Arabia during summer is characterized by high temper-
atures and extreme weather conditions, which enable the formation of photochemical 
ozone pollution. Broadly speaking, the photochemical formation of ozone achieves 
peak levels in warmer weeks and hours (Fig. 5).

The correlation matrix between the studied pollution and weather variables is visual-
ized via heatmap in Fig.  6, where the linear correlation is stronger as the color grows 
darker green or purple. We observe a high correlation between PM10 and PM2.5 with a 

Fig. 4 Data analysis for ozone in 12 months

Fig. 5 a Boxplot for ozone in 12 months; b 3D line for ozone in 12 months
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coefficient of 0.92. This could reveal the presence of the same source for the PM10 and 
PM2.5 , like road traffic and combustion of diesel fuel. This information can be exploited 
during model construction by dropping one of PM10 and PM2.5 in the experiment con-
figuration to get a parsimonious model. Additionally, the relationship between ozone 
and NO2 conforms to the formation of the ozone caused by nitrogen ozone reaction 
considering the correlation ( −0.71) [66, 68]. This is expected as O3 formation relies on 
NO2 . Besides, there are six pairs with a mild correlation around the absolute coefficient 
of 0.5 - 0.7. We also observe a weak negative correlation between PM2.5 and PM10 and 
O3 . This is because PM2.5 and PM10 are involved in slowing down the aerosol sink of 
hydro-peroxy (HO2) radicals, which is one of the precursors of ozone [69].

Before we start model construction, we analyze the time-dependent in the considered 
time-series data by computing the empirical autocorrelation function (ACF). Impor-
tantly, the ACF is employed to measure the self-similarity of the time-series data over 
distinct delay times [70]. Figure 7a-b depicts the ACF of the meteorological and pollu-
tion time-series data, which is divided into the strong periodicity Fig. 7a and the mild 
periodicity Fig. 7b. We observe a clear seasonality of 24 h from the ACF plot of ozone 
and NO2 and solar irradiance (Fig. 7a). As discussed before, the ozone seasonality is due 
to the diurnal formation cycle of ozone caused by the diurnal temperature cycle. Then, 
the difference in periodicity is supposed to be taken into consideration in the modeling.

Ozone prediction results

In this study, three experiments are conducted to design parsimonious and efficient 
machine-learning models for ozone concentration prediction.

Fig. 6 Heatmap of correlation matrix between considered variables
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• In the first experiment, we consider only weather variables (i.e., air temperature, 
ambient pressure, global irradiance, absolute humidity, wind direction, and wind 
speed) to predict ozone pollution via several machine learning models.

• In the first experiment, to further improve the prediction performance, in addition to 
the meteorological variables, we incorporate also pollution data (CO, PM2.5 , PM10 , 
NO2 ). Here, we considered variables selection to choose only important variables for 
ozone prediction.

• In the final experiment, we include lagged data to further improve the prediction 
accuracy of the considered machine learning models.

Experimental configurations

The models in the experiment are categorized into five parts, linear models, GPR, SVR, 
MLP, and ensemble methods, where each part has its own variants and parameter tun-
ing setting (scikit-learn and LightGBM in python), shown in the Table 2. To this end, the 
best performance for each model can be observed in our experiment of the real dataset.

Fig. 7 Autocorrelation of the used time-series data: a strong periodicity in the dataset, b mild periodicity in 
the dataset
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• Linear models: no penalty, l1 norm (Lasso) penalty, and l2 norm penalty are consid-
ered in the linear regression where the p in the Eq. (1) is set 0, 1 and 2 respectively 
and t is set as 1, as well as partial linear least square regression which is used for mul-
ticollinearity issues [47].

• GPR: the kernels used are radial basis function kernel (Eq.  (11)), Matern kernel 
(Eq.  (12)) and Dotproduct kernel (Eq.  (11)), where l = 1 , d(,  ) means Euclidean 
distance in the Eq. (11); ν = 1.5, l = 1 , and Kν() is a modified Bessel function, Ŵ() 
is the gamma function in the Eq. (12); and σ0 = 1 in the Eq. (11). 

(10)k(xa, xb) = σ 2 exp

(

−�xa − xb�2
2ℓ2

)

(11)k(xi, xj) = exp

(

−d(xi, xj)
2

2l2

)

,

(12)k(xi, xj) =
1

Ŵ(ν)2ν−1

(

√
2ν

l
d(xi, xj)

)ν

Kν

(

√
2ν

l
d(xi, xj)

)

(13)k(xi, xj) = σ 2
0 + xi · xj ,

Table 2 The description of the machine learning methods adopted in this paper, (X,Y) means the 
dataset in pair; β the parameters of the models, � the hyperparameter

Model Formulation Kernel

Linear Regression Y = Xβ None

Linear Regression with l2 regularizer Y = Xβ + ��β�2 None

Lasso Y = Xβ + ��β�1 None

Partial Linear Least Square Regression Regression of decomposed Y and X None

GRP (Exponential kernel) Y ∼ N (Xβ ,�) Eq. 10

GRP (DotProd kernel) Y ∼ N (Xβ ,�) Eq. 13

GRP (Matérn kernel) Y ∼ N (Xβ ,�) Eq. 12

SVR (linear kernel) Eq. 3 Eq. 14

SVR (Polynomial kernel) Eq. 3 Eq. 15

SVR (Radial basis kernel) Eq. 3 Eq. 11

SVR (Sigmoid kenerl) Eq. 3 Eq. 16

MLP_1 Layer shape [10, 5, 1] None

MLP_2 Layer shape [10, 5, 2, 1] None

RF Depth 7, Criterion: squared error None

Bagging 10 decision trees as base learner None

GBoost Criterion: Friedman MSE None

AdaBoost 50 decision trees as base learner None

HistGBoost Criterion: squared error None

LightGBM 31 leaves and Criterion: squared error None
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• SVR: the kernels used are linear kernel (Eq.  (14)), polynomial kernel (Eq.  (15)), 
radial basis function kernel (Eq.  (11)), and sigmoid kernel (Eq.  (16)), where the 
γ = 1 , d = 3 and r = 0 in the Eq. (15) and Eq. (16). 

• MLP: the layer’s shape for MLP in our setting is [10, 5, 1] and [10, 5, 2, 1], respec-
tively. In this way, we can explore the influence of depth on the model’s performance.

• Ensemble: RF with the maximum depth of 7, bagging with 10 decision trees as base 
learners, GBoost with criterion as Friedman MSE, AdaBoost with 50 decision trees 
as base learners, HistGBoost with loss of squared error, LightGBM with 31 leaves 
and objective loss as a squared error.

In our dataset, the data from the last week is used as a test set (672 samples) and the rest 
as a train set (39328 samples). For this study, we tested the models using one week of 
data with a 15-minute time resolution, which was deemed sufficient. We utilized a large 
training dataset to capture the variability and dynamics in the data. Due to there are two 
main features, environmental variables and pollutant variables, we conduct the experi-
ments in three stages, where the first experiment only contains the environmental vari-
ables, such as wind direction, absolute humidity, ambient pressure, air temperature, and 
wind speed; the second stage adds the rest of pollutant variables, such as NO2 , PM2.5, 
CO, and SO2 into the experiment and uses feature selection methods to select some fea-
tures with high importance due to the large dimensions; lastly, the third stage considered 
lag-n information of ozone based on the selected features in the second stage.

(14)k(xi, xj) = �xi, xj�

(15)k(xi, xj) = (γ �xi, xj� + r)d

(16)k(xi, xj) = tanh(γ �xi, xj� + r)

Fig. 8 Measured and predicted ozone concentrations using the investigated machine learning models
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Case study 1: Ozone concentrations prediction using meteorological factors

In the first experiment, we solely consider the meteorological factors to predict the con-
centrations of ozone, specifically, absolute humidity, air temperature, ambient pressure, 
global radiation, wind direction, and wind speed. Importantly, this experiment aims 
to evaluate the capacity of machine learning models to predict ozone concentrations 
based on meteorological factors. Comparison between the observed values and pre-
dicted ozone levels from the considered twenty machine learning models are shown in 
Fig. 8. Here, we omitted the results from the GPRMatern and MLP2 because they delivered 
unsatisfactory results in the testing phase. On the other hand, Fig. 8 indicates that most 
of the considered models can well capture the trend of the ozone levels during the test-
ing seven days.

Now, to further evaluate the performance for the other 17 modes, which well capture 
the trend, we examined the distribution of the prediction errors from each model. The 
prediction error is the deviation separating the observed from the predicted ozone val-
ues. Figure 9 displays the boxplot for prediction error of the investigated models, which 
indicates the poor training of GPRMatern but failed to show the over-fitting of MLP2 . 
Broadly speaking, the more compact the boxplot of the prediction error is, the more pre-
cise the prediction is. Meanwhile, according to Figs. 9 and 8, there exists a bias in all of 
the models, because the mean of the error cannot be around zero. Visually, we can see 
that the distributions of the prediction errors of GPRExpo , SVRpoly and SVRrbf  , and Hist-
GBoost are more close to zero compared to the other models (Fig. 9).

The prediction performance of the trained model is listed in Table 3 in terms of differ-
ent metrics, namely RMSE, MAE, MAPE, R2 , J2 and execution time. Based on the per-
formance measures in Table 3, it can be seen that the GPRexpo model provides the best 
score on RMSE, MAE and MAPE, AdaBoost has the best performance on R2 which is 
verified from Fig. 9, and SVRpoly is the best regarding the J2 . The results indicate that the 
best model on the absolute/relative metrics such as RMSE and MAPE is not necessarily 
the most efficient training method or the most stable method with the least variance. 

Fig. 9 Boxplot of prediction errors of each model based on test data
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Moreover, the time consumed by GPRExpo (9.64 mins) is nearly × 40 times than the sec-
ond/third best models such as RF and Bagging (0.06 and 0.18 mins) with only merely 5% 
loss of predicting performance with regard to RMSE and MAE. Therefore, GRPExpo is 
revealed as the best prediction model in this case study. Overall, using machine learn-
ing for predicting ozone concentrations based only on meteorological variables does not 
provide promising prediction accuracy. Therefore, we should take the different factors 
into consideration when using machine learning methods for ozone prediction.

Case study 2: Ozone concentrations prediction using meteorological factors and other 

pollutants with features selection

The main objective of this experiment is to construct parsimonious machine-learning 
models to predict ozone concentrations. To this end, we select important variables from 
all meteorological and pollutant variables. There are various techniques for identifying 
feature importance in the literature, including Random Forest feature selection, Prin-
cipal Component Analysis (PCA) [71], and mutual information [72]. In the case of this 
study, the random forest feature selection technique was explicitly adopted because it is 
well-suited for nonlinear and high-dimensional data [73]. Additionally, Random Forest 
feature selection can provide information about the importance of individual features, 
which is useful for understanding the underlying relationships between the features and 
the target variable. Specifically, we adopt the random forest method [73] to select a sub-
group of features to reduce the heavy computation. Indeed, non-informative and redun-
dant input variables will be ignored in building a predictive model to reduce the number 

Table 3 Stage 1, the comparison of machine learning methods on ozone prediction, where the 
value before slash represents the loss value in the training dataset and the latter in the testing 
dataset (training/testing), the best performance is bold and the line colored grey means over-fitting

In addition, the ↑ means the model is better when the value is larger, and the ↓ means the model is better when the value is 
smaller

Model rMSE ↓ MAE ↓ MAPE ↓ R-square ↑ J2 ↓ Time (min)

Linr 12.677/16.196 10.09/14.137 0.945/2.713 0.332/0.305 1.632 0.01

Linr_l2 12.677/16.199 10.09/14.141 0.945/2.714 0.332/0.305 1.633 0

Lasso 13.642/19.561 10.91/17.674 1.114/3.589 0.227/0.267 2.056 0

PLSR 12.777/17.336 10.243/15.319 0.934/2.901 0.322/0.331 1.841 0.01

GRP_Expo 9.117/12.612 6.847/10.237 0.543/1.941 0.655/0.387 1.914 9.64

GRP_DotProd 12.706/16.754 10.121/14.705 0.963/2.847 0.329/0.306 1.739 121.44

GRP_Matern 0.0/20.868 0.0/17.887 0.0/1.0 1.0/0.0 inf 25.47

SVR_linear 12.795/15.982 9.99/13.821 0.997/2.69 0.323/0.218 1.56 0.01

SVR_poly 11.858/13.271 9.358/10.827 0.873/2.002 0.416/0.177 1.253 5.45

SVR_rbf 10.66/13.062 8.202/10.981 0.685/2.007 0.528/0.428 1.501 8.57

SVR_sigmoid 12.764/16.48 10.124/14.4 0.973/2.778 0.323/0.278 1.667 9.77

MLP_1 12.681/16.561 10.111/14.523 0.939/2.755 0.332/0.316 1.706 0.6

MLP_2 15.514/21.591 12.682/19.384 1.283/4.199 0.0/0.0 1.937 1.35

RF 10.116/13.874 7.801/11.75 0.657/2.188 0.575/0.42 1.881 0.06

Bagging 3.722/13.254 2.497/10.781 0.174/2.121 0.942/0.363 12.681 0.18

GBoost 10.272/14.359 7.948/12.269 0.66/2.306 0.562/0.398 1.954 0.28

AdaBoost 11.704/17.821 9.465/16.113 0.852/3.047 0.431/0.449 2.318 0.1

HistGBoost 9.036/13.009 6.899/10.831 0.538/2.147 0.661/0.431 2.073 13.07

LightGBM 11.532/16.499 9.204/14.699 0.892/3.051 0.447/0.422 2.047 0.01
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of input variables. In this case, inputs are meteorological data (i.e., air temperature, 
ambient pressure, global irradiance, absolute humidity, wind direction, and wind speed) 
and (CO, PM2.5, PM10, SO2 , NO2 ). The larger amplitude of input for feature importance 
means the greater the influence of that variable is on the ozone prediction.

The results of the selection are shown in the Fig. 10. It can be seen that six features 
are used, NO2 , absolute humidity, air temperature, absolute pressure, wind direc-
tion and SO2 , which are the most important features for ozone pollution predic-
tion. We can notice that the selected variables contain some meteorological variables 
(i.e., absolute humidity, air temperature, absolute pressure, and wind direction) and 

Fig. 10 Feature selection based on the random forest

Fig. 11 Comparison between observed and predicted O3 concentrations from the investigated models 
when using the selected features from meteorological and pollutant variables
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pollutants variables (i.e., NO2 and SO2 ). Figure 10 indicates that the NO2 plays a domi-
nant role in ozone prediction because it is the primary component in ozone formation. 
We observe also that CO has some interaction with ozone and can be used as input 
for predicting ozone concentrations due to the chemical equilibrium of the reaction 
CO + O3 ⇆ CO2 + O2 [13]. For meteorology variables, we can see that wind direction 
has a role in impacting ozone concentrations [74].

Here, we consider only the most important variables as inputs into the machine-learn-
ing methods to reduce the computation and get parsimonious models. Figure 11 shows 
the observed and predicted ozone concentrations from the investigated machine-learn-
ing models. Similar conclusions hold as in the previous case study, most models can well 
capture the trend of the ozone in the testing data except GPRMatern which fails to be 
well trained. Importantly, based on Fig. 11 and Fig. 12, the bias between predicted and 
observed ozone values are alleviated compared to that of the previous case study. Spe-
cifically, we observe that the mean value prediction error observed is much more close 
to 0 in stage 2 than in the previous case (Fig. 12). Importantly, we conclude that includ-
ing both meteorological and pollutant features enhances the prediction performance of 
the machine learning models (Fig. 12).

Table  4 compares the prediction results obtained by the nineteen machine learning 
models in terms of different metrics. The best score in terms of RMSE, MAE, and J2 
is attributed to the SVRrbf  , HistBoost has the best performance on MAPE, and Light-
GBM is the best regarding the R2 (Table 4). We observe that the GPRMatern achieved the 
highest R2 , but it comes with very high values of J2 , indicating overfitting. The results 
indicate that the best model on the absolute/relative metrics, such as RMSE and MAE 
still has the best training efficiency in the J2 . Moreover, the time consumed by SVRrbf  
(9.24 mins) is nearly × 80 times than the second best models such as RF (0.06 min) with 
only merely 8% loss of predicting performance with regard to RMSE and MAE. There-
fore, if the accuracy does not rank first in the priority of predicting the concentration 
of ozone in the target task, it would be better to use the bagging or forest methods to 

Fig. 12 Boxplot of prediction errors of each model based on test data
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let the model as much more efficient with a mere loss of accuracy. Noticeably, in this 
experiment, the most important factor to influence the performance of SVR is the ker-
nel, where the performance of SVR is even worse than the average-value model if we set 
the kernel as linear, polynomial or sigmoid, which are all mark as orange color in Table 4. 
In addition, the best model in the previous experiment, GPRExpo , is outperformed by the 
SVRrbf  in every metric.

Overall, this experiment showed that by involving important meteorological and pol-
lutants variables the machine learning models are expected to incorporate more infor-
mation, which results in improved prediction performance. However, there is still a 
large gap for improvement as the prediction accuracy is not within a satisfactory range 
in terms of the considered evaluation metrics. This could be due to the construction of 
machine learning models by ignoring information from past data. The next experiments 
are dedicated to a comparative assessment taking into account lagged ozone data in 
building machine learning models.

Case study 3: Ozone prediction with lagged data

In the two previous experiments, the machine learning models have been developed 
without considering information from past data, making them difficult to capture 
dynamics in data. Due to there still being a mild bias in the previous experiment, we 
attempt to make the algorithm as unbiased as possible by considering the lag n ozone 

Table 4 Stage 2, the comparison of machine learning methods on ozone prediction, where the 
value before slash represents the loss value in the training dataset and the latter in the testing 
dataset (training/testing), the best performance is bold and the line colored grey means over-fitting

In addition, the R2 of the orange lines is less than 0, representing that the performance of the corresponding model is worse 
than that of directly using the mean value. In addition, the ↑ means the model is better when the value is larger, and the ↓ 
means the model is better when the value is smaller

Model rMSE ↓ MAE ↓ MAPE ↓ R-square ↑ J2 ↓ Time (min)

Linr 9.847/11.958 7.634/10.116 0.484/1.052 0.597/-0.111 1.475 0.01

Linr_l2 9.847/11.956 7.635/10.114 0.484/1.051 0.597/-0.11 1.474 0

Lasso 11.035/13.558 8.867/12.345 0.77/2.111 0.494/0.379 1.51 0.01

PLSR 9.956/12.148 7.761/10.339 0.496/1.067 0.588/0.013 1.489 0.01

GRP_Expo 7.558/9.968 5.696/7.383 0.31/1.051 0.763/0.302 1.739 9.04

GRP_DotProd 9.848/11.94 7.635/10.09 0.482/1.049 0.597/-0.111 1.47 132.69

GRP_Matern 0.0/20.868 0.0/17.887 0.0/1.0 1.0/0.0 inf 25.77

SVR_linear 9.901/12.106 7.582/9.98 0.464/1.075 0.593/-0.247 1.495 0.01

SVR_poly 9.937/11.656 7.663/9.096 0.56/0.949 0.59/-0.141 1.376 6.82

SVR_rbf 8.54/9.19 6.437/7.302 0.38/1.047 0.697/0.499 1.158 9.24

SVR_sigmoid 9.947/12.026 7.69/10.106 0.484/1.052 0.589/-0.163 1.462 10.24

MLP_1 8.821/9.505 6.703/7.642 0.41/1.056 0.677/0.416 1.161 1.33

MLP_2 8.809/9.985 6.704/8.022 0.397/1.23 0.678/0.457 1.285 1.42

RF 8.059/9.921 6.153/7.874 0.357/0.953 0.73/0.436 1.515 0.06

Bagging 2.919/10.164 1.94/7.99 0.097/0.918 0.965/0.377 12.124 0.1

GBoost 8.191/9.856 6.218/7.926 0.366/0.863 0.721/0.394 1.448 0.26

AdaBoost 9.413/13.832 7.46/12.113 0.561/1.758 0.638/0.445 2.159 0.11

HistGBoost 7.214/9.509 5.458/7.53 0.305/0.84 0.784/0.419 1.737 8.42

LightGBM 9.712/12.974 7.721/11.671 0.69/2.167 0.608/0.586 1.785 0.01
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data. In addition, ozone time-series data is characterized by a dynamic nature, as indi-
cated in ACF plots (Fig. 7). Hence, in this experiment, we consider lagged ozone data 
when predicting the concentration of ozone. In short, this experiment aims to investi-
gate the impact of considering lagged data on ozone prediction accuracy. To this end, 
we consider adding the lag 1 and lag 3 ozone data when predicting the concentration of 
ozone. In the first scenario with lag 1 O3 , the input data contains seven variables ( NO2 , 
absolute humidity, air temperature, absolute pressure, wind direction, SO2 , O3.Lag1). In 
the second scenario with lag 3 O3 , there are nine input variables ( NO2 , absolute humid-
ity, air temperature, absolute pressure, wind direction, SO2 , O3.Lag1, O3.Lag2, and O3.
Lag3). The considered time-lagged ozone data are defined in Table 5.

The observed versus predicted ozone values are shown in Fig. 13 and their prediction 
errors are shown in Fig. 14. Visually we can see that as expected considering information 
from lagged ozone data enables improving the prediction of machine learning models 

Table 5 Time-lagged ozone data

Variable Description

O3.Lag1 15-minutes lagged ozone value

O3.Lag2 30-minutes lagged ozone value

O3.Lag3 45-minutes lagged ozone value

Fig. 13 Observed and predicted ozone concentrations based on testing data including a lag 1 ozone data, 
and b lag 3 ozone data
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(Fig. 13). Visually, from Fig. 14 we can see that the prediction errors have been signifi-
cantly reduced by considering lagged ozone data with lag 3. Specifically, the mean error 
of some models, such as RF and SVRrbf  in this experiment with lag 3 are fluctuating 
nearly at zero and there is obvious mitigation on the error fluctuation. This clearly shows 
the improvement in the prediction quality of ozone concentrations when incorporating 
information from past data (Fig. 13a-b). It can be seen that by including lagged data with 
lag 3 the prediction from the considered models becomes very close to those observed 
data.

Table 6 and Table 7 provide the prediction results obtained by the investigated models 
using testing data with lag 1 and lag 3 ozone data, respectively. Results in Table 6 indicate 
that the SVRlinear model achieves the best score on every metric, and importantly, the 

Fig. 14 Boxplot for prediction error of each model a by adding one time-lagged ozone value, and b three 
time-lagged ozone values in input data
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Table 6 Statistic indicators of the nineteen machine learning methods on ozone prediction for 
testing data with one-time-lagged ozone values

The value before slash represents the loss value in the training dataset and the latter in the testing dataset (training/testing), 
the best performance is bold and the line colored grey means over-fitting. In addition, the ↑ means the model is better 
when the value is larger, and the ↓ means the model is better when the value is smaller

Model RMSE ↓ MAE ↓ MAPE ↓ R-square ↑ J2 ↓ Time (min)

Linr 3.315/3.217 2.171/2.289 0.12/0.248 0.954/0.911 0.942 0.01

Linr_l2 3.315/3.22 2.173/2.293 0.121/0.249 0.954/0.911 0.944 0

Lasso 5.867/7.614 4.624/6.66 0.458/1.448 0.857/0.836 1.684 0.01

PLSR 4.987/6.558 3.849/5.405 0.213/0.63 0.897/0.629 1.729 0.01

GRP_Expo 2.685/4.166 1.797/3.086 0.097/0.414 0.97/0.86 2.407 7.79

GRP_DotProd 3.315/3.215 2.17/2.286 0.12/0.249 0.954/0.911 0.941 15.59

GRP_Matern 0.0/20.863 0.0/17.878 0.0/1.0 1.0/0.0 inf 21.61

SVR_linear 3.388/3.032 2.087/1.979 0.114/0.213 0.952/0.921 0.801 0.01

SVR_poly 3.903/5.351 2.678/3.778 0.222/0.624 0.937/0.801 1.88 5.37

SVR_rbf 3.097/3.189 1.998/2.277 0.12/0.298 0.96/0.914 1.06 6.04

SVR_sigmoid 4.501/4.079 3.352/3.241 0.215/0.521 0.916/0.86 0.821 6.92

MLP_1 3.315/3.199 2.174/2.234 0.126/0.232 0.954/0.912 0.931 0.28

MLP_2 15.514/21.707 12.668/19.503 1.287/4.222 0.0/0.0 1.958 1.09

RF 3.07/3.416 2.002/2.451 0.114/0.272 0.961/0.9 1.238 0.05

Bagging 1.381/3.731 0.863/2.756 0.046/0.281 0.992/0.881 7.299 0.16

GBoost 3.068/3.663 2.001/2.719 0.115/0.278 0.961/0.885 1.425 0.29

AdaBoost 4.908/6.396 3.942/5.485 0.326/0.985 0.912/0.844 1.698 0.12

HistGBoost 2.806/3.604 1.855/2.667 0.102/0.284 0.967/0.889 1.65 0.89

LightGBM 6.568/8.834 5.241/7.857 0.527/1.682 0.821/0.804 1.809 0.01

Table 7 Statistic indicators of the nineteen machine learning methods on ozone prediction for 
testing data with three time-lagged ozone values

In addition, the ↑ means the model is better when the value is larger, and the ↓ means the model is better when the value is 
smaller

Model RMSE ↓ MAE ↓ MAPE ↓ R-square ↑ J2 ↓ Time (min)

Linr 3.274/3.117 2.132/2.233 0.118/0.236 0.955/0.916 0.906 0.01

Linr_l2 3.275/3.126 2.135/2.242 0.118/0.237 0.955/0.916 0.911 0.01

Lasso 5.867/7.624 4.624/6.672 0.458/1.452 0.857/0.836 1.689 0.02

PLSR 4.334/4.817 3.134/3.663 0.18/0.419 0.922/0.8 1.235 0.01

GRP_Expo 2.21/5.826 1.506/3.593 0.077/0.447 0.98/0.713 6.95 9.7

GRP_DotProd 3.274/3.121 2.133/2.235 0.118/0.235 0.955/0.916 0.909 15.86

GRP_Matern 0.0/20.846 0.0/17.854 0.0/1.0 1.0/0.0 inf 21.98

SVR_linear 3.351/2.979 2.053/1.957 0.112/0.209 0.953/0.924 0.79 0.01

SVR_poly 3.859/5.315 2.636/3.747 0.22/0.637 0.938/0.804 1.897 6.99

SVR_rbf 3.045/3.13 1.952/2.207 0.117/0.288 0.962/0.916 1.057 6.32

SVR_sigmoid 6.106/6.862 4.568/5.585 0.35/1.179 0.845/0.6 1.263 11.4

MLP_1 3.24/3.185 2.105/2.275 0.125/0.252 0.956/0.913 0.966 0.37

MLP_2 15.514/21.658 12.678/19.454 1.284/4.221 0.0/0.0 1.949 1.39

RF 3.024/3.292 1.977/2.323 0.113/0.266 0.962/0.907 1.185 0.05

Bagging 1.346/3.453 0.833/2.433 0.045/0.264 0.992/0.897 6.581 0.17

GBoost 3.033/3.42 1.987/2.58 0.115/0.274 0.962/0.902 1.271 0.3

AdaBoost 4.629/5.911 3.663/5.04 0.311/0.92 0.918/0.855 1.631 0.17

HistGBoost 2.722/3.425 1.813/2.53 0.101/0.273 0.969/0.9 1.583 2.35

LightGBM 6.371/8.558 5.065/7.574 0.514/1.652 0.831/0.808 1.804 0.01
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consuming time is only 0.01 min. In this case study, the SVRlinear is the best model with 
regard to accuracy and efficiency. In terms of adjustment, the SVRlinear model achieved 
successful results with the highest R2of 0.924 and with the lowest RMSE of 2.979. Except 
for the GRPMatern , all other models can catch the ozone trends with reasonable predic-
tion errors. Thus, this result is confirming that the third-order lagged ozone data ( O3.
Lag1, O3.Lag2, and O3.Lag3) are sufficient to enhance the prediction quality of the stud-
ied machine learning models. In addition, the most important factor to influence the 
performance of SVR is still the kernel, where the performance of SVR is worse if we use 
other non-linear kernels such as polynomial or sigmoid and their efficiency is reduced as 
well.

Results in Table 7 indicate that conclusions hold the same when considering the input 
with three time-lagged ozone values for ozone prediction. Specifically, the SVRlinear 
dominates the other models for ozone prediction with regard to accuracy and efficiency. 
Besides, the performance model becomes more stable by introducing three time-lagged 
ozone values. More precisely, the index for every metric is improved to a mild degree, 
and the prediction error range in Fig. 13 is much more narrow and concentrated. There-
fore, we can conclude that the best model is SVRlinear in accuracy and efficiency.

Ensuring that the model with the best prediction results is statistically more significant 
than the other models is crucial. One common way to do this is to use statistical tests to 
compare the performance of the models, such as the Chow test, the Granger causality 
test, and the Breusch-Pagan test [75, 76]. In this study, we adopted the Diebold–Mariano 
test [75] to compare the prediction accuracy of the investigated models. It is commonly 
used in economics and finance to evaluate the performance of different forecasting 
models. The advantage of using the Diebold-Mariano Test is that it is a robust statistical 
test that can be used to compare the forecasting accuracy of different models without 
assuming a specific distribution for the forecast errors. Furthermore, the test is relatively 
simple to implement and interpret, making it a popular choice for comparing forecasting 
models.

The basic idea behind the Diebold-Mariano test is to compare the mean squared error 
of the forecasts produced by two models. In other words, the p-values generated from 
the test indicate whether there is a significant difference in the mean squared error 
between the forecasts produced by the two models. The null hypothesis is that there is 
no difference in the forecast accuracy between the two methods, while the alternative 
hypothesis is that one method is better than the other. To conduct the test, the differ-
ences between the two sets of forecast errors are calculated and then tested for statistical 
significance using a t-test. If the p-value is less than the significance level, it indicates 
that one method is significantly better than the other. Figure 15 shows the heatmap of 
the matrix of p-values generated from the Diebold-Mariano Test for each pair of models. 
The p-values range from 0 to 1, with values closer to 0 indicating stronger evidence to 
reject the null hypothesis and conclude that there is a significant difference in forecast-
ing performance between the two models. A value less than 0.05 indicates that there is 
evidence to reject the null hypothesis and conclude that there is a significant difference 
in forecasting performance between the two models. Results in Fig. 15 show most of the 
p-values were found to be 0, indicating that there is strong evidence to reject the null 
hypothesis and conclude that there is a significant difference in forecasting performance 
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between most pairs of models. However, there are some exceptions, such as the pairs 
(Linr, GRP_Expo ), (Linr_l2 , GRP_Expo ), and (PLSR, GRP_DotProd), where the p-values 
are relatively higher (0.04 or above), indicating that there may not be a significant dif-
ference in forecasting performance between these pairs of models. Notably, the results 
depicted in Fig.  15 highlight that the SVR model with a linear kernel is the best per-
former, with significant differences observed compared to the other models except for 
RF. Overall, this implies that the SVR with a linear kernel performed the best out of all 
the models tested, according to both the Diebold-Mariano test and evaluation metrics 
such as R2 and MAPE. This model had the highest R2 value of 0.924, indicating a strong 
correlation between the predicted and actual ozone concentrations. Additionally, it had 
the lowest MAPE of 0.209, indicating that the predicted values were, on average, very 
close to the actual values.

Conclusion
The detrimental impact of high ozone ( O3 ) pollution concentrations on human health 
and ecosystems underscores the importance of precise and efficient ozone concentration 
prediction for weather monitoring and environmental policymaking. In this study, we 
conducted a comparative analysis of various machine learning models to predict ozone 
concentrations. Real data collected at KAUST, including meteorological and pollution 
variables, were used to evaluate prediction accuracy. Our results showed that the inves-
tigated machine learning models failed to capture ozone trends when considering only 
meteorological variables as inputs. However, we demonstrated that incorporating mete-
orology and air pollutants as input significantly improves the prediction performance 
of machine learning models. We further identified that including time-lagged ozone 
data substantially enhances the prediction quality of the machine-learning models. 

Fig. 15 DM test for the models (the number and corresponding model 1 : Linr, 2 : Linrl2 , 3 : Lasso, 4 : PLSR, 
5 : GRPExpo , 6 : GRPDotProd , 7 : SVRlinear , 8 : SVRpoly , 9 : SVRrbf  , 10 : SVRsigmoid , 11 : MLP1 , RF, 12 : Bagging, 
13 : GBoost, 14 : AdaBoost, 15 : HistGBoost, 16 : LightGBM)
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Specifically, by considering input with three time-lagged ozone values, the machine 
learning models provide ozone prediction more accurately than previous experiments, 
achieving an RMSE improvement of 300% and 200%, respectively. Importantly, with the 
lag information, the best model only needs 0.01 s, which is over 900 times faster than the 
other two best models in the first two experiments.

Overall, this study highlights the importance of incorporating time-lagged ozone data 
and suggests that SVR outperforms the other machine learning models for ozone pre-
diction. This finding could significantly benefit air quality monitoring and management, 
improving public health outcomes. Our work also opens up new research problems, 
such as exploring the scalability of different models and the deployment of algorithms in 
real-life scenarios. In future studies, we plan to investigate the potential of graph mod-
els, such as Graph Convolutional Networks (GCN) [77], for ozone prediction when data 
from multiple stations are available. Additionally, we aim to exploit and deploy advanced 
spatiotemporal models for ozone prediction and monitoring.
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