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A Comparison of Malicious Interdiction Strategies

Against Electrical Networks
Paul Cuffe, Member, IEEE

Abstract—How well can a typical electrical power system
withstand a sophisticated malicious attack undertaken against
its exposed branches? The present work seeks to articulate a
comprehensive answer to this fundamental question of wide
societal importance. New and established techniques that an
attacker might use to select promising attack targets are con-
sidered, spanning complex network analysis, metaheuristics and
classical optimization. By simulating this wide gamut of attack
strategies on several test power systems, each modelled under
many representative operating states, this work comprehensively
articulates the expected robustness of electrical power grids
against coordinated branch interdictions.

Keywords—Cascading failure, directed attacks, branch interdic-
tion, centrality, optimization, metaheuristics

I. INTRODUCTION

Improving the reliability and security of supply of elec-
tricity are key drivers of emerging smart grid technologies
[1], although the widening penetration of online components
means that networks then become vulnerable to remote cyber-
attacks and observation [2], [3]. For instance, serious supply
interruptions in Ukraine in late 2015 are a documented ex-
ample of malicious cyber-attack [4]. How might the nascent
observability, and diversification of line loadings [5], of power
grids affect their robustness against malicious attack? By
simulating various strategies that a malicious attacker may
use, while considering numerous systems in various states,
the present work seeks to articulate a meaningful, defensible
answer to this important question.

The present work proceeds under the realisation that a high
voltage transmission line is inherently vulnerable [6]: one can
be taken out of service by an errant kite, a deftly lobbed length
of metal chain, or even remotely, by a cyber attack against
its associated circuit breakers. By contrast, power system
buses are typically housed within compounds whose perimeter
could, at least notionally, be monitored and defended. For this
reason, one limitation of much of the published literature on
electric grid vulnerability is the common focus on bus removal
scenarios [7]–[11].

Broadly speaking, electrical power systems are operated so
that they can withstand the loss of any one of their branches,
generators or other elements [12]. This (N−1) criteria ensures
that when a line is removed from a system, the redistribution
of the flow it was carrying should not overload any other lines:
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if it did, overload cascading would occur [13]. However, the
robustness of power systems against malicious (N−k) outages
is harder to asses [14], due to the combinatorial explosion of
potential scenarios. The present paper seeks, in part, to address
this lacuna.

Taken together, certain elisions and tendencies in the extant
literature make it hard to draw a consensus conclusion on
power grids’ typical robustness against branch interdiction
attacks. For instance, there is often an emphasis on bus
attack strategies; a common reliance on abstract powerflow
models; a tendency to model power system in just a few
unrepresentative states; and a lack of domain knowledge in
selecting which assets to attack. By contrast, the present work
offers prescient insights by simulating many attacks, of varying
sophistication, against the branches of numerous representative
grids. The research question is simple: how much damage can
a sophisticated attacker be expected to cause by removing a
small number of branches from a power grid?

A literature review to substantiate the foregoing claims is
provided in Section II; in Section III the present work’s chosen
branch attack strategies are described; the test platform for
trialling these is discussed in Section IV; results are in Section
V; and Section VI concludes.

II. LITERATURE REVIEW

A. Complex network approaches

The surveys in [15], [16] review the application of complex
network techniques to electrical grids. Such work has typically
come from practitioners of complex network analysis. Two
threads are evident in the literature: purely descriptive works,
which seek to characterise and categorise power grids based
on their structural or centrality features, and works using these
descriptors to infer the reliability or robustness of power sys-
tems: per [15] “Another recurring theme [...] is the reliability
analysis, and actually it is the main motivation that drives
these kind of studies.” One limitation is that much of the
influential, heavily cited research in this latter field, such as
[7]–[11], [17]–[20], comes from outside the ambit of power
engineering, and often uses idealised models of cascading
failure propagation.

Fundamentally, inferences about power grid robustness that
are not grounded in the physical realities of electrical power
flow are somewhat questionable: [21] offers some useful
review treatment of this issue. For instance, the power en-
gineers who authored [22] had to conclude “that evaluating
vulnerability in power networks using purely topological met-
rics can be misleading.” Likewise, the review in [15] states
“We emphasize the inappropriateness of purely topological



2

measures, since they are not able to capture the essence of
the power systems.” The authors of [23] echo this, pointing
out by the title of their paper that topological metrics are not
just misleading, but can be overly-optimistically so: “Context-
independent centrality measures underestimate the vulnerabil-
ity of power grids”

B. Agent based modelling

A related way to gauge the robustness of a power grid,
especially considering its interdependence with other critical
infrastructures, is to model them as a holistic complex adaptive
system [24]. Under this scheme, agent based modelling can
be used to simulate the interaction of different actors in the
network, such as generators, operators, communication links
and conductors [25], [26].

C. Power engineering perspectives

In recent years certain researchers have begun to bridge
the gap between power engineering and complex networks
analysis. The work of Hines is foundational here, both in
articulating the empiric topology of power grids [27]–[33]
and in assessing their robustness against cascading failure
[34]–[41]. The importance of using realistic models of power
flow and cascade dynamics is emphasised throughout this
corpus.

Likewise, the work of Bompard has articulated a notion
of structural vulnerability in power grids [42]–[52]. Much
of this work draws on new, or hybrid, topological measures,
which seek to unite generic complex network concepts with
electrically relevant metrics.

A similar body of work [53]–[59] has been developed by
authors associated with the MATCASC software tool, which
simulates cascading failures in electrical power systems. While
this corpus is valuable, one limitation it embodies is that
branch thermal limits are modelled in an unrealistic way,
where the maximum permissible flow is taken as the base-
case power flow multiplied by some tolerance parameter (as
also in [60]). In reality, branch thermal limits will not have a
simple relationship with initial branch flows, and also depend
on ambient weather conditions.

D. Risk analysis

There is also an established body of literature on the risk
analysis of accidental cascading failure in power systems,
of which the IEEE Cascading Failure Working Group have
produced a number of authoritative surveys [5], [61], [62].
The state of the art here is sophisticated [63]: modern sim-
ulation tools e.g [64] can simulate many of the dynamics
underlying cascading failures with impressive granularity. In
this space, the triumvirate of Dobson, Newman and Carreras
have, separately and jointly, produced an impressive nexus
of work on cascading failure risk analysis in power systems
[65]–[78]. Notably, such works, and others [64], have typically
made their risk analyses on small numbers of systems, and
generally haven’t considered sophisticated attack scenarios,
focusing instead on quantifying the risks of how accidental
component outages may trigger cascades.

E. Attack modelling

A separation is clear in the extant literature: modelling
of intentional attacks has mostly come from the complex
networks community, and generally uses overly abstract con-
ceptions of how power systems operate. On the other hand,
the state of the art in power system engineering can model
cascading failures with realism: for instance, [79] considers
both short and medium term outage effects, and includes
representations of e.g transient and frequency stability in the
cascade simulation [80]. Of those engineering works that
consider intentional attacks, optimal power flow techniques
are popular for identifying sets of power system components
to attack [81]–[83]. Likewise, metaheuristic formulations to
identify promising attack targets are also common [37], [38],
[40], [79], [84]–[88]. Finally, and as previously mentioned,
network structural metrics are also used within the power
systems literature on attack simulation [33], [46], [47], [54],
[55], [89]–[91].

Due to a paucity of meaningful comparisons in the existing
literature, it is not clear which of these broad approaches might
be most effective for attacking a power system (though cf.
[92] which makes some comparison of the efficacy of certain
topological metrics)

F. Multilevel attacker/defender formulations

Another theme in the modelling of power system attacks is
the use of multilevel formulations, as introduced by Salmerón
et al [93], [94]. Within this paradigm, an attacker marshals
their available resources to cause maximum damage, while
simultaneously the system operator proactively uses their re-
sources to minimize the impact of an attack (for instance, by
post-attack generator redispatch or line switching.) The work
of Arroyo implemented this model as a bilevel optimization
problem in [95], with his subsequent work elucidating further
refinements to such a formulation [96]–[99]. Others have also
made important contributions to the multilevel modelling of
power system attack and defence games [100]–[102]: some
contributions additionally consider optimal pre-emptive defen-
sive hardening of certain components [99], [103], [104].

G. Paper contributions

Laying aside their relative merits, both power engineering
and complex network approaches to cascade attack analysis
typically suffer from a reliance on small sample sizes (worthy
exceptions to this trend include [35], [38], [39], which consider
a number of (N − 1) secure dispatches for different system
loadings. Likewise, works using the OPA simulation tool can
take due account of multiple load growth snapshots e.g [105].)
This paper compares and contrasts a wide range of possible
techniques to select combinations of branch contingencies,
and uses many snapshots of various systems to assess their
effectiveness.

III. METHODOLOGY

This works seeks defensible conclusions on the attack
robustness of plausibly parametrised power systems that are
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simulated with approximate physical realism. This goal re-
quires that each attack strategy is trialled against a number
of test power systems, with each system considered in a large
number of representative states. Likewise, as modern power
grids typically use SCADA systems, it becomes conceivable
for malicious actors to remotely monitor power flows and
generator dispatches, and attack strategies that exploit such
information must be included. While attacks on the SCADA

system itself also offer various other ways to damage a power
system [106], for the sake of clarity the present work maintains
a focus on the direct electrical effects of branch removals.

A. Branch interdiction strategies

This work seeks a comprehensive comparison of a range
of potential branch attack strategies. Eight strategies are
considered: of these, three may be deemed smart, requiring
some computational effort, with the remaining five simpler
to calculate. Three of the strategies are static, and attack the
same branches regardless of how network flows change from
one snapshot to the next. Four of the attack strategies require
observability of the instantaneous state of a power system.

Each strategy selects K branches to remove, where K is
some small predefined integer reflecting anticipated attacker
resources. All branches in the system are assumed to be equally
available for attack: this disregards the idea of pre-emptive
strategic hardening of certain components by the system op-
erator (cf. Section II-F) The eight strategies considered are as
follows:

GA_demand This interdiction strategy uses a standard genetic
algorithm to select which lines to attack. The fitness
function it seeks to minimise is the demand survivability
[57]: this quantifies what portion of the demand can still
be served after a cascade. The approach here is entirely,
and deliberately, generic. This strategy should be seen as
a baseline metaheuristic approach that an attacker might
use to select branches to interdict. The lack of fine-tuning
means that this strategy likely substantially underestimates
the damage that this style of attack could cause.

GA_link This novel strategy is equivalent to that above,
except here the fitness function minimized by the meta-
heuristic is the link survivability [57]. This measures the
number of branches remaining in operation in the system
after the cascade, which is a complementary measure of
failure severity.

MILP_overload This strategy employs a more refined op-
timization formulation than the previous unsubtle meta-
heuristics. In essence, it uses mixed integer linear pro-
gramming to select the K lines to remove from a system,
where the novel objective function estimates post-removal
line overloads (details of this formulation are given anon).

Random This simple strategy is included as a baseline con-
trol, as in [91]. For each power system snapshot to be
attacked, the K lines to be removed are selected based on
a pseudorandom integer generator.

Loading This is included as a simple context-aware metric.
For each state of the power system to be attacked, the
percentage line loading of each branch is calculated. The

most-heavily loaded K lines are then removed. (A similar
approach is taken in [107] and [108])

Elec_between This static metric of electrical betweeness
was proposed in [109] (cf [45]). It uses the notion of unit
transactions of power between each generator and each
load, and sums each branch’s involvement in the partial
flows [110] that these transactions invoke.

Topo_between This static topological metric, known as
betweeness centrality [111], is a classical measure of com-
ponent importance in complex networks. It is calculated as
the fraction of the shortest paths between every node pair
that pass through a particular bus or branch.

Shortcut This static topological metric of edge range [9],
[112] records the shortest path between the nodes that a
branch connects, after that branch’s removal. A low value
indicates that, in terms of shortest paths, a branch enjoys
some redundancy. If the branch is an isthmus, this metrics
goes to infinity, and its removal from a power system will
guarantee islanding.

B. Unit commitment and dispatch

1) System state creation: Each attack strategy is to be
trialled against many representatives snapshots of each sys-
tem’s state, all of which are to be (N − 1) secure. Creating
generation profiles for each snapshot therefore requires a
security-constrained unit commitment and dispatch procedure.
The formulation employed here to do this is conventional and
entirely deterministic. Generators are dispatched solely to meet
the demand, and no dynamic reserves are carried (though such
reserves may indeed affect a system’s robustness)

The quadratic cost function to be minimized is given by:

min

g+

∑

g

cg,1P
2
g + cg,2Pg + cg,3 (1)

Where P is a decision variable giving the power output for
each generator (index: g cardinality: g+) The c parameters
describe the heat rate costs for each generating unit.

A binary decision variable, S, determines whether each unit
is online. This variable is incorporated within the minimum
and maximum output power constraint for each unit:

SgP
−

g ≤ Pg ≤ SgP
+
g (2)

As this is a security-constrained formulation, the optimal
generation schedule must respect branch thermal limits fol-
lowing all credible contingencies (i.e the individual removal of
each line, unless this would cause islanding) Including these
contingencies (index c) increases the dimensionality of the
powerflow variables, as denoted in their superscript.

Kirchoff’s laws are enforced at every bus (index b):

P c
net,b = Pg,b + Pd,b (3)

The parameter Pd,b is a vector describing the fixed power
demands at each bus, while Pg,b identifies the generator
connecting at bus b. The vector of branch power flow variables
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for each contingency, F c
l , also contributes to the power balance

at each bus:

P c
net,b = F c

l
T
Ac

l,b (4)

The parameter matrix Ac
l,b is the system’s incidence matrix,

appropriate to the prevailing contingency.
For a branch connecting bus i to bus j, with reactance Xl,

the power flow is determined by the voltage angle difference
that prevails in those contingency conditions, φc:

F c
l,i→j =

φc
i − φc

j

Xl

(5)

The vital thermal limits are imposed in the intact condition
by:

−F+

l ≤ F c=0
l ≤ F+

l (6)

As more generous thermal limits are briefly tolerated under
contingency conditions, emergency limits can be applied there:

−F++

l ≤ F c
l ≤ F++

l (7)

2) System load normalization: The present work seeks to
draw comparisons between different test systems in an even-
handed way. As such, the preprocessing of each system
includes a load normalization procedure, as otherwise it is
unclear if the snapshot loadings in the case descriptor represent
high or low loading conditions for that system.

For this normalization, the previous security constrained
unit commitment procedure is adapted. A uniform scaling
variable α is introduced for each nodal demand, which are now
considered as variables (P

Orig
d,b is the parameter recording the

nodal load specified in the case descriptor)

Pd,b = αP
Orig
d,b (8)

The maximum load that can be served while respecting the
security constraints is obtained with this objective function:

max(α) (9)

This maximum loading provides a harmonized benchmark
between systems, so that their loading levels can be varied
below this limit in a consistent way.

C. MILP_overload implementation

One novel contribution of this work is articulating a new
linear optimization approach to attacking a power system:
MILP_overload. Within this optimization, prevailing gen-
erator outputs and bus loads are taken as known parameters
and the only decision variables are binary selectors on which
branches should be attacked. The same load flow approach as
previously is used, though security constraints are omitted.

The binary decision vector O determines which branches are
to be maliciously outaged, taking a value of 1 at lines which
are to be removed from service. As only a limited number of
branches, K, can be attacked simultaneously:

∑

l

Ol ≤ K (10)

Logical constraints [113] are imposed to model the effects
of a line removal (this maintains linearity in a way that a
multiplicative approach would not, and doesn’t force voltage
angles to be equal for buses at either end of an outaged branch)

Fl,i→j =

{

φi−φj

Xl
, if Ol = 0

0, if Ol = 1
(11)

The objective function for this optimization should gauge
the damage that the combined line outages impose on the
system. An obvious approach is to maximise the flows across
all remaining branches following the removals. However, as the
variable Fl is inherently signed, its absolute value would have
to be taken to implement this objective function directly, which
would break linearity. Instead, the present implementation
exploits a simplifying rule-of-thumb here. While removing a
small number of lines from service will certainly affect power
flow profiles, we can anticipate that power flow directions will
not generally reverse completely on lines. As such we can
generate a “predicted direction” parameter, Dl, based on the

known pre-removal flows in the systems, F
Orig
l .

Dl =

{

1, if F
Orig
l > 0

−1, if F
Orig
l ≤ 0

(12)

Using this helper parameter, a linear objective function
which sums the “assumed positive” flows can be written:

max
∑

l

DlFl

F+

l

(13)

The branch thermal ratings, F+

l , are included, so this
calculates percentage, rather than absolute, loadings.

For the avoidance of doubt: this attack strategy approxi-
mately maximises overloads in the system immediately after
the attack set of lines are outaged, but gives no consideration
to subsequent cascade dynamics. While it uses optimization
techniques, there should be no expectation that it will find
the globally optimal attack strategy for forcing a system into
cascading failure.

IV. TEST PLATFORM

A. Test network selection

This work uses nine small-to-medium sized test power
systems from the NESTA archive [114]. This archive provides
versions of many well known test systems: crucially, realistic
branch thermal limits are included ([115] discusses some of
the issues surrounding test case accuracy for cascading failure
analysis.) Augmenting these vital thermal limits, branch short
time emergency ratings (F++

l ) are set equal to 130% of normal
thermal limits, consistent with [116]–[118]. In simulating
cascade progression, branches are removed when their loading
exceeds this level.
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Fig. 1: Network diagrams for each test system considered. Generator nodes are plotted in red.
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TABLE I:
Test System Characteristics

nesta case29 edin nesta case30 ieee nesta case57 ieee nesta case118 ieee nesta case189 edin

nesta case30 as nesta case39 epri nesta case73 ieee rts nesta case162 ieee dtc

# Buses 29 30 30 39 57 73 118 162 189

# Branches 99 41 41 46 80 120 186 284 206

# Gen. Buses 24 6 6 10 7 33 54 12 35

Demand (GW) 81.492 0.357 0.278 6.228 1.377 10.216 5.037 5.283 1.863

Gen. Cap. (GW) 82.385 0.435 0.884 7.367 1.377 10.215 7.134 9.685 3.012

The diagrams in figure 1 show each of the test networks
used, drawn as electrically meaningful diagrams per [119].
Note that nesta_case29_edin does not have nominal
voltage levels specified, so it arbitrarily plotted here at 132
kV . System characteristic are given in Table I.

B. System and load normalisation

In each system, where multiple branches connected the same
two buses, they were merged. This allows a fairer application
of topological measures which don’t consider that edges can
have inherent redundancy. The merged line’s impedance and
thermal limits were updated to match the electrical character-
istics of the multiline parallel combination. Overhead lines,
cables and transformer are all treated equivalently, with no
attack strategy making distinctions based on the class of
branch.

1) System snapshot creation: As described in Section III,
an optimisation procedure is used to discern the maximum
possible loading that each system can serve while respecting
the security constraints. These maximum loadings then provide
a uniform benchmark from which system snapshots can be
created in a fair way. Fifty representative system states were
created for each system, so that meaningful statistical infer-
ences can be made about each system’s typical robustness. To
create each snapshot, a pseudorandom number was first se-
lected on a uniform distribution between 50% and 100%. This
number was used to uniformly scale down all the spot loads
in the system (By the normalization, loadings above 100%
are known to be infeasible) Then, considering each snapshot
separately, the generators are committed and dispatched to
serve the prevailing loads in a security-constrained way.

As power grids will experience diverse power flow pro-
files over the coming years, due to variable renewables,
load changes, outages and fuel price fluctuations, the set of
snapshots should be widely heterogeneous in their generation
schedules. To this end, the rows of cost parameters, c, were
shuffled between generators for each snapshot. In this way, dif-
ferent generators become comparatively cheaper or costlier in
each snapshot, and the optimization will, accordingly, produce
a set of widely diverse generation schedules. This provides a
broad sample of conceivable power flow profiles which also
respecting (N−1) security constraints: notably, purely random
generation schedules cannot satisfy the latter criteria.

C. Attack simulation

The evolution of cascading failures is simulated using the
MATCASC tool [58]. Each time it is invoked, it takes as input
a particular system in a specific state, as well as pre-computed
set of lines to attack, corresponding to a particular strategy.

In the first stage of each cascade simulation, the branches
slated for attack are removed from the system, and a DC power
flow calculation is performed. Subsequently, any lines whose
active power flows exceed their emergency limits are also
removed, and so on until an equilibrium is reached. Where
islands form, load and generation are rebalanced there to
maintain a local supply/demand balance. This tool is adequate
to simulate the basic propagation mechanism of overload
cascades, but it neglects various other effects which may arise
in practice [115]:

• Reactive power and voltage magnitudes are entirely
absent under the DC assumptions, so voltage stability
is ignored

• Generator dynamics are not considered, so loss of syn-
chronism and frequency instability are not considered

• Operator defensive actions, as recounted in Section
II-F, are not simulated. It is assumed that the attacked
branches are removed simultaneously, and that the re-
sulting overload cascade propagates too rapidly for op-
erator intervention.

For the avoidance of doubt: the MATCASC tool is used to
simulate how effective each attack strategy might be. In addi-
tion to this role as an attack simulator, it is also used elsewhere
by the genetic algorithm that constructs the GA_demand and
GA_link attack sets.

D. Computational platform

Power system optimizations are formulated using YALMIP

[120] and MATPOWER [121] in MATLAB [122], and use the
Gurobi solver [123]. When calculating the MILP_overload
attacks, Gurobi is given a time budget = 30s, simply due to
the number of different attacks that must be simulated.

The GA_demand and GA_links attacks are found using
the standard genetic algorithms settings and implementations
in MATPOWER [122], [124], again with a 30s time limit
imposed.

V. RESULTS

Each attack strategy was applied to fifty different instanti-
ations of each of the nine test systems. The attack strategies
were calculated for each of K = {2, 3, 4, 5}.
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TABLE II:
Mean Demand Survivability (K = 2)

GA_link GA_demand MILP_overload Loading Elec_between Topo_between Shortcut Random

nesta case29 edin 0.2947 0.3604 0.5956 0.5905 0.5495 0.6224 0.5776 0.5622

nesta case30 as 0.6971 0.8390 0.9337 0.9498 0.9049 0.9512 0.9512 0.9517

nesta case30 ieee 0.7561 0.8034 0.9000 0.8302 0.9512 0.9512 0.9512 0.9517

nesta case39 epri 0.7417 0.8174 0.9357 0.9565 0.9565 0.9565 0.8870 0.9513

nesta case57 ieee 0.8890 0.9605 0.9663 0.9735 0.9598 0.9750 0.9750 0.9733

nesta case73 ieee rts 0.8627 0.8810 0.9753 0.9673 0.9833 0.9833 0.9833 0.9792

nesta case118 ieee 0.5586 0.6594 0.7894 0.8320 0.8045 0.8083 0.8708 0.8622

nesta case162 ieee dtc 0.9087 0.9217 0.9521 0.9710 0.9669 0.9907 0.9743 0.9783

nesta case189 edin 0.6227 0.6672 0.9187 0.9596 0.9806 0.9806 0.9850 0.9651

TABLE II:
Mean Demand Survivability (K = 3)

GA_link GA_demand MILP_overload Loading Elec_between Topo_between Shortcut Random

nesta case29 edin 0.2594 0.3499 0.5576 0.6085 0.5495 0.5384 0.6341 0.5598

nesta case30 as 0.4537 0.7410 0.7229 0.9205 0.8785 0.9200 0.9268 0.9239

nesta case30 ieee 0.2683 0.3756 0.2229 0.8122 0.9024 0.9268 0.9268 0.9244

nesta case39 epri 0.5900 0.7057 0.8722 0.8648 0.9348 0.9348 0.7513 0.9239

nesta case57 ieee 0.7835 0.8645 0.9145 0.9597 0.9472 0.9625 0.9625 0.9592

nesta case73 ieee rts 0.7907 0.8192 0.9450 0.9462 0.9750 0.9750 0.9710 0.9700

nesta case118 ieee 0.5329 0.6217 0.7383 0.8057 0.7991 0.7747 0.8917 0.8401

nesta case162 ieee dtc 0.8671 0.9198 0.9232 0.9423 0.9625 0.9872 0.9693 0.9748

nesta case189 edin 0.6013 0.6540 0.8327 0.9354 0.9631 0.9631 0.9803 0.9717

TABLE II:
Mean Demand Survivability (K = 4)

GA_link GA_demand MILP_overload Loading Elec_between Topo_between Shortcut Random

nesta case29 edin 0.2390 0.3158 0.5608 0.5925 0.5099 0.5384 0.6341 0.5481

nesta case30 as 0.3410 0.7283 0.6707 0.8893 0.8312 0.8205 0.9024 0.8922

nesta case30 ieee 0.0951 0.1985 0.2649 0.7941 0.8780 0.9024 0.9024 0.9010

nesta case39 epri 0.4922 0.6196 0.8013 0.8174 0.9130 0.9130 0.6078 0.9026

nesta case57 ieee 0.7190 0.8142 0.8538 0.9290 0.9315 0.9500 0.9500 0.9460

nesta case73 ieee rts 0.7647 0.7767 0.9118 0.9327 0.9667 0.9507 0.9667 0.9490

nesta case118 ieee 0.5185 0.6245 0.7232 0.7992 0.7847 0.7302 0.8484 0.8224

nesta case162 ieee dtc 0.8799 0.8909 0.8889 0.9160 0.9596 0.9619 0.9663 0.9682

nesta case189 edin 0.5625 0.6531 0.7973 0.9123 0.9583 0.9414 0.9755 0.9403

TABLE II:
Mean Demand Survivability (K = 5)

GA_link GA_demand MILP_overload Loading Elec_between Topo_between Shortcut Random

nesta case29 edin 0.2196 0.3271 0.5568 0.5770 0.5099 0.5354 0.6321 0.5166

nesta case30 as 0.3005 0.6951 0.6395 0.8576 0.7961 0.7800 0.8780 0.8571

nesta case30 ieee 0.0688 0.1498 0.1551 0.7727 0.4439 0.8780 0.8780 0.8459

nesta case39 epri 0.4304 0.5657 0.7417 0.7783 0.8913 0.8696 0.6070 0.8800

nesta case57 ieee 0.6800 0.7538 0.6900 0.9138 0.9180 0.9375 0.9375 0.9310

nesta case73 ieee rts 0.7355 0.7663 0.8998 0.9287 0.9583 0.9507 0.9583 0.9397

nesta case118 ieee 0.4996 0.5752 0.7305 0.7835 0.7335 0.7040 0.8397 0.8273

nesta case162 ieee dtc 0.8461 0.8896 0.8751 0.9063 0.9391 0.9747 0.9626 0.9675

nesta case189 edin 0.5591 0.6202 0.7130 0.8816 0.9534 0.9087 0.9708 0.9476
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A. Summary statistics

The first high level summary of this data is given Tables II

to V (underlying raw data is available at [125]). These tables
show the mean efficacy of each attack strategy, as measured
by the post-cascade demand survivability (0 → total blackout,
1 → no effect). The attack strategies are ordered with the
most effective shown to the left, with darker, redder shading
highlighting the most worrying mean survivability value.

As expected, increasing K decreases the demand survivabil-
ity across the board: all attack strategies become more effective
as more branches are removed.

1) Computational attack strategies: The three intelligent
computational strategies are the most effective, by a wide
margin. This shows that indicators and predictors for nonlinear
phenomena like cascading failure cannot compete with direct
simulations and contextual knowledge.

The two genetic algorithm approaches have largely equiv-
alent performance, with both routinely capable of triggering
large, damaging cascades. With K = 3 or 4, a typical attack
with these strategies is potentially devastating, with half the
load in the system interrupted in many cases. Knowledge
of the system state, coupled with even crude computational
techniques, allows hugely disruptive attacks to be orchestrated,
where removing just a few exposed assets triggers widespread
damage. Recall also that the 30s time budget for these com-
putations is merely an expedient for the present research: in
practice, more computational resources could be used, and yet
more damaging attacks found.

Oddly, the genetic algorithm which minimizes the link
survivability, GA_link, achieved the lowest mean values for
demand survivability, and outperforms the strategy specifically
targeting that metric, GA_demand.

While the linear programming approach is firmly in third
place overall, it cannot compete with the (deliberately sim-
plistic) genetic algorithms which directly enumerate effective
attack strategies. Even with its tailored objective function,
the nonlinear dynamics of overload cascades pose a serious
challenge to classical optimization techniques

2) Loading attack strategy: The Loading attack here is
the fourth most damaging, and can typically interrupt perhaps
10% of system demand: its demonstrated effectiveness is con-
sistent with works such as [107]. It solely exploits contextual
knowledge of instantaneous power flow levels, and in so
doing it outperforms the topological measures. This shows
that the prevailing conditions on a power system are vital
when assessing its robustness. This also underlines the need
for simulating cascades on multiple snapshots of a system: a
system’s propensity to failure is not simply dependant on its
static topology. It also suggests that if a power system’s state
can be remotely monitored by malicious cyber intrusions, than
the system’s physical security becomes jeopardised.

3) Topological attack strategies: The three topological at-
tack strategies exhibit similarly benign performance: none
typically do much damage to a power system for the K values
considered. While the domain-specific Elec_between does
marginally the best of the three, it is still outperformed by
the simple strategy of attacking the most heavily loaded lines.
The broadly equivalent performance of Elec_between and

Topo_between cast doubt on works such as [42], which
discerned a categorical distinction between these measures.

As expected, the random attack strategy is the least effective.
4) Network specific robustness: The robustness of each net-

work varies widely: for instance, nesta_case29_edin is
rather fragile, while nesta_case162_ieee_dtc appears
quite secure. Likewise, even though nesta_case30_as and
nesta_case30_ieee are similar in connective structure
(see figure 1), their response to attacks are markedly different.

B. Effect of prevailing demand level for K = 5

The scatterplot matrix in figure 2 disaggregates the summary
statistics presented in Table IV, showing the prevailing load
level and achieved demand survivability for every snapshot
considered for the K = 5 case (space restrictions preclude
such a display for every K value)

The two leftmost columns in figure 2 again show how very
effective the metahueristic approach to branch interdiction is.
If nesta_case57_ieee is disregarded, being impregnably
robust, than nearly all other attacks on the eight other systems,
in their fifty diverse conditions, are successful. This establishes
that the mean values discussed previously are meaningful
summary statistics.

1) System loading level and robustness: While intuition may
suggest that power grids are most vulnerable when they are
most heavily loaded, this in not necessarily so. For instance,
the authors of [38] observe: “Surprisingly, this calculation
illustrates that risk can sometimes decrease as load increases.”

Certain panes in figure 2 strongly support this: consider the
nesta_case30_ieee system under the Loading attack.
Here two regimes are evident: some portion of the attacks
are ineffective, resulting in the flat green line to the top of
the pane. On the other hand, some attacks are very effective
indeed, represented by the piecewise linear red line to the
bottom of the pane. Note that the severity of attacks in
the lower regime is lessened with increasing load. None
of the fifty simulated attacks falls between these regimes.
Note also that the three smart attack strategies to the left
of (nesta_case30_ieee, Loading) are near-universally
effective at crippling this system, whereas at the four rightmost
strategies are near-universally ineffective. Only the Loading
strategy straddles these, and it does so in a curiously bimodal
way.

In no other panes is the relationship between survivability
and loadings so clearly linear, though the same general trend
can be inferred in e.g (nesta_case162_ieee_dtc,
Loading) and (nesta_case162_ieee_dtc,
MILP_overload). Conversely, the opposite trend, where
higher loadings predict lower survivability, also manifests,
for instance in (nesta_case30_as, GA_demand) and
(nesta_case30_as, MILP_overload)

There are also stepchanges in how loading affects survivabil-
ity. The clearest example here is (nesta_case189_edin,
Topo_between), where the attack strategy become suddenly
more effective when net system load exceeds ∼ 70%. A less
clearly defined regime seperation is evident in the bottom right
of (nesta_case189_edin, GA_link), where devastating
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Fig. 2: The demand survivability versus the system loading level, shown for the fifty snapshots considered for the K = 5 case



10

Fig. 3: Histograms showing how often each individual line was interdicted over the fifty snapshots of each system simulated for
the K = 5 case
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attacks become possible, though not certain, when loadings
exceed ∼ 80%. A third example of loading stepchanges is in
(nesta_case39_epri, Shortcut), where once loadings
exceed ∼ 65% all attacks become significant, though of diverse
severity.

The disaggregation in figure 2 also shows how much attack
effectiveness varies between each system snapshot simulated.
Many of the panes here show diffuse and noisy data, making
clear that each individual data point offers very limited insight
on the general robustness of a network. It is clear that a
network’s propensity to cascading failure is deeply connected
to the prevailing initial conditions, and this conclusion is
consistent with [126], which states clearly that “each cascade
is strongly and jointly influenced by the initial system state and
the trigger event.”

C. Branch selection analysis for K = 5

The barchart matrix in figure 3 complements figure 2. Each
vertical bar corresponds to a specific branch in each system,
and its height shows how often it was included as part of
a particular attack combination over the fifty simulated snap-
shots. Three of the strategies considered are static and topology
based, and do not vary between snapshots, so these panes are
of limited interest. Likewise, the Random column to the far
right simply approximates a uniform distribution, as expected.
The four leftmost columns are of most interest, as they offer
insights on whether consistently effective attack strategies
make repeated use of certain branches when attacking systems
under fluctuating conditions.

1) Specific branch vulnerability: Do certain branches always
form promising attack vectors, even as system conditions
change? There does not appear to be universal answer to this
question. For instance, the systems nesta_case30_as and
nesta_case30_ieee appear to have consistently vulnera-
ble branches: note the strong peaks evident in the leftmost four
histograms for these systems. However, each attack strategy
seems to have its own particular set of favoured selections
here.

This is not the case for other systems. For instance,
the highly effective (per Table IV) GA_link attack against
nesta_case189_edin selects over a wide gamut of
branches, to interdict as circumstances dictate. The flatness
of this pane makes clear that no branches in this system have
any innate vulnerability: rather, their attractiveness as attack
targets is a function of the prevailing conditions.

VI. CONCLUSION

This work used a simplified cascading failure model to as-
sess how electrical grids might fare against attacks deliberately
orchestrated against their branches. Contextual, topological
and computational techniques were deployed to select which
branches to attack. Some clear trends emerged:

Untuned, generic metaheuristic algorithms, with just a short
computational time permitted, can find consistently damaging
branch interdiction strategies. If the system state is known, and
five branches can be removed from service, than most electrical
grids will sustain serious damage most of the time. While

mathematical optimization can also find promising branches
to attack, the formulation used in the present work was
outperformed by the simple metaheuristics. As only limited
computational time was made available to compute these
attacks, and as the attack simulations only considered simple
overload cascade dynamics, it is likely that metaheuristic based
attacks would be yet more effective in reality.

Attack strategies which exploit knowledge of the instanta-
neous state of the power system substantially outperform static
topological measures from the complex network literature,
even where such measures incorporate some electrical flavour.
It appears that the robustness of electric power systems varies
widely depending on the prevailing conditions.

The effective attack strategies selected widely from the
available branches depending on the prevailing system con-
ditions. This speaks against the idea of particular branches
having innate criticality for the system’s integrity.

Most attack strategies on most systems showed diverse
performance as the system state changed: one instantaneous
snapshot of a system is therefore inadequate for drawing
general conclusions on its robustness.
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