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Abstract

Background: RNA-Seq exploits the rapid generation of gigabases of sequence data by Massively Parallel Nucleotide 

Sequencing, allowing for the mapping and digital quantification of whole transcriptomes. Whilst previous comparisons 

between RNA-Seq and microarrays have been performed at the level of gene expression, in this study we adopt a more 

fine-grained approach. Using RNA samples from a normal human breast epithelial cell line (MCF-10a) and a breast 

cancer cell line (MCF-7), we present a comprehensive comparison between RNA-Seq data generated on the Applied 

Biosystems SOLiD platform and data from Affymetrix Exon 1.0ST arrays. The use of Exon arrays makes it possible to 

assess the performance of RNA-Seq in two key areas: detection of expression at the granularity of individual exons, and 

discovery of transcription outside annotated loci.

Results: We found a high degree of correspondence between the two platforms in terms of exon-level fold changes 

and detection. For example, over 80% of exons detected as expressed in RNA-Seq were also detected on the Exon 

array, and 91% of exons flagged as changing from Absent to Present on at least one platform had fold-changes in the 

same direction. The greatest detection correspondence was seen when the read count threshold at which to flag 

exons Absent in the SOLiD data was set to t<1 suggesting that the background error rate is extremely low in RNA-Seq. 

We also found RNA-Seq more sensitive to detecting differentially expressed exons than the Exon array, reflecting the 

wider dynamic range achievable on the SOLiD platform. In addition, we find significant evidence of novel protein 

coding regions outside known exons, 93% of which map to Exon array probesets, and are able to infer the presence of 

thousands of novel transcripts through the detection of previously unreported exon-exon junctions.

Conclusions: By focusing on exon-level expression, we present the most fine-grained comparison between RNA-Seq 

and microarrays to date. Overall, our study demonstrates that data from a SOLiD RNA-Seq experiment are sufficient to 

generate results comparable to those produced from Affymetrix Exon arrays, even using only a single replicate from 

each platform, and when presented with a large genome.

Background
RNA-Seq technology

Massively Parallel Nucleotide Sequencing (MPNS) allows

the rapid generation of gigabases of sequence data at a

relatively low cost per residue. A variety of platforms

exist, but all rely on the generation of a large number of

relatively short sequences, known as 'tags' or 'reads' that

can then be aligned to a target database, or assembled de

novo into contiguous sequences. In many MPNS experi-

ments, it is possible to treat the set of reads generated

during a sequencing run as an unbiased sampling of the

total nucleotide complement of the cells, making it possi-

ble to use the number of reads aligning to a given locus as

an estimate of its abundance. A major application that

depends on this is RNA-Seq [1-7]. Here, the proportion

of reads matching a given transcript is used as a measure

of its expression level.

Unlike hybridization-based techniques such as qPCR

or microarrays, RNA-Seq does not rely on pre-deter-

mined probes designed against known target sequences,

allowing it to be used to search for novel transcription at
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previously uncharacterized loci. Although this can be

achieved successfully using tiling arrays, microarrays can

suffer from binding affinity constraints that make it diffi-

cult to design reliable probes targeted at certain

sequences, rendering parts of the genome inaccessible

[8]. In addition, recent research has revealed extensive

amounts of alternative splicing in the human genome [9],

leading to the prediction that there are many novel tran-

scripts arising from uncharacterized splicing events, and/

or the incorporation of additional exons up- and down-

stream of a given gene. By seeking reads that cross exon-

exon boundaries, MPNS can be used to identify novel

arrangements of exons, and thus, novel transcripts [10].

Although powerful, RNA-Seq is not without challenges,

and many of the computational caveats that apply to

microarray analysis are equally applicable, including an

inability to distinguish between loci with 100% sequence

similarity, and a dependence on appropriate algorithms,

statistics and annotation tools to support the data analy-

sis [11,12]. Critical to the approach is the need to gener-

ate sufficient reads to cover each locus at sufficient depth

to give reliable estimates of expression. This can be signif-

icantly more than might be expected because the

approach relies on random sampling of the fragmented

transcriptome. The wide dynamic range of transcription

data means that a relatively small number of highly

expressed loci can account for the majority of the reads in

the study (in the data that follows, for example, 50% of the

exonic reads map to less than 1% of exons in MCF-10a).

Affymetrix Human Exon 1.0ST arrays

Affymetrix Exon arrays are currently the most dense

arrays designed specifically for profiling gene expression

[13]. They feature approximately 1.2 million probesets

that aim to target every known and predicted exon in the

entire genome, supporting the detection of alternative

splicing events [14,15]. Each probeset consists of up to

four probes targeting a defined probe selection region

(PSR). A PSR can correspond to an exon supported either

by RefSeq mRNA evidence, Expressed Sequence Tag

(EST) evidence or purely computational predictions.

Approximately 50% of probesets target loci outside

Ensembl-defined protein coding exons, allowing Exon

arrays to detect transcription outside well-characterized

loci [16]. In this respect, they share some of the potential

advantages of RNA-Sequencing platforms.

Objectives

Several recent studies have compared gene expression

microarrays with RNA-Seq using both human [6,17] and

mouse [5,7,18] samples, reporting good correspondence

between gene expression and fold changes, and higher

gene detection rates in RNA-Seq than on an array. In this

study, we adopt a more fine-grained approach by compar-

ing RNA-Seq data from an Applied Biosystems (AB)

SOLiD v3 platform to exon-level microarray data pro-

duced using Affymetrix Human Exon 1.0ST arrays.

Unlike the previous studies above, the use of Exon arrays

makes it possible to assess the performance of RNA-Seq

in two key areas: detection of expression at the granular-

ity of individual exons, and discovery of transcription

outside annotated loci. In addition, we leverage the Exon

array data to assess the level of technical background

present in our RNA-Seq dataset, the influence of reads

that map to multiple genomic loci, and to define the fold

change threshold used to call differentially expressed

exons. As such, we do not treat the Exon arrays as a gold

standard but simply as a reliable source of an unknown

and independent set of true positives with which to com-

pare RNA-Seq.

Results and Discussion
Datasets

RNA from two cell lines, MCF-7, a breast cancer line, and

MCF-10a, a normal epithelial line, was used in this study.

One sample from MCF-10a and two technical replicates

from MCF-7 (labelled MCF-7_r1 and MCF-7_r2) were

analysed on the SOLiD platform (see Methods), and the

same RNA samples hybridised in triplicate to Affymetrix

Exon 1.0ST arrays, as previously described [19]. MCF-7 is

an abnormal and heterogeneous cell-line. Consequently,

sequence differences between its genome and that of the

reference used to design the arrays may result in some

probes failing to hybridise to their target sequence. How-

ever, both MCF-10a and MCF-7 achieve similar probeset

detection rates. These are significantly above the QC

thresholds recommended by the manufacturer, and well

within the bounds that are typical for cell line microarray

data. A low detection rate, which would be indicative of a

substantial number of probesets failing to hybridize suc-

cessfully (as would be expected if genetic instability was a

significant confounding factor), was not observed. Fur-

thermore, similar effects would also cause issues with the

RNA-Seq data, since SNPs and polymorphisms will result

in increased error rates during alignment. Therefore, it is

unlikely that the genomic complexity of MCF-7 would

have a significant effect on these data.

Variability between RNA-Seq replicates was low; high

correspondence was observed at both the exon (r = 0.87;

Additional File 1: Supplementary Figure S1A) and gene

expression levels (r = 0.92; Additional File 1: Supplemen-

tary Figure S1B). For cross platform correspondence, the

Exon array replicate from each cell line with the largest

proportion of detected probesets was selected, together

with the RNA-Seq MCF-7 replicate having the highest

number of reads (MCF-7_r1).
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50 base reads were aligned to NCBI build 36 of the

human genome allowing 6 mismatches per read. Unless

otherwise stated, reads that matched to multiple loci

were removed. Table 1 summarizes the read counts

obtained from each of the sequencing runs. A total of

28,371,318 reads from MCF-10a and 28,882,179 from

MCF-7_r1 mapped uniquely to the genome. 77%

(21,709,397) of these mapped to an Ensembl known tran-

script [20] in MCF-10a and 76% (22,031,344) in MCF-

7_r1, and of these 74% (15,996,190) and 79% (17,439,762)

respectively mapped to a known exon (Figure 1). Overall,

85% (24,159,893) of reads in MCF-10a, and 83%

(23,988,482) in MCF-7_r1 mapped to annotated loci that

included known transcripts, Ensembl Genscan predic-

tions, ESTs, and sequences between the 5'- and 3'-most

probes within each probeset. Over half of all known

exons in both cell lines (58%; 168,678/291,229 in MCF-

10a, and 59%; 170,721/291,229 in MCF-7) featured at

least one matching read.

Determination of background

Estimates of transcript abundance on Exon arrays can be

affected by biases due to cross hybridisation as a result of

probes hybridising to off-target transcripts [8,21]. Like-

wise, RNA-Seq can suffer from reads that align to incor-

rect loci due to sequencing errors, or differences between

the reference sequence and that of the genome under

study. In this work, we define these reads as "back-

ground". In order to quantify background in our RNA-

Seq data, we carried out two analyses. First we considered

genes on the Y chromosome, and secondly, we compared

exon detection on the SOLiD platform with Present/

Absent calls on the Exon Array.

Expression levels on the Y chromosome

Due to its absence in female samples, no RNA should

originate from the Y chromosome in MCF-10a and MCF-

7; any reads uniquely mapping here should therefore be

due to technical artefacts. We therefore measured the

proportion of exons targeted by at least one read in both

MCF-10a and MCF-7. To account for pseudo-autosomal

regions where the probability of mapping a read unam-

biguously is reduced, we only considered exons whose

length exceeded 100 bases after subtracting the number

of non-unique loci (see Methods) found within that exon.

This reduced the total number of exons under consider-

ation by 36% from 1835 to 1178. Only three (0.25%) of

these exons on the Y chromosome in MCF-10a and six

(0.51%) exons in MCF-7 were targeted by at least one

mappable read. Four of these exons from both cell lines

Table 1: Summary of read counts across different genomic locations.

MCF-10a MCF-7_r1 MCF-7_r2

Total 286,197,907 302,129,896 150,762,975

After error filtering 173,966,873 205,050,087 113,512,672

Mappable 47,524,622 46,330,340 33,697,119

Uniquely mappable 28,371,318 28,882,179 22,223,910

Location

Ensembl known

Total 21,709,397 22,031,344 16,980,001

Exon 15,996,190 17,439,762 12,800,399

Intron 5,713,207 4,591,582 4,179,602

All annotation1 24,037,188 23,854,633 18,830,788

Exon Junctions

Known 1,010,785 1,225,448 -

Putative 16,548 23,540 -

1Known, predicted and EST transcripts

Figure 1 Read locations. The proportion of unique reads in (A) MCF-

10a and (B) MCF-7, mapping to four genomic locations: known exons 

and introns, as defined by Ensembl, other annotated regions including 

ESTs, Genscan predictions and Exon array probe selection regions, and 

un-annotated regions.
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were mapped to by more than one read, all of which

derived from two genes (USP9Y and NLGN4Y) with high

sequence identity to corresponding genes (USP9X and

NLGN4X) on the X chromosome. Supplementary Figure

S2 (Additional File 1) shows that the number of exons

expressed on the Y chromosome was significantly lower

than on all other chromosomes. For example, on the X

chromosome, which had the second lowest proportion of

expressed exons, over 50% of exons in both MCF-10a and

MCF-7 were targeted by at least one mappable read.

Exploiting Present/Absent calls on the Exon array

On Exon arrays, probesets with signals separable from

background can be flagged Present (P), or Absent (A)

using the Detection Above Background (DABG) score

[22], which estimates the probability that a probeset's sig-

nal is similar to the general background distribution. The

DABG score is calculated by comparing each probe to a

GC-content matched reference pool of background

probes, and combining these data across the probeset to

yield a final p-value. Any probeset with a p-value below a

pre-defined threshold is flagged Present.

In order to further assess background level in the RNA-

Seq data, we compared P/A calls for the 155,016 exons

targeted by a single probeset on the Exon array with P/A

calls for the same exons on the SOLiD platform, where an

exon was defined as Present if the number of reads map-

ping to it was greater than a threshold t. Since such a

comparison is dependent on the detection threshold used

for each platform, we took an unbiased approach in

which read count and DABG thresholds were varied

independently (Figure 2A). At each combination of

expression level and DABG threshold, we calculated a

correspondence score (CS; see Methods). We initially

considered three DABG p-value cut-offs of 0.1, 0.05 and

0.01 and found that CS was maximal (0.67) at a read

count greater than zero and DABG threshold of 0.01 in

MCF-10a (Figure 2A). For MCF-7, significant correspon-

dence (CS = 0.64) was also seen at these thresholds. At

this read count and DABG threshold in MCF-10a, 87%

(83,133) of the exons called Present on the Exon array

were also called Present using the RNA-Seq data, and

81% (47,925) of the exons called Absent on the array were

also flagged Absent on SOLiD (Figure 2B). We observed

similar results in MCF-7, suggesting that the genetic

instability of this cell line had little impact on detection

rates in both RNA-Seq and on the array: 86% (82,438) of

exons present on the Exon array were Present on SOLiD,

and 78% (45,879) of exons Absent on the Exon array were

also Absent on SOLiD. Furthermore, exons detected

solely by RNA-Seq tended to have a low level of expres-

sion in both cell lines (Additional File 1: Supplementary

Figures S3A and S3B).

We also considered a fourth, more stringent DABG p-

value cut-off of 0.001 at which detection correspondence

was generally higher than at the other DABG thresholds

(Figure 2A). However, at a read count threshold of zero,

CS increased only marginally by 0.002 in MCF-10a from a

DABG cut-off of 0.01 to 0.001, and decreased in MCF-7,

thus failing to compensate for the significant reduction of

probesets called Present on the Exon array (14,833 in

MCF-10a and 16,049 in MCF-7). We also observed that

the maximum CS was achieved in both cell lines at a read

count threshold of one. This result was expected since the

majority (58%; 5424/9301) of exons in MCF-10a with a

single mappable read were called Absent on the array at

this DABG cut-off, compared with only 42% (3885/9301)

at a cut-off of 0.01, thus the read count threshold achiev-

ing maximal CS increases to account for this.

In addition, we also performed the same analysis with

normalised expression values calculated using Equation

2. Supplementary Figure S4 (Additional File 1) shows

similar trends to Figure 2A with the optimal correspon-

dence (with a DABG cut-off of 0.01) occurring at a norm-

alised expression value of 0.3.

Taken together with the low number of reads mapping

to the Y chromosome, these data suggest that the back-

ground error rate is extremely low in RNA-Seq data. We

therefore chose t < 1 as the read count threshold at which

to flag exons Absent in the SOLiD data. In addition, our

results confirm that a DABG cut-off at 0.01 is a sensible

choice to call probesets Present/Absent on the Exon

array.

Expression level and fold change correspondence

Given the differences between the platforms and the pro-

tocols used to prepare their samples, it is perhaps unrea-

sonable to expect significant correlation between their

raw expression levels, although we did see some correla-

tion (r = 0.55, MCF-10a; r = 0.53, MCF-7) for those exons

flagged Present on both platforms (Additional File 1: Sup-

plementary Figures S5A and S5B respectively). However,

fold changes should be consistent across platforms, par-

ticularly for features that have sufficient signal to noise

ratio to yield a reliable fold-change in both arms of the

study. Fold changes between the log2 exon expression lev-

els from MCF-7 and MCF-10a were calculated indepen-

dently for the Exon array and SOLiD platform, and then

compared (Figure 2C). Note that, to avoid taking logs of

zero (a situation that arises in exons without a mappable

read), we added a small constant (0.0001) to all norma-

lised expression levels calculated using Equation 2. This

results in the appearance of three clusters of data in Fig-

ure 2C: the uppermost cluster in which the majority of

data are a result of Absent (zero count) to Present fold

changes in RNA-Seq, the lowermost cluster resulting

from Present to Absent fold changes, and a middle cluster



Bradford et al. BMC Genomics 2010, 11:282

http://www.biomedcentral.com/1471-2164/11/282

Page 5 of 12

that includes both Present-Present and Absent-Absent

fold changes. Fold changes showed good correspondence

(r = 0.59) between platforms when data points featuring

at least one Absent-flagged sample were removed (i.e.

after eliminating comparisons involving data points with

poor signal-noise ratio, essentially all data except the red

points of Figure 2C). The majority (91%; 7077/7757) of

exons flagged as changing from Absent to Present on at

least one platform had fold-changes in the same direc-

tion, but with different magnitudes. This is to be

expected since Absent-flagged exons are likely to have

poor signal to noise ratio, and thus unstable ratios. Those

flagged Absent in both cell lines in at least one platform

showed least correspondence.

Figure 2 Correspondence between RNA-Seq and Exon arrays. (A) Determination of the read count threshold giving optimum correspondence 

between both platforms with respect to Present/Absent calls. (B) Present/Absent call correspondence at a read count threshold of zero in RNA-Seq 

and a DABG score threshold of 0.01 on the array. (C) Comparison of fold changes between RNA-Seq and the array. Red dots indicate exons flagged as 

Present (P) in both samples and on both platforms (PP->PP). Grey dots indicate exons flagged as Absent (A) in at least one sample on both platforms 

(AA->AA, PA->PA, AP->AP, PA-AP, AP->PA, AA->PA, AA->AP, PA->AA, AP->AA). Note that, due to the density of the data, some grey points represent-

ing exons Absent in both RNA-Seq samples (zero fold change) are masked by other colours. Blue dots indicate exons Absent in at least one RNA-Seq 

sample but flagged Present in both array samples (PA->PP, AA->PP, AP->PP), and green dots represent exons Present in both samples in RNA-Seq but 

flagged Absent in at least one sample on the array (PP->PA, PP->AA, PP->AP). (D) Overlap between numbers of exons called differentially expressed 

by the array and RNA-Seq using (Left) a log2 fold change threshold of 2.0 on the array and 3.0 in RNA-Seq (left) and a LIMMA p-value threshold of 1 × 

10-4 on the array and an Audic-Claverie p-value threshold of 1 × 10-7 in RNA-Seq (right). These thresholds lead to the greatest equivalence between 

platforms using an overlap metric based on the CS (Equation 2).
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Effect of removing multiple-targeting reads

In these analyses, we removed reads that target multiple

loci. A consequence of this is that paralogous genes with

regions of 100% sequence identity greater than or equal

to the read length may be under-counted, since reads will

not be reported at these sites. Since this might result in

loss of sensitivity for these exons on the RNA-Seq plat-

form, we repeated the above analysis using both unique

and multi-targeting reads. All locations targeted by a read

were considered, for example, if a read targeted two dif-

ferent transcripts then the read counts of both transcripts

would increase by one. As expected, the proportion of

exons from MCF-10a flagged Present on both SOLiD and

the Exon array increased by 2% from 87% (83133) to 89%

(85238), but at a cost of 2297/59045 (4%) exons called

Present on SOLiD but Absent on the Exon array. A slight

reduction in expression level correspondence from r =

0.54 to r = 0.51 was also seen in MCF-10a. Thus, the

indiscriminate addition of reads that target multiple loci

results in reduced correspondence between the two plat-

forms. In addition, hits to the Y chromosome also

increased with 426/1834 (23%) exons in MCF-10a and

399/1834 (22%) exons in MCF-7 having at least one map-

pable read.

Differential expression

A key application of RNA profiling technology is the abil-

ity to reliably call differential expression for well-charac-

terized protein coding exons. Unlike microarrays,

approaches for identifying differential expression in

RNA-Seq data are in their early stages of development,

particularly those that can process only one RNA-Seq

replicate per condition (a situation that is, at least in the

short-term, likely to arise frequently, given the current

high cost of the approach). In this study, we chose two

measures of differential expression for the RNA-Seq

experiment: fold-change and the Poisson-based approach

of Audic-Claverie (AC) [23]. For all microarray compari-

sons, triplicate exon array data were used, and differential

expression was found using LIMMA [24,25].

Our goal was to find a combination of thresholds from

each differential expression measure that maximises cor-

respondence between the RNA-Seq and Exon array data

sets. To do this, we examined the set difference and inter-

section between the exons called differentially expressed

by each platform. The approach assumes that each plat-

form will generate its own independent set of false posi-

tives and negatives, and that although these will result in

less than perfect correspondence, the intersection, which

represents the consensus between both platforms, will be

enriched for true positives. We used CS (Equation 3) as a

metric, as before. Note that by trying to maximise the

correspondence between platforms, we are not treating

the exon arrays as a gold standard but simply as a reliable

source of an unknown and independent set of true posi-

tives against which to try to maximise the overlap.

Thresholds were varied independently for each plat-

form, and CS calculated (Additional File 1: Supplemen-

tary Figures S6A and S6B). The threshold-pair where CS

was maximal was taken as the point at which to perform

comparisons. We found that the highest correspondence

between platforms (CS = 0.49) occurred with a higher

log2 fold change threshold in RNA-Seq (3.0) than the

arrays (2.0; Additional File 1: Supplementary Figure S6A),

suggesting that the SOLiD platform tends to report

higher fold-changes. This is to be expected, since the

lower background (essentially zero) will result in less

fold-change compression (due to the presence of a con-

stant background value in the numerator and denomina-

tor of the ratio calculation). The distribution of fold

changes on the SOLiD platform versus the Exon array is

shown in Supplementary Figure S7 (Additional File 1). At

these thresholds, 6897 exons were called differentially

expressed on both platforms, 2422 exons were called dif-

ferentially expressed on the Exon array only, and 9255

exclusively on SOLiD (Figure 2D).

When statistical measures were considered, the great-

est correspondence (CS = 0.28) was seen at a p-value of 1

× 10-7 on SOLiD and 1 × 10-5 on the Exon array (Addi-

tional File 1: Supplementary Figure S6B), although given

the different methods of deriving the p-values it is diffi-

cult to compare the AC threshold with LIMMA directly.

Nevertheless, at these thresholds, 6664 exons were called

differentially expressed in RNA-Seq only, compared to

3709 on the Exon array, with 2748 exons called differen-

tially expressed on both platforms, further suggesting

that the SOLiD platform is more sensitive to calling dif-

ferential expression than the Exon array (Figure 2D). See

also Supplementary Figure S8 (Additional File 1), which

compares the p-values calculated by LIMMA and AC

back transformed to quantiles on a normal distribution

and signed by the direction of the fold change, making the

differences in the tails of the population particularly

apparent.

Length bias with the AC measure

Many of the statistical tests thus far applied to RNA-Seq

data suffer from length bias [26]. Length bias is expected

under a uniform sampling assumption. Consequently, if

differences in transcript length are not adequately

accounted for, there will be more power to detect differ-

ences in expression for longer transcripts. Simply divid-

ing read counts by exon length does not correct for this

[26], and the use of AC would then be inappropriate since

the data would no longer be Poisson-distributed. To

determine the extent of length bias at the exon level, we

binned exons by length and calculated the proportion

called differentially expressed in each bin for both the
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SOLiD and the Exon array data, using the fold change and

AC thresholds at which CS is maximal determined in the

previous section. 11% (9412/82821) of all exons in the

RNA-Seq data were called differentially expressed using

AC. When data were stratified by length, 22% (1489/

6755) of exons in the upper quartile (> 239 bases), and 6%

(1326/23750) in the lower quartile (< 119 bases; Addi-

tional File 1: Supplementary Figure S9A) were found to be

differentially expressed. On the Exon array, 8% (6457/

82821) of all exons were called differentially expressed

using LIMMA compared to 9% (591/6755) of those in the

upper quartile, and 7% (1699/23750) in the lower. Thus,

the expected length bias when using AC was observed in

the RNA-Seq data but not the Exon array dataset. No

length bias was seen when fold change was used to define

differential expression (Additional File 1: Supplementary

Figure S9B).

Differential expression using edgeR

Recently, a new differential expression calling algorithm,

edgeR [27], has been proposed, which models count data

using a negative binomial model that can be regarded as

an over-dispersed Poisson model. To calculate differential

expression, edgeR requires only a pair of replicates in one

condition, allowing its use with the single MCF-10a sam-

ple and two MCF-7 replicates of this study. Thus it pro-

vides a useful comparison with the AC measure that uses

only a single sample from each condition. Like the AC

measure, edgeR does not normalise counts for exon

length although total read numbers in each sample are

considered (Equation 5).

Supplementary Figure S10A (Additional File 1) is anal-

ogous to Figure 2C in showing fold change correspon-

dence between RNA-Seq and the Exon array. However, in

this case fold changes in RNA-Seq are calculated by

edgeR (using both MCF-7 replicates) and on the Exon

array by LIMMA (using all three replicates from both cell

lines). As expected, with the additional information pro-

vided by the replicates, correspondence between fold

changes increased significantly from r = 0.59 to r = 0.71

when data points featuring at least one Absent-flagged

exon were removed. As before, we assessed differential

expression calls at various combinations of fold change

thresholds in RNA-Seq and on the Exon array, and again

found the highest correspondence between platforms (CS

= 0.51) at a log2 fold change threshold of 3.0 in RNA-Seq

and 2.0 on the arrays (Additional File 1: Supplementary

Figure S10B). At these thresholds 6939 exons were called

differentially expressed on both platforms, 2555 exons

were called differentially expressed on the Exon array

only, and 8373 exclusively in RNA-Seq (Additional File 1:

Supplementary Figure S10C).

An increase in p-value correlation between RNA-Seq

and the Exon array was also observed with edgeR (r =

0.68; Additional File 1: Supplementary Figure S10D) com-

pared to AC (r = 0.56; Additional File 1: Supplementary

Figure S8). At a p-value threshold of 0.001 on RNA-Seq

and 0.00001 on the Exon array, maximal differential call

correspondence was reached (CS = 0.48; Additional File

1: Supplementary Figure S10E), with 3221 exons called

differentially expressed on both platforms, 2762 exons

called differentially expressed in RNA-Seq only, and 3308

exons called differentially expressed solely on the Exon

array (Additional File 1: Supplementary Figure S10F).

Whilst it is difficult make direct comparisons between

their p-values, the lower p-value required to achieve max-

imal correspondence with edgeR compared to AC sug-

gests that edgeR, used with the parameters given in

Methods, is more conservative in its differential expres-

sion calls.

As with AC, some bias towards calling differential

expression in longer exons was evident. Employing the

same procedure as before and using thresholds of 0.001

on RNA-Seq and 0.00001 on the Exon array, 7% (5983/

83896) of all exons in the RNA-Seq data were called dif-

ferentially expressed using edgeR. When data were strati-

fied by length, 13% (865/6709) of exons in the upper

quartile (> 239 bases), and 4% (918/23762) in the lower

quartile (< 119 bases; Additional File 1: Supplementary

Figure S11) were found to be differentially expressed.

Identification of known and novel splicing events

An advantage of RNA-Seq is the opportunity to charac-

terize splicing events by seeking reads that span exon-

exon junctions [6,28]. An additional 1,010,785 and

1,225,448 reads mapped in the sense orientation to our

data set of 263,574 known exon-exon junctions in MCF-

10a and MCF-7 respectively (only 0.01% of hits mapped

in the antisense direction in both cell lines). As a result,

31% of junctions in both MCF-10a (80,756) and MCF-7

(82,708) were confirmed by at least one unique read. The

majority (67,558) of junctions seen in MCF-10a were also

seen in MCF-7.

Accounting for exon-junction reads increased detec-

tion call correspondence between RNA-Seq and Exon

arrays across both cell lines. CS increased from 0.67 to

0.69 in MCF-10a, and from 0.64 to 0.65 in MCF-7. This

equated to an extra 3178 and 3470 exons called present

on both SOLiD and the Exon array in MCF-10a and

MCF-7 respectively, at the expense of only 1861 and 2076

additional exons called present on SOLiD but absent on

the Exon array.

In order to detect novel splice events, searches were

performed against a database of 5,172,880 putative exon-

exon junctions generated by permuting known exon

sequences within each gene (see Methods). A further

16,548 reads in MCF-10a and 23,540 in MCF-7 mapped

to this dataset, capturing 11,725 and 16,850 novel junc-
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tions respectively (1,795 in both cell lines). The majority

of these junctions (9,702 in MCF-10a and 13,613 in MCF-

7) were mapped by a single read, which suggests they rep-

resent rare splicing events. 72 high confidence novel

splice junctions in MCF-10a and 129 in MCF-7 were

mapped to by at least five unique reads with more than

one start site and overlapping the junction by at least 12

nucleotides. Of these, 25 were found in both cell lines. A

list of the high confidence junctions is given as Supple-

mentary Table S1 (Additional File 2).

Identification of novel loci of transcription

Given that 15% and 17% of reads in MCF-10a and MCF-7

respectively mapped to regions on the genome that are

currently un-annotated, we performed a systematic

search to identify which of these regions are likely to rep-

resent novel loci of transcription, focusing in particular

on putative novel exons. To do this, we first grouped

reads into clusters by seeking sets of overlapping reads,

and then merging adjacent clusters separated by 50 bases.

2,061,888 and 1,840,985 such clusters were found in

MCF-10a and MCF-7 respectively. These were then

labelled exonic (if at least one of their nucleotides was

part of a known exon), intronic, predicted exonic (if over-

lapping a Genscan predicted or EST exon) or predicted

intronic. Those that remained were classed as intergenic.

Discovery of putative novel exons with RNA-Seq

Given the low levels of background observed in these

data, it is clear that the majority of these read clusters,

regardless of location, are indicative of real transcription.

This concurs with other studies that have found as much

as 90% of the human genome to be transcribed [9]. How-

ever, not all of these regions will represent protein-coding

mRNA. To identify these, we first sought read clusters

that had expression levels similar to those of existing

exons, and then attempted to find additional functional

validation by using Pfam [29] to search these sequences

against a database of candidate protein domains.

Using the number of reads contributing to a cluster to

indicate the expression level of that locus, we determined

an expression level cut-off for calling novel exons. This

was achieved by using known exonic and intronic read

clusters to define a threshold that maximised the CS

score in Equation 3. We found that a read count of 19 in

MCF-10a and 16 in MCF-7 gave predictions that most

closely matched the existing gene annotation (Additional

File 1: Supplementary Figure S12). 29,508 and 27,008 read

clusters, not previously labelled exonic or predicted

exonic, exceeded the thresholds in MCF-10a and MCF-7

respectively. Whilst the majority of these were part of

known introns (21,574 in MCF-10a and 19,248 in MCF-

7), 4449 (15%) and 4900 (18%) were found in intergenic

regions of MCF-10a and MCF-7 respectively. The

remainder (3485 in MCF-10a and 2860 in MCF-7)

resided in predicted introns.

We chose to focus on the intergenic read clusters for

the domain analysis. Prior to this step, we removed read

clusters in the bottom quartile (<120 base pairs) of the

known exon length distribution, and translated the nucle-

otide sequence corresponding to each of the remaining

read clusters in all three reading frames. Any clusters

containing a stop codon were removed. The remaining

putative protein sequences (120 from MCF-10a and 173

from MCF-7) were scanned for Pfam domains. A total of

28 read clusters contained either a full or partial Pfam

domain: 16 in MCF-10a and 12 in MCF-7, and of these 8

were found at similar loci in both cell lines (Additional

File 1: Supplementary Table S2).

Comparison with Exon arrays

Affymetrix Exon arrays feature many probesets targeting

loci with relatively weak evidence for transcription;

approximately 50% target outside the core Ensembl exon

annotations. We compared the loci predicted from the

RNA-Seq data, with the locations of these non-core

probesets. Of the 4449 intergenic read clusters in MCF-

10a exceeding the read-count cut-off, 2664 (60%) over-

lapped with a probeset target region extended by 300

nucleotides at either end. Of these probesets, 92% (2462/

2664) were called Present. Likewise in MCF-7, 62%

(3038/4900) of read clusters were located at or near a

probeset selection region, and of these, 91% (2767/3038)

were called Present. In general, we found that as the read

count of a cluster increased, the probability of finding a

neighbouring probeset also increased, and that probeset

was more likely to be called Present (Additional File 1:

Supplementary Figure S13). When domain filtering is

included, 26 of the 28 read clusters (93%) in Supplemen-

tary Table S2 (Additional File 1) map to or near probesets,

of which 16 were called Present. This compares favour-

ably with the overlap observed for the core annotations.

Conclusions
The success of a transcript-profiling platform depends on

a number of technical constraints, including sensitivity

and selectivity, its coverage, and its accuracy. These must

be balanced against more pragmatic considerations that

include cost, throughput and ease of data-analysis. Unlike

array-based technologies, the sensitivity and accuracy of

RNA-Seq is highly dependent on having significant reads

to cover the genome with enough detail to provide valid

data for low-abundance transcripts.

In this study we show that data from a SOLiD RNA-Seq

experiment is sufficient to generate results comparable to

those produced from Affymetrix Exon arrays, even using

only a single replicate from each platform, and when pre-

sented with a large genome. In part, this is achievable
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only because the RNA-Seq protocols used here preserved

'strandedness' information, allowing comparisons to be

performed in the knowledge of the 5'-3' orientation of

each read. This is likely to be a pre-requisite for many

experiments. Furthermore, the consistency of results

between both cell lines reinforced our original belief that

the genomic complexity of MCF-7 has little impact on the

comparison between RNA-Seq and the Exon array. Our

main focus was at the exon level, and this, to our knowl-

edge, is the first study to present such a fine-grained com-

parison between the two platforms. In addition, it was

possible to identify a set of intergenic loci expressed at

significant levels, the majority (60%) of which match

probesets on the Exon array. Further analysis suggested

that many of them would result in the expression of

known protein-coding domains, if translated, providing

evidence that these are not simply transcriptional arte-

facts. Finally, by searching a dataset of novel exon-exon

junction sequences, we were able to identify thousands of

putative novel splicing events.

Of course, although the data presented here show sig-

nificant technical correspondence between platforms,

this does not obviate the need for replication at the bio-

logical level in order to assess the likelihood that these

changes are simply chance occurrences. Indeed, where

replicate data is available, this information is useful and

can lead to improved performance, as evidenced by the

closer correspondence achieved between the RNA-Seq

and the array data with edgeR and utilising the two MCF-

7 replicates. As technology continues to improve it is rea-

sonable to expect the number of reads generated in a sin-

gle sequencing run to increase substantially, allowing

multiple samples to be processed on a single slide and so

reducing the cost of the experiment dramatically. One

clear benefit of this would be the opportunity to include

an increased number of replicates. As this happens RNA-

Seq will become an increasingly cost-effective approach

to whole transcriptome profiling.

Methods
RNA library preparation

Two cell lines, MCF-7, a breast cancer line, and MCF-

10a, a normal epithelial line, were processed according to

manufacturer's standard protocols. Total RNA (5 μg)

from both cell lines were depleted of 18S and 28S rRNA

and 1 μg of each sample were enzymatically fragmented

using 1 unit of RNase III (Ambion) and incubating at

37°C for 10 minutes. The fragmented RNA was then size

selected using the flashPAGE™ fractionator (Ambion) to

collect RNA fragments ranging in size from ~50-150

nucleotides in length. The RNA fragments were then

ligated to adaptors, converted into cDNA and amplified

by 15 cycles of PCR using the SOLiD™ Small RNA

Expression Kit (Ambion). The PCR reactions were puri-

fied using the Qiagen Minelute PCR purification kit and

separated on a native Novex 6% TBE polyacrylamide gel

(Invitrogen) and stained with SYBR gold. PCR products

ranging in size from ~150-200 bp (corresponding to RNA

fragment insert sizes of ~60-110 nucleotides) were cut

out of the gel, the gel slices were shredded and the prod-

ucts eluted overnight and precipitated. The gel-purified

material was quantitated by nanodrop and prepared for

emulsion PCR and SOLiD sequencing.

Genome level alignments and annotation

Reads of length 50 bases originating from each sample

were first aligned to the human genome (US National

Center for Biotechnology Information (NCBI) Build 36.3)

using Applied Biosystems' SOLiD™ System Analysis Pipe-

line Tool (Corona Lite; http://solidsoftwaretools.com/gf/

project/corona/). Six mismatches were tolerated as rec-

ommended by the Corona documentation, and reads

with an expected error rate (Equation 1) greater than 6

were discarded prior to matching.

where n is the base position in the read and p repre-

sents the predicted probability that the colour call at posi-

tion n is incorrect. p is calculated from the Quality Value

(QV) of the colour call where QV = -10log10(p). Filtering

in this way removes 39% of the reads from MCF-10a, 32%

from MCF-7_r1 and 25% from MCF-7_r2, whilst retain-

ing 94%, 94% and 97% of the uniquely mappable reads

respectively.

Reads that matched multiple loci were removed from

the analysis and the resultant alignment files pre-pro-

cessed to generate 'pile-ups' against each chromosome. In

total, 47,524,622, 46,330,340 and 33,697,119 reads

(including those matching at multiple loci) were mapped

to the genome in MCF-10a, MCF-7_r1 and MCF7_r2

respectively, and of these, 28,371,318, 28,882,179 and

22,223,910 were uniquely mappable to the genome. Once

data were aligned to the genome, the BioConductor pack-

age exonmap and associated annotation database, X:Map

[16] based on Ensembl version 52, were used to group

reads according to the exons, transcripts and genes they

mapped to. These groupings were then used to inform

subsequent statistical analysis. For cross-platform corre-

spondence, we only considered exons targeted by a single

probeset; consequently 155,016 exons were used in the

comparison.

Exon-exon junctions

We anticipated that some of the reads that did not map

contiguously to the human genome would align to exon-

Expected error rate pn

n

n

  =
=

=

∑
1

50

(1)

http://solidsoftwaretools.com/gf/project/corona/
http://solidsoftwaretools.com/gf/project/corona/
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exon junctions, therefore, additional searches were per-

formed against a dataset of 263,574 known exon-exon

junctions as defined by Ensembl version 52. To ensure

that a 50 base read mapped to a splice junction, only the

last 49 bases of the first exon and the first 49 bases of the

second exon were considered (if the exon exceeded

length 49). Reads that matched to more than one junction

loci, or elsewhere on the genome were discarded, result-

ing in 1,010,785 and 1,225,448 reads mapping uniquely to

exon-exon junctions in MCF-10a and MCF-7_r1 respec-

tively.

In order to detect novel splicing events, we generated a

dataset of 5,172,880 novel splice junctions by permuting

known exons within each gene. Again, exons of length

greater than 49 bases were truncated so the length of

each exon pair never exceeded 98 nucleotides. A total of

16,548 and 23,540 reads (that had thus far not been

mapped to either the genome or a known exon-exon

junction) in MCF-10a and MCF-7 respectively mapped

to this novel splice junction dataset. Note that, unless

otherwise stated, splice junction reads were not included

in detection call correspondence or the expression level

calculation (Equation 2).

Measurement of expression level

We adapted the RPKM measure of [5] to calculate a nor-

malized expression level (E) based on the read count

across the region of interest (such as an exon):

where S is the number of reads mapping to the region, L

is the region length, U is the number of non-unique loci

across the exon (see below), T corresponds to the total

number of uniquely mappable reads in each cell line, and

C is a constant set to 1 × 109 in this study. To avoid taking

logs of zero, we added a small constant (0.0001) to all nor-

malised expression levels.

Correspondence Score

To measure Present/Absent correspondence between

RNA-Seq and Exon array technologies we used a modi-

fied version of the Matthew's Correlation Coefficient [30]

to calculate a correspondence score, CS:

where A indicates the number of exons Present on both

platforms, B indicates the number of exons Absent on

both platforms, C indicates the number of exons Present

in the RNA-Seq data but Absent on the Exon array, and D

indicates the number of exons Absent in RNA-Seq but

Present on the Exon array. A CS of -1 means that all exons

called Present in RNA-Seq are called Absent on the Exon

array and vice versa, a CS of zero means that correspon-

dence is no better than random, and a CS of 1 indicates

perfect correspondence.

We also use Equation 3 to measure correspondence

between sets of exons called differentially expressed in

RNA-Seq versus the Exon array at different thresholds. In

this case, A indicates the number of exons called differen-

tially expressed on both platforms, B indicates the num-

ber of exons called unchanging on both platforms, C

represents the number of exons called differentially

expressed in the RNA-Seq data but not the Exon array

and D represents the number of exons called unchanging

in RNA-Seq but differentially expressed on the Exon

array.

Likewise, to identify the optimal threshold (t) for defin-

ing exonic read clusters, we adapted Equation 3 so that A

represents the number of exonic read clusters achieving a

read count greater than t, B indicates the number of

intronic read clusters achieving a read count less than t, C

indicates the number of exonic read clusters achieving a

read count less than t, and D indicates the number of

intronic read clusters achieving a read count greater than

t.

Statistical tests for differential expression

Audic-Claverie

The statistical test of Audic-Claverie [23] was used to

define exon differential expression between the two cell

lines. Audic-Claverie is a model based on Poisson statis-

tics, and has been previously applied to SAGE [31] and

RNA-Seq [6] expression data. The statistic is calculated

according Equation 3.

where x indicates the number of reads across an exon in

MCF-10a, y indicates the number of reads across the cor-

responding exon in MCF-7, and N1 and N2 represent the

total numbers of unique reads in MCF-10a and MCF-7

respectively. In this case, the p-value indicates the proba-

bility of obtaining y counts in MCF-7 given x counts in

MCF-10a.
edgeR

A recently published Bioconductor [32] package, edgeR

[27], was also used to measure exon differential expres-

sion between the two cell lines. It models count data as

negative binomial (NB) distributed (Equation 5), and

E C
S
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=
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employs an empirical Bayes procedure to moderate the

degree of over-dispersion across the exons.

for exon e and sample i, and where Mi is the library size,

ϕg is the dispersion, and pgj is the relative abundance of

exon e in experimental group j to which sample i belongs.

For our purposes, we used tag-wise dispersion with the

smoothing parameter, prior.n, set to 10. Library sizes

were set to the total number of reads in each sample.

Non-unique loci identification

There are a significant number of positions where, for a

given 50-base sequence, one or more identical 50-mers

are found elsewhere on the genome. At these loci, the

probability of finding a uniquely-mappable read given our

six mis-match tolerance is lower than at other positions,

possibly preventing the detection of expression at these

sites. We therefore performed an exhaustive all-against-

all search for all non-unique 50-mers in the genome and

recorded where they matched against the reference. In

detail, starting from each base position on a chromosome

we took a 50 base region of consecutive sequence and

searched for an identical 50 base match elsewhere on the

genome. If one or more matches were found then that

base position and all start positions of the matches were

marked with a "1", otherwise the base position was

marked with "0". In this way, a profile of ones (corre-

sponding to non-unique loci) and zeros (unique-loci) was

generated for each chromosome. 6% of genomic loci were

defined as non-unique using these criteria.

Additional material
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AC: Audic-Claverie; CS: Correspondence Score; DABG: Detection Above Back-
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