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A b s t r a c t .  We propose a new measure of perceptual saliency and quan- 

titatively compare its ability to detect natural shapes in cluttered back- 

grounds to five previously proposed measures. As defined in the new 

measure, the saliency of an edge is the fraction of closed random walks 

which contain that edge. The transition probability matrix defining the 

random walk between edges is based on a distribution of natural shapes 

modeled by a stochastic motion. Each of the saliency measures in our 

comparison is a function of a set of affinity values assigned to pairs of 

edges. Although the authors of each measure define the affinity between 

a pair of edges somewhat differently, all incorporate the Gestalt princi- 

ples of good-continuation and proximity in some form. In order to make 

the comparison meaningful, we use a single definition of affinity and fo- 

cus instead on the performance of the different functions for combining 

affinity values. The primary performance criterion is accuracy. We com- 

pute false-positive rates in classifying edges as signal or noise for a large 

set of test figures. In almost every case, the new measure significantly 

outperforms previous measures. 

1 I n t r o d u c t i o n  

The goal of segmentation is to partition a set of image measurements (e.g., 

edges) into equivalence classes corresponding to distinct objects. In this paper, 

we consider a somewhat simpler grouping problem which (following [11]) we call 

the saliency problem. The goal of the saliency problem is to assign a value to 

each edge which is correlated with whether that  edge belongs to a shape or is 

background noise (see Figure 1). Given the distribution of saliency values, it 

is then often possible to choose a threshold which will segment the edges into 

shape and noise classes. 

Each of the saliency measures proposed in the literature is a function of a 

set of affinity values assigned to pairs of edges. Although the authors of each 

measure define the affinity between a pair of edges somewhat differently, all 

incorporate the Gestalt principles of good-continuation and proximity in some 

form. A saliency function maps the set of affinities between all pairs of oriented 

or directed edges (i.e., the affinity matrix) to a saliency vector. In this paper, 

we have chosen to compare the definitions of saliency--not affinity. The differ- 

ences in the authors'  definitions of affinity prevents a direct comparison since 
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Fig.  1. Left: Seventeen edges from the boundary of a pear in a background of 

two-hundred edges of random position and orientation. Right: The most salient edges 

(where saliency is defined as the fraction of closed random ~valks which contain that 

edge.) 

each requires its own set of parameters. The choice was either to 1) optimize 

the performance of each measure over its required parameters and compare the 

different measures with each using its optimal parameter  setting; or 2) replace 

the individual affinity functions with a single function and compare performance 

using a single parameter  setting. Apart from requiring an impractical amount 

of work, the first approach has the disadvantage of confounding the definitions 

of affinity and saliency so that  the relative merits of each are difficult to disen- 

tangle. The shortcoming of the second approach (which is the one we adopted) 

is that  while providing the best comparison of the saliency functions, it says 

nothing about the relative merits of the affinity functions. Although unlikely, 

it also ignores possible dependencies between the specific affinity and saliency 

functions used in a given measure. 

The  affinity functions can be divided into three classes. Functions in the first 

class are based on co-circularity[& 5, 14]. The disadvantage of these functions is 

that  they are non-generic--a circle does not have sufficient degrees of freedom 

to smoothly join two arbitrary positions and orientations in the plane. They 

are also difficult to motivate using arguments based on the statistics of natural 

shapes. Fhnctions in the second class are based on curves of least energy[4, 

11]. The affinity between two directed edges is inversely related to the energy, 

fr  ds (a ~2 (s) +/~), in the curve of least energy joining the two edges. Functions 

in the third class are based on an explicit prior probability distribution of natural 

shapes modeled by a stochastic motion[7, 13, 16]. A particle travels with constant 

speed in the direction 0(t). Change in direction is a normally distributed random 

variable with zero mean. Consequently, 0(t) is a Brownian motion. The variance 
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of the random variable reflects the prior expectat ion of smoothness. In addition, 

a constant fraction of particles decay per unit time. The half-life reflects the prior 

expectation of shortness. The affinity between two edges, i and j ,  is defined as 

the sum of the probabilities over all paths joining the two edges, i.e., P ' ( j t i ) .  

Curves of least energy and stochastic motions are closely related. In fact, it is 

possible to show that  the energy of the curve of least energy is a linear function of 

the log-likelihood of the maximum likelihood stochastic motion[7, 16]. It  follows 

tha t  the function P ' ( j l i )  behaves very similiarly to e x p [ - f r  dt (a~2(t) +/3)] 

when F is a curve of least energy. This is because the probabili ty associated 

with F (and curves of similiar shape) dominates the probabilities summed over 

all paths.  

To facilitate the exposition, we will introduce a single nomenclature for de- 

scribing all of the saliency measures. One of the major  differences between the 

measures is whether they are formulated using orientations or directions. By 

direction we mean an angular quanti ty with a unique value over its 2w range. 

By orientation we mean a n  angular quanti ty where a direction, e.g., 8, and its 

opposite direction, e.g., 0 + 7r are identified with each other. Orientations assume 

values in the range zero to 7r. We will use x to represent a vector of values asso- 

ciated with edge directions and y to represent a vector of values associated with 

edge orientations. If a stimulus contains n edge segments then the saliency vec- 

tor, x, has 2n components while the saliency vector, y, has n components.  The 

saliency vectors x and ~ are identical except for a permutat ion which exchanges 

opposite directions. For example, if xi represents the saliency associated with 

some edge with direction, 8, then ~i represents the saliency of the same edge, 

but in the opposite direction, 0 + 7r. 

All of the saliency measures in our comparison associate an affinity value with 

a pair of oriented or directed edges. We will use the n • n matr ix  A to represent 

the affinity values between all pairs of oriented edges and the 2n • 2n matr ix  

P to represent the affinity values between all pairs of directed edges. An impor- 

tant  distinction between saliency measures based on orientation and those based 

on direction involves the symmet ry  (or non-symmetry)  of the affinity matrices. 

While the affinity oriented edge i has for j equals the affinity tha t  oriented edge 

j has for i, this does not (generally) hold for directed edges. Basically, Aij  -= Aj i 

(i.e., A = A T) but in general, Pij ~ Pj i. For reasons we will describe later (see 

Figure 4), this difference is critical in understanding the relative performance 

of the various measures. 

Although not symmetric,  P exhibits another  kind of symmetry.  If  we use the 

subscript ~ to denote the opposite direction to i then Pi j  = P 3 ~" This is termed 

time-reversal symmetry.  For the purposes of our comparison,we will define Ai j 

to be max(Pi  j, P ~ j, Pi 3, P~ 3), that  is, the affinity between two orientations is 

defined to be the maximum of the affinities among all combinations of directions. 
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2 S a l i e n c y  M e a s u r e s  

In the following section, we provide short synopses of the saliency measures used 

in the comparison. 

2.1 S h a s h u a  a n d  U l l m a n  (SU)  

Shashua and Ullman[11] were the first to use the term saliency in the sense 

that  it is being used in this paper.  Building on earlier work by Montanari[6], 

they described a saliency measure which could be computed by a local parallel 

network. 1 Using our nomenclature,  the saliency of a network element (one for 

each position and direction) at t ime t +  1 is related to the saliencies of neighboring 

elements at t ime t by the following update  equation: 

x(t+l) -}- max  Pi j x~ t) i = 1  
J 

Recently, Alter and Basri[1] have done an extensive analysis of Shashua and 

Ullman's method and give expressions for the saliency measure for the case of 

continuous curves. The saliency of a directed edge i equals the maximum of the 

saliencies of all continuous curves, F,  which begin at that  edge: 

�9 (i) = max ~5(F) 
r~C(O 

The saliency of a continuous curve, F,  is given by the following expression: 

~s s~ f;1 dt (1- -~r ( t ) )  - f;1 dt ~2(t) 
r  = d s  . p . 

1 

where a(.) is an indicator function which equals one where the curve lies on an 

edge element (and equals zero elsewhere), p is a parameter  in the interval [0, 1) 

which controls the rate of convergence, and ~2 (.) is the square of the curvature. 

The overall effect is tha t  the Shashua-Ullman measure favors long smooth curves 

containing only a few short gaps. For the special case of a curve threading a 

sequence of n edges of negligible length, we have the following simplification: 

n 

�9 ( r )  : E c -  f;~ dt(~2(t)-lnp) 

i = 1  

We observe that  the first two terms of this series will dominate all subsequent 

terms unless the radius of curvature is large and the curve is densely sampled. 

Consequently, for visual pat terns  consisting of a sparsely sampled curve in a 

background of noise, the Shashua and Ullman measure becomes local and greedy. 

We will see that  this seriously limits its performance on such pat terns  in the 

presence of correlated noise. 

_(t)x 
_(t+l) = min( - lnP~j  +;zj ). 1 In our nomenclature, Montanari's update equation is x~ 

After t time-steps, x~ 0 equals the energy of the minimum energy curve of length t 

beginning at edge i. In general, this quantity will not converge to a finite value as t 

goes to infinity. 
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2.2 H6rault and Horaud (HH) 

H~rault and Horaud[5] cast the problem of segmenting a set of oriented edges 

into figure and ground as a quadratic programming problem which is solved by 

simulated annealing. The objective function consists of two terms, -Esatiency - 

gcons tra in t  : 
�9 1 

mm - ~  y T H y  -- bTy for y C {--1, +1} '~ 

where Hij = Aij - a  and bi = ~ j  (Aij - a ) .  The affinity function used by H~rault 

and Horaud is based on co-circularity, smoothness and proximity�9 H6rault and 

Horaud say only that  a is a parameter related to the signal-to-noise ratio but 

do not say how it is chosen or provide the value they used in their experiments�9 

Experimentally, we have found that  their method is very sensitive to the choice 

of this parameter�9 If a is too large, the solution consists of all - l ' s  (i.e., all 

ground) while if it is too small it consists of all + l ' s  (i.e., all figure). Determin- 

ing the proper value of a makes the job of fairly comparing H~rault-Horaud with 

measures lacking a comparable parameter difficult. Therefore (for the compari- 

son) we decided to maximize Esatiency over 0-1 solution vectors with exactly rn 

components equal to 1: 

max yTAy  for y E {0, 1} n and y T y  = m 

where m is the number of figure edges and n is the total  number of edges. 

Although in a real application, we would generally not know the value of m, 

we do know this value for all of our test patterns�9 For this reason, the modified 

problem should provide a lower bound on the false-positive rate for the H6rault- 

Horaud measure�9 

2.3 Sarkar and Boyer (SB) 

Sarkar and Boyer[10] describe a saliency measure and apply it to the problem 

of distinguishing developed and undeveloped land in aerial images. Although 

this is a somewhat different application than the one considered in this paper, 

the similarity between Sarkar and Boyer's computation and our own makes a 

comparison worthwhile�9 In addition to good-continuation and proximity, Sarkar 

and Boyer's affinity function incorporates pairwise measures useful for detect- 

ing clusters of buildings such as parallelism, perpendicularity and closure. 2 The 

affinity function we used in the comparison is the same one we used with the 

other methods (i�9149 only a subset of the relations proposed by Sarkar and Boyer). 

Given an affinity matrix, A, Sarkar and Boyer propose that  the saliency vector, 

y, maximizes the Raleigh Quotient: 

y T A y  

y T y  

2 The closure between a pair of edges equals the closure of the group of edges containing 

that pair. Closed groups must be identified in advance. 
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Fig. 2. In the Yen and Finkel[17] saliency computation, the support for oriented edge 

i due to all other oriented edges j is given by the linear relaxation labeling step, 

. (t+t) = ~--,. A~iy!O/~-, .  ~--,A~ky!O. Because Yen and Finkel's intention was to 
Y i  ~) ~ J " ~ - ' - ~ 3  ~ - " ~ .  ~ ~ . . . 

model the vmual cortex, the hnear relaxation step is implemented as repeated con- 

volution with a large kernel filter followed by normalization. The symmetry of the A 

matrix manifests itself in the plane as mirror image symmetry in the kernel. In general, 

this iteration will converge to the eigenvector associated with the largest positive real 

eigenvalue of A, i.e., it computes the same measure as Sarkar and Boyer[10]. 

When A is symmetric,  the Raleigh Quotient is maximized by the eigenvector, y, 

associated with the largest positive real eigenvalue of A: 

Ay = A y  

This measure can also be optimized using the following recurrence equation 

(which has been independently proposed as a saliency computat ion by Yen and 

Finkel[17]): 
~(t+l) ~ A (t),  y~t) 

i z 2 .~ j  i y Yj / ~ j  ~ k  Ajk 

Prom linear algebra, we know that  the vector y will converge to the eigenvector 

associated with the largest positive real eigenvalue of A. Viewed this way, we see 

that  A is being used as a linear relaxation labeling operator  and that  Sarkar and 

Boyer are solving a linear relaxation labeling problem as defined by Rosenfeld, 

Hummel and Zucker[9] (see Figure 2). 

2.4 G u y  a n d  M e d i o n i  ( G M )  

Guy and Medioni[3] describe a saliency computat ion which involves the sum- 

mation of vector voting pat terns  based on co-circularity and proximity. The 

distribution of votes which accumulate at a point in the plane is represented by 

its 2 • 2 covariance matrix.  The predominant  orientation at a point is determined 
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by the eigenvector of the covariance matrix with largest eigenvalue. Neglecting 

the clever device of representing the vote distributions by their covariance matri- 

ces, it is possible to interpret Guy and Medioni's voting patterns as representing 

the correlation between orientations at different locations in the image plane. 

In our nomenclature, the saliency at an edge would be the sum of the voting 

patterns due to all other edges: 

y~ = ~ Ai j 

which is essentially one iteration of linear relaxation labeling using the operator 

A and a constant input vector. 

2.5 Wil l iams and Jacobs (WJ) 

Williams and Jacobs[16] describe a method for computing a representation of 

illusory contours and occluded surface boundaries which they call a stochastic 

completion field. The magnitude of the stochastic completion field at (u, v, r is 

the probability that  a particle following a stochastic motion (representing the 

prior distribution of boundary completion shapes) will pass through (u, v, r on 

a path joining two boundary fragments. Although not portrayed as a saliency 

measure, it is easy and natural  to use this method to compute saliency. The 

saliency of an edge is defined to be the probability that  a particle following a 

stochastic motion will pass through that  edge on a path joining two others. The 

saliency vector is given by x ~ where each component of x is: 

x~ = ~ P i j  

J 

The value of x~ is the probability that  a particle will reach directed edge i from 

some other edge j .  The saliency of i is just xi multiplied by xi (i.e., the probability 

that  a particle will reach the same edge but with opposite direction). From time- 

reversal symmetry, we see that  this equals the probability that  a particle starting 

at any edge will pass through edge i and eventually reach another edge. 3 

3 A N e w  M e a s u r e  ( W T )  

We define the salience of an edge to be the fraction of closed random walks 

which contain that  edge. It is important  to distinguish between random walks 

and stochastic motions. By random walk, we mean a sequence of edges visited by 

a particle subject to the random process with transition probability matrix, P.  

By stochastic motion, we mean the path in the plane followed by a particle when 

8(t) is a Brownian motion. These two concepts are necessarily related, since the 

probability that  a particle located at edge i at time-step t will be at edge j at 

3 It is also worth noting that the WJ measure can be computed very efficiently using 

a multi-resolution method. See [15]. 
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t ime-step t + 1 is defined to be the sum over the probabilities of all stochastic 

motions between i and j ,  i.e., Pji - P~(jli). It  follows that  the distribution of 

random walks of length t + 1 is related to the distribution of random walks of 

length t through multiplication by the matrix,  P.  If xl t) represents the fraction 

_(t+l) (i.e., of random walks of length t which end at directed edge i, then ~/ 

the fraction of length t + 1 random walks), is given by the following recurrence 

equation (see Figure 3): 

x(t+l) = E j  Pi j x~ .t) / E j  Ek Pjk x~ t) 
i 

The ~ j  ~k  Pik x~ t) term in the denominator  is a normalization factor. Without  

the normalization after each step, the vector x would quickly approach zero, 

because random walks of increasing length have decreasing probability. In the 

steady-state,  this normalization factor equals ;~: 

~x = P x  

where the eigenvector, x, represents the fraction of random walks located at any 

given edge and the eigenvalue, ~, represents the ratio of the number of random 

walks which reach one more edge to the number which drift off or die in every 

step of the random process. 4 In the steady-state,  the variation of the eigenvalue 

equals zero (i.e., ( ~ / S x  = 0) and the eigenvalue itself is given by the following 

equation: 
~ T p  X 

~Tx 

While ~ can be set equal to other expressions, the significance of the above 

form is that  it makes explicit the relationship between error in x and error in 

)~. Specifically, it shows that  if x were in error by 5x, the calculated ~ would 

be in error by only (Sx) 2. Note tha t  while this is a variational-principle for the 

eigenvalue, unlike the Raleigh Quotient,  it is not a maximum-principlefi  

It  is possible to view the eigenvector, x, as the distribution of random walks 

which survived in all past- t imes and (from time-reversability) to view ~ as the 

distribution of random walks which will survive in all future-times. By taking 

the product,  x ~ ,  we are constructing the distribution of random walks which 

survive in all past and future times. It  follows that  x ~ represents the distribution 

of closed random walks through the edges. 

The use of directions (as opposed to orientations) is essential--even for non- 

directional stimuli. 6 Using only orientations, it is impossible to enforce tangent  

4 Unlike a Markov process, )~ is usually very small--the great majority of particles 

never reach another edge. In a Markov process, the probabilities in every column 

of the transition matrix must sum to one. Consequently, the largest eigenvalue also 

equals one. 

5 In particular, there is no guarantee that a process which starts at a random vector 

and repeatedly applies the recurrence equation will converge to an eigenvector. 

6 The explicit representation of two directions is the motivation behind the design of 

the bipole cell in the boundary contour system of Grossberg and Mingolla[2]. It is 

also a feature of Ullman's model of illusory contour shape[14]. 
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i 

Fig. 3. In the saliency computation proposed in this paper, the support for directed 

edge i due to all other directed edges j is given by the linear relaxation labeling step, 
_(t+l) (t) x(t) ~ = ~-~"3 Pji xj / E j  E k  PJ k k �9 Because P is not symmetric, this iteration is 
not guaranteed to converge. The salience of edge i is given by the product of xi and 

21 where x is the eigenvector associated with the largest positive real eigenvalue of P. 

This quantity represents the relative number of closed random walks through edge i. 

continuity at i. The consequence of not representing both  directions is the pres- 

ence of cusps (sudden reversals of direction) in the particle 's  paths (see Figure 

4). 
To develop some intuition for the meaning of the eigenvalue, it will be useful 

to consider an idealized situation. We know from linear algebra that  the eigen- 

values of P are solutions to the equation de t (P  - )~I) = 0. Now, consider a closed 

path,  F,  threading m directed edges. The probabili ty tha t  a particle following 

this pa th  will reach directed edge , / ' i  mod m+l, given tha t  it is located at directed 

edge, Fi, equals P'(Fimodm+llFi) .  Assuming that  the probabil i ty of a particle 

traveling from directed edge Fi to Fj when Fj does not immediately follow F~ on 

the closed path  is negligible (i.e., Pj~ = P'(Fj l  Fi) when j = i mod m + 1 and 

Pj i = 0 otherwise) then: 

1 

,~(F) --- P ' (  Fimodrn+l I 
k i=1 

satisfies de t (P  - M)  = 0. This is the geometric mean of the transition proba- 

bilities in the closed path.  7 Normally long contours have very low probability: 

1--[iml P ' (  Fi mod -~+11 Fi). However, the properties of the geometric mean are such 

that  smoothness and closure are favored and long contours suffer no penalty. I t  

7 Equivalently, minus one times the logarithm of the eigenvalue equals the average 
m 

transition energy: - In A(F) = - ~ i = l  in P ' (  F~ m o d  rn-}-i I Fi)/m. 
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Fig. 4. The explicit representation of two directions (i.e., x and ~) and the use of a 

non-symmetric linear relaxation labeling operator (i.e., P) is essential if the intermedi- 

ate states of the relaxation labeling process (i.e., x~ t), x~ ~+1), etc.) are to be interpreted 

as distributions of random walks which are continuous in tangent. Repeated applica- 

tion of a symmetric linear relaxation labeling operator (i.e., A) to a vector of saliencies 

associated with orientations (i.e., y) yields distributions of random walks which can 

reverse direction at edge locations (left). After the initial iteration, this process tends 

to increase the salience of the noise edges as much as the signal edges. This explains 

why the performance of Guy and Medioni's saliency computation (essentially one iter- 

ation of linear relaxation labeling using the operator A and a constant input vector) is 

superior to that of Sarkar and Boyer[10]. It also explains why direction-based measures 

(e.g., WJ and WT) outperform both. 

is useful to compare this to the saliency which Shashua and Ullman assigns to a 

curve, which is given by the following geometric series: 

�9 (r) s ~ = I I P ' ( r ~ + , l  r~) 
j----1 i----1 

Shashua and Ullman desired a saliency measure which favored long, smooth 

contours yet converged to a finite value for contours of infinite length (i.e., for 

closed contours). Unfortunately, the rate at which this series converges depends 

critically on the values of the P ' ( F / + I ]  Fi). If the transition probabilities are 

too small, the series will converge too rapidly (and the measure becomes local 

and greedy). Conversely, if they are too large, the series will converge too slowly. 

In summary, we see that the geometric mean has the properties Shashua and 

Ullman wanted but lacks other undesirable properties. 

4 R e s u l t s  

The first comparison used test patterns which consisted of short oriented edges 

spaced uniformly around the perimeter of a circle in a background of edges 



442 

- r  . 

D ~ ~ 

I 

k 

/ 

/ .  
2 

T~nty-edge Cimle 
100 

GM + -  '~ ! 
WJ .+..  
Wr~  .... 

so . . . . . .  ~ :~:::. �9 . . . . . . . . . . . . . . . . . . . . .  , ,=::::; ' : :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
chance  o i . ' ~  / / .  ....... 

~ .. . . . . . . . . . . . . . . . . .  . ?  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . -  : 

/ 
. . . . . . . .  / ............................... . . . . . . . . . . .  ................... 

. /  
/ .... . ....... 2 ............... : 

20 40 60 80 100 
NUlV, be~ ~ No,se Edges 

Tan-edge Sine Cu~e  

1oo GM + - .  i ~ i 

WJ -+-- 
WT ~ B  

su  ~ -  ~ . 

c h a ~  - o -  . . . " ~  

. o  . . . . . . . . . . . . . . . . .  : : i  . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / . a  . . . . . .  @ . . . . . . . . .  ~ - "  

'~" ~ ' 2 ; ; "  .......... : ............... t ....... 

20 4O so so 1oo 

Nu,,~r ot No~e E~ 

Tw~r,~-~9~ c l r c~  ( ~ l e  ~o~se) 

GM ~ ' 2 2 . _ _ . _ ~ .  
wa  .+..  ....... .,~ 
WT . ~ .  ~ . . . . .  ~ . ~  . . . .  
SB ~ ' -  W . . . . . . . . .  }+ : 22 :  : - ] i= -~  : : . _  2-:  2.2 _ ~ . . . . . .  

o 

Te~edge Cirde 
l oo  ~ 

WT.~  
SB ~ -  
SU 

,a , ,"  : 

, ? } , ' / ]  I 

2o 

i . . . / - /  

�9 . . .  

...,- 

/ . ~ / "  

. . / . . - " i  .... + " " 

0 20 40 60 80 100 
N ~ b e r  ~ Noise Edges 

Fig .  5. (a) twenty-edge circle. (b) ten-edge sine curve. (c) twenty-edge circle 

(dipole noise) (d) ten-edge circle. All patterns are shown at a noise-level of fifty. 
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with random positions and orientations (see Figure 5 (a)). s We computed the 

saliency of both shape and noise edges using each of the six measures: SU, HH, 

SB, GM, WJ, and WT. The edges were then sorted in ascending order based 

on their saliencies. The salience of the most salient edge is r and the salience 

of the least salient edge is Cn. Given m shape edges, we define a false-positive 

as a noise edge which is assigned a salience larger than era+i- The false-positive 

rate for each measure was computed for patterns consisting of different numbers 

of shape and noise edges. The false-positive rate for each combination (e.g., 20 

shape edges and 70 noise edges) was estimated by averaging the false-positive 

rate for ten trials using different noise patterns. 9 The right half of Figure 5(a) 

is a plot of the percentage false-positives versus the number of noise edges for 

the twenty-edge circle. 

All of the measures perform reasonably well (less than 10% false-positive rate) 

at the low noise-levels (40 noise edges or less). At higher noise-levels, the perfor- 

mance of the measures begins to diverge. It is interesting that  GM significantly 

outperforms SB, since GM is essentially one iteration of SB. We speculate that  

the false-positive rate is increased by additional relaxation-labeling steps using 

the non-directional operator. We also observe that  GM performs comparably to 

HH--even though the HH measure is significantly more expensive to compute. 

Finally, at the lower signal-to-noise ratios, WJ  and W T have significantly lower 

false-positive rates. 

The second comparison was identical to the first except that  the shape edges 

formed an open-ended sine curve (see Figure 5 (b)). The right half of Figure 5 

(b) is a plot of the percentage false-positives versus the number of noise edges 

for the ten-edge sine curve. The relatively poor performance of the W T measure 

compared to the other measures can be at t r ibuted to its explicit reliance on 

closure. Nevertheless, it still outperforms the SB measure for higher signal-to- 

noise ratios and has an error rate comparable to that  of SB (i.e., within 5%) at 

lower signal-to-noise ratios. As in the previous comparison, the performance of 

GM and HH are nearly identical. The false-positive rates of these measures is 

somewhat larger than that  of the WJ measure. The SU measure had the best 

performance. 

In the third comparison, we used a background consisting of correlated (i.e., 

dipole) noise (see Figure 5(c)). A dipole consists of two collinear edges sep- 

arated by a gap of size equal to the distance between successive edges of the 

circle. Because the two edges forming a dipole are collinear, the affinity between 

the edges forming a dipole is greater than between adjacent circle edges. Conse- 

quently, it is impossible to distinguish noise edges from shape edges using purely 

s The radius of the circle equals 32 and the noise edges are uniformly distributed 

within a square of size 64. 
9 We wanted to ensure that HH was not unfairly penalized because of the inherent 

difficulty of solving the combinatorial optimization problem. We therefore computed 

the value of yWAy for the perfect segmentation and accepted a trial only when the 

simulated annealing procedure returned a greater or equal value. After ten failed 

attempts, we restarted that trial with a new noise-pattern. 
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local measures. Indeed, all of the measures but WJ and W T have nearly a 100% 

false-positive rate. In the case of the SU measure, this is because (for gaps of 

this size) the geometric series is dominated by the first two terms, l~ 

In the fourth comparison (see Figure 5(d)), we used a ten-edge circle. This 

is a challenging pattern because the sampling rate is so low--only one edge 

per 36 degrees of circumference. Most of the measures perform poorly, even at 

relatively high signal-to-noise ratios. For a noise-level of 80, the GM, SU and HH 

measures are performing almost at chance, or 90% false-positive rate. The SB 

and WJ measures perform slightly better, with false-positive rates of 80% and 

70%, respectively. In contrast, the false-positive rate for W T is under 5%. 

Our intention in the last comparison was to test the saliency measures on a 

collection of "real images" but to do so in a way which would allow meaningful 

error rates to be estimated. In the past, when new grouping methods have been 

proposed, their performance has not been systematically compared to others 

from the literature. Although the proposed methods are typically demonstrated 

on two or three "real images," because the computational goM is often not well 

defined, performance is impossible to gauge. Consequently, it is unclear whether 

or not the methods represent genuine improvements in the state of the art. 

We decided to construct test patterns from pairs of real images in such a way 

that  performance on the saliency problem could be objectively measured. Nine 

different fruits and vegetables were placed in front of a uniformly colored back- 

ground (three of these are shown in Figure 6(a-c)). This allowed their silhouettes 

to be extracted using straightforward methods. The orientation at points uni- 

formly spaced along the silhouette was then estimated using a robust line fitting 

technique (see Figure 6(d-f)). 

Next, we selected nine images of natural  texture from the MIT Media Lab 

texture database (these of these are shown in Figure 6(g-i)). The Canny edge 

detector was applied to a 64 • 64 block from each texture and the resulting edges 

were filtered on contrast to create a set of nine masking patterns consisting of 

approximately 800 edges each (see Figure 6(j-l)). 

Edges from the nine fruit and vegetable silhouettes (signal) and nine natural 

texture masking patterns (noise) were then combined to construct a set of 405 

test patterns. These patterns represent all 81 silhouette and texture combinations 

at five different signal-to-noise ratios (see Figure 6(m-o)). 11 Each of the six 

saliency measures was run on all of the test patterns and false-positive rates 

were computed as before. The results are plotted in Figure 7. For a signal-to- 

noise ratio of 0.2, the false-positive rate for the SB measure is 72% (i.e., 8% 

better  than chance performance). The false-positive rates for SU, GM, HH and 

WJ are all approximately 50%. In contrast, the false-positive rate for the W T 

measure is 20% (i.e., 60% better  than chance performance). Furthermore, after 

the signal-to-noise ratio is reduced by a factor of two, the false-positive rate for 
the W T measure remains under 50%. 

lo For the thirty-edge circle, the geometric series converges more slowly. Presumably, 

SU would continue to improve (relative to the other measures) as the size of the gaps 

decreases. 

11 The texture edges are undersampled to achieve a given signal-to-noise ratio. 
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5 C o n c l u s i o n  

In this paper, we introduced a new measure of perceptual saliency and quanti- 

tatively compared its ability to detect natural shapes in cluttered backgrounds 

to five previously proposed measures. The saliency measure is based on the dis- 

tribution of closed random walks through the edges. We computed false-positive 

rates in classifying edges as signal or noise for a large set of test figures. In almost 

every case, the new measure significantly outperforms previous measures. 

6 A p p e n d i x  

In this Appendix, we give the analytic expression for the affinity function used 

in the comparisons (see [13] for its derivation). 12 We define the affinity, Pji ,  

between two directed edges, i and j ,  to be: 

/o P j i - P ' ( j l i ) =  d t P ( j l i ; t ) ~  F P ( j l i ; t o p t )  

where P ( j  l i; t)  is the probability that  a particle which begins its stochastic 

motion at (xi,  yi, Oi) at time 0 will be at (xj ,  yj ,  Oj) at time t. The affinity between 

two edges is the value of this expression integrated over stochastic motions of all 

durations, P ' (  j l i). This integral is approximated analytically using the method 

of steepest descent. The approximation is the product of P evaluated at the 

time at which the integral is maximized (i.e., topt), and an extra factor, F.  The 

expression for P at time t is: 

3 exp[ -  6 t 2 ~ ( a  - bt  + c)] . exp ( -~ )  
P ( j l i ; t )  = 

~/7~3 T 3 t7/2 

where 

a=[2 + cos(0j - 0i)] / 3 

b=[xji (cos 8j + cos 0i) + Yji (sin Oj + sin 8i)]/v 

+ y  )lv 2 

for xji  = xj  - xi and yji = yj - Yi. The parameters T,  T and v determine the 

distribution of shapes (where T is the diffusion coefficient, 7- is particle half-life 

and v is speed). In all of our experiments, T = 0.002, ~- = 5.0 and v = 1. The 

expression for P should be evaluated at t = topt, where topt is real, positive, and 

satisfies the following cubic equation: 

- 7 t 3 / 4  + 3(a t  2 - 2b t  + 3 c ) / T  = 0 

12 For a derivation of a related affinity function, see the recent paper of Sharon, Brandt 

and Basri[12]. 
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Fig. 6. (a-c) Banana, pear, red onion (d-f) Banana edges, pear edges, red onion 

edges (g-i) Terrain, brick, water (j-l) Terrain edges, brick edges, water edges 

(m-o) Banana with terrain mask, pear with brick mask, red onion with water 

mask, 
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F i g .  7.  False-positive rate for fruit and vegetable silhouettes with natural texture back- 

grounds. 

If more than one real, positive root exists, then the root maximizing P(  j I i; t) 

is chosen. 13 Finally, the extra  factor F is: 

F = r c - 2 b topt) /T + 7 t3pt/2] 

For our purposes here, we ignore the exp(- t /~-)  factor in the steepest descent 

approximation for topt. We note that  by increasing v, the distribution of contours 

can be uniformly scaled. 
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