

A Comparison of Mechanisms for Improving TCP Performance over
Wireless Links

Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan and Randy H. Katz1

{hari,padmanab,ss,randy}@cs.berkeley.edu

Computer Science Division, Department of EECS, University of California at Berkeley

Abstract

Reliable transport protocols such as TCP are tuned to per-

form well in traditional networks where packet losses occur

mostly because of congestion. However, networks with

wireless and other lossy links also suffer from significant

losses due to bit errors and handoffs. TCP responds to all

losses by invoking congestion control and avoidance algo-

rithms, resulting in degraded end-to-end performance in

wireless and lossy systems. In this paper, we compare sev-

eral schemes designed to improve the performance of TCP

in such networks. We classify these schemes into three

broad categories: end-to-end protocols, where loss recovery

is performed by the sender; link-layer protocols, that pro-

vide local reliability; and split-connection protocols, that

break the end-to-end connection into two parts at the base

station. We present the results of several experiments per-

formed in both LAN and WAN environments, using

throughput and goodput as the metrics for comparison.

Our results show that a reliable link-layer protocol that is

TCP-aware provides very good performance. Furthermore,

it is possible to achieve good performance without splitting

the end-to-end connection at the base station. We also dem-

onstrate that selective acknowledgments and explicit loss

notifications result in significant performance improve-

ments.

1. Introduction

The increasing popularity of wireless networks indicates

that wireless links will play an important role in future inter-

networks. Reliable transport protocols such as TCP [24, 26]

have been tuned for traditional networks comprising wired

links and stationary hosts. These protocols assume conges-

tion in the network to be the primary cause for packet losses

and unusual delays. TCP performs well over such networks

by adapting to end-to-end delays and congestion losses. The

TCP sender uses the cumulative acknowledgments it

receives to determine which packets have reached the

receiver, and provides reliability by retransmitting lost

packets. For this purpose, it maintains a running average of

1. Web page URL http://daedalus.cs.berkeley.edu.

Srinivasan Seshan is now at IBM T.J. Watson Research Center,

Hawthorne, NY (srini@watson.ibm.com).

the estimated round-trip delay and the mean linear deviation

from it. The sender identifies the loss of a packet either by

the arrival of several duplicate cumulative acknowledg-

ments or the absence of an acknowledgment for the packet

within a timeout interval equal to the sum of the smoothed

round-trip delay and four times its mean deviation. TCP

reacts to packet losses by dropping its transmission (conges-

tion) window size before retransmitting packets, initiating

congestion control or avoidance mechanisms (e.g., slow

start [13]) and backing off its retransmission timer (Karn’s

Algorithm [16]). These measures result in a reduction in the

load on the intermediate links, thereby controlling the con-

gestion in the network.

Unfortunately, when packets are lost in networks for rea-

sons other than congestion, these measures result in an

unnecessary reduction in end-to-end throughput and hence,

sub-optimal performance. Communication over wireless

links is often characterized by sporadic high bit-error rates,

and intermittent connectivity due to handoffs. TCP perfor-

mance in such networks suffers from significant throughput

degradation and very high interactive delays [8].

Recently, several schemes have been proposed to the allevi-

ate the effects of non-congestion-related losses on TCP per-

formance over networks that have wireless or similar high-

loss links [3, 7, 28]. These schemes choose from a variety of

mechanisms, such as local retransmissions, split-TCP con-

nections, and forward error correction, to improve end-to-

end throughput. However, it is unclear to what extent each

of the mechanisms contributes to the improvement in per-

formance. In this paper, we examine and compare the effec-

t iveness of these schemes and their variants, and

experimentally analyze the individual mechanisms and the

degree of performance improvement due to each.

There are two different approaches to improving TCP per-

formance in such lossy systems. The first approach hides

any non-congestion-related losses from the TCP sender and

therefore requires no changes to existing sender implemen-

tations. The intuition behind this approach is that since the

problem is local, it should be solved locally, and that the

transport layer need not be aware of the characteristics of

the individual links. Protocols that adopt this approach

attempt to make the lossy link appear as a higher quality

link with a reduced effective bandwidth. As a result, most of

the losses seen by the TCP sender are caused by congestion.

Appeared in IEEE/ACM Transactions on Networking, Dec.1997. This is a much-extended and revised version of a paper that

appeared at ACM SIGCOMM, 1996.

Examples of this approach include wireless links with reli-

able link-layer protocols such as AIRMAIL [1], split con-

nection approaches such as Indirect-TCP [3], and TCP-

aware link-layer schemes such as the snoop protocol [7].

The second class of techniques attempts to make the sender

aware of the existence of wireless hops and realize that

some packet losses are not due to congestion. The sender

can then avoid invoking congestion control algorithms

when non-congestion-related losses occur — we describe

some of these techniques in Section 3. Finally, it is possible

for a wireless-aware transport protocol to coexist with link-

layer schemes to achieve good performance.

We classify the many schemes into three basic groups,

based on their fundamental philosophy: end-to-end propos-

als, split-connection proposals and link-layer proposals. The

end-to-end protocols attempt to make the TCP sender han-

dle losses through the use of two techniques. First, they use

some form of selective acknowledgments (SACKs) to allow

the sender to recover from multiple packet losses in a win-

dow without resorting to a coarse timeout. Second, they

attempt to have the sender distinguish between congestion

and other forms of losses using an Explicit Loss Notifica-

tion (ELN) mechanism. At the other end of the solution

spectrum, split-connection approaches completely hide the

wireless link from the sender by terminating the TCP con-

nection at the base station. Such schemes use a separate reli-

able connection between the base station and the destination

host. The second connection can use techniques such as

negative or selective acknowledgments, rather than just

standard TCP, to perform well over the wireless link. The

third class of protocols, link-layer solutions, lie between the

other two classes. These protocols attempt to hide link-

related losses from the TCP sender by using local retrans-

missions and perhaps forward error correction [e.g., 18]

over the wireless link. The local retransmissions use tech-

niques that are tuned to the characteristics of the wireless

link to provide a significant increase in performance. Since

the end-to-end TCP connection passes through the lossy

link, the TCP sender may not be fully shielded from wire-

less losses. This can happen either because of timer interac-

tions between the two layers [10], or more likely because of

TCP’s duplicate acknowledgments causing sender fast

retransmissions even for segments that are locally retrans-

mitted. As a result, some proposals to improve TCP perfor-

mance use mechanisms based on the knowledge of TCP

messaging to shield the TCP sender more effectively and

avoid competing and redundant retransmissions [7].

In this paper, we evaluate the performance of several end-

to-end, split-connection and link-layer protocols using end-

to-end throughput and goodput as performance metrics, in

both LAN and WAN configurations. In particular, we seek

to answer the following specific questions:

1. What combination of mechanisms results in best per-

formance for each of the protocol classes?

2. How important is it for link-layer schemes to be aware

of TCP algorithms to achieve high end-to-end through-

put?

3. How useful are selective acknowledgments in dealing

with lossy links, especially in the presence of burst

losses?

4. Is it important for the end-to-end connection to be split

in order to effectively shield the sender from wireless

losses and obtain the best performance?

We answer these questions by implementing and testing the

various protocols in a wireless testbed consisting of Pentium

PC base stations and IBM ThinkPad mobile hosts communi-

cating over a 915 MHz AT&T Wavelan, all running BSD/

OS 2.0. For each protocol, we measure the end-to-end

throughput, and goodputs for the wired and (one-hop) wire-

less paths. For any path (or link), goodput is defined as the

ratio of the actual transfer size to the total number of bytes

transmitted over that path. In general, the wired and wireless

goodputs differ because of wireless losses, local retransmis-

sions and congestion losses in the wired network. These

metrics allow us to determine the end-to-end performance

as well as the transmission efficiency across the network.

While we used a wireless hop as the lossy link in our exper-

iments, we believe our results are applicable in a wider con-

text to links where significant losses occur for reasons other

than congestion. Examples of such links include high-speed

modems and cable modems.

We show that a reliable link-layer protocol with some

knowledge of TCP results in very good performance. Our

experiments indicate that shielding the TCP sender from

duplicate acknowledgments caused by wireless losses

improves throughput by 10-30%. Furthermore, it is possible

to achieve good performance without splitting the end-to-

end connection at the base station. We also demonstrate that

selective acknowledgments and explicit loss notifications

result in significant performance improvements. For

instance, the simple ELN scheme we evaluated improved

the end-to-end throughput by a factor of more than two

compared to TCP Reno, with comparable goodput values.

The rest of this paper is organized as follows. Section 2

briefly describes some proposed solutions to the problem of

reliable transport protocols over wireless links. Section 3

describes the implementation details of the different proto-

cols in our wireless testbed, and Section 4 presents the

results and analysis of several experiments. Section 5 dis-

cusses some miscellaneous issues related to handoffs, ELN

implementation and selective acknowledgments. We present

our conclusions in Section 6, and mention some future work

in Section 7.

2. Related Work

In this section, we summarize some protocols that have

been proposed to improve the performance of TCP over

wireless links. We also briefly describe some proposed

methods to add SACKs to TCP.

• Link-layer protocols: There have been several propos-

als for reliable link-layer protocols. The two main

classes of techniques employed by these protocols are:

error correction, using techniques such as forward error

correction (FEC), and retransmission of lost packets in

response to automatic repeat request (ARQ) messages.

The link-layer protocols for the digital cellular systems

in the U.S. — both CDMA [15] and TDMA [22] — pri-

marily use ARQ techniques. While the TDMA protocol

guarantees reliable, in-order delivery of link-layer

frames, the CDMA protocol only makes a limited

attempt and leaves eventual error recovery to the (reli-

able) transport layer. Other protocols like the AIRMAIL

protocol [1] employ a combination of FEC and ARQ

techniques for loss recovery.

The main advantage of employing a link-layer protocol

for loss recovery is that it fits naturally into the layered

structure of network protocols. The link-layer protocol

operates independently of higher-layer protocols and

does not maintain any per-connection state. The main

concern about link-layer protocols is the possibility of

adverse effect on certain transport-layer protocols such

as TCP, as described in Section 1. We investigate this in

detail in our experiments.

• Split connection protocols [3, 28]: Split connection

protocols split each TCP connection between a sender

and receiver into two separate connections at the base

station — one TCP connection between the sender and

the base station, and the other between the base station

and the receiver. Over the wireless hop, a specialized

protocol tuned to the wireless environment may be used.

In [28], the authors propose two protocols — one in

which the wireless hop uses TCP, and another in which

the wireless hop uses a selective repeat protocol (SRP)

on top of UDP. They study the impact of handoffs on

performance and conclude that they obtain no significant

advantage by using SRP instead of TCP over the wire-

less connection in their experiments. However, our

experiments demonstrate benefits in using a simple

selective acknowledgment scheme with TCP over the

wireless connection.

Indirect-TCP [Bakre95] is a split-connection solution

that uses standard TCP for its connection over the wire-

less link. Like other split-connection proposals, it

attempts to separate loss recovery over the wireless link

from that across the wireline network, thereby shielding

the original TCP sender from the wireless link. How-

ever, as our experiments indicate, the choice of TCP

over the wireless link results in several performance

problems. Since TCP is not well-tuned for the lossy link,

the TCP sender of the wireless connection often times

out, causing the original sender to stall. In addition,

every packet incurs the overhead of going through TCP

protocol processing twice at the base station (as com-

pared to zero times for a non-split-connection approach),

although extra copies are avoided by an efficient kernel

implementation. Another disadvantage of split connec-

tions is that the end-to-end semantics of TCP acknowl-

edgments is violated, since acknowledgments to packets

can now reach the source even before the packets actu-

ally reach the mobile host. Also, since split-connection

protocols maintain a significant amount of state at the

base station per TCP connection, handoff procedures

tend to be complicated and slow. Section 5.1 discusses

some issues related to cellular handoffs and TCP perfor-

mance.

• The Snoop Protocol [7]: The snoop protocol introduces

a module, called the snoop agent, at the base station. The

agent monitors every packet that passes through the TCP

connection in both directions and maintains a cache of

TCP segments sent across the link that have not yet been

acknowledged by the receiver. A packet loss is detected

by the arrival of a small number of duplicate acknowl-

edgments from the receiver or by a local timeout. The

snoop agent retransmits the lost packet if it has it cached

and suppresses the duplicate acknowledgments. In our

classification of the protocols, the snoop protocol is a

link-layer protocol that takes advantage of the knowl-

edge of the higher-layer transport protocol (TCP).

The main advantage of this approach is that it suppresses

duplicate acknowledgments for TCP segments lost and

retransmitted locally, thereby avoiding unnecessary fast

retransmissions and congestion control invocations by

the sender. The per-connection state maintained by the

snoop agent at the base station is soft, and is not essential

for correctness. Like other link-layer solutions, the

snoop approach could also suffer from not being able to

completely shield the sender from wireless losses.

• Selective Acknowledgments: Since standard TCP uses

a cumulative acknowledgment scheme, it often does not

provide the sender with sufficient information to recover

quickly from multiple packet losses within a single

transmission window. Several studies [e.g., 11] have

shown that TCP enhanced with selective acknowledg-

ments performs better than standard TCP in such situa-

tions. SACKs were added as an option to TCP by RFC

1072 [14]. However, disagreements over the use of

SACKs prevented the specification from being adopted,

and the SACK option was removed from later TCP

RFCs. Recently, there has been renewed interest in add-

ing SACKs to TCP. Two relevant proposals are the

recent RFC on TCP SACKs [19] and the SMART

scheme [17].

The SACK RFC proposes that each acknowledgment

contain information about up to three non-contiguous

blocks of data that have been received successfully by

the receiver. Each block of data is described by its start-

ing and ending sequence number. Due to the limited

number of blocks, it is best to inform the sender about

the most recent blocks received. The RFC does not spec-

ify the sender behavior, except to require that standard

TCP congestion control actions be performed when

losses occur.

An alternate proposal, SMART, uses acknowledgments

that contain the cumulative acknowledgment and the

sequence number of the packet that caused the receiver

to generate the acknowledgment (this information is a

subset of the three-blocks scheme proposed in the RFC).

The sender uses this information to create a bitmask of

packets that have been delivered successfully to the

receiver. When the sender detects a gap in the bitmask, it

immediately assumes that the missing packets have been

lost without considering the possibility that they simply

may have been reordered. Thus this scheme trades off

some resilience to reordering and lost acknowledgments

in exchange for a reduction in overhead to generate and

transmit acknowledgments.

3. Implementation Details

This section describes the protocols we have implemented

and evaluated. Table 1 summarizes the key ideas in each

scheme and the main differences between them. Figure 1

shows a typical loss situation over the wireless link. Here,

the TCP sender is in the middle of a transfer across a two-

hop network to a mobile host. At the depicted time, the

sender’s congestion window consists of 5 packets. Of the

five packets in the network, the first two packets are lost on

the wireless link. As described in the rest of this section,

each protocol reacts to these losses in different ways and

Name Category Special Mechanisms

E2E end-to-end standard TCP-Reno

E2E-NEWRENO end-to-end TCP-NewReno

E2E-SMART end-to-end SMART-based selective acks

E2E-IETF-SACK end-to-end IETF selective acks

E2E-ELN end-to-end Explicit Loss Notification (ELN)

E2E-ELN-RXMT end-to-end ELN with retransmit on first dupack

LL link-layer none

LL-TCP-AWARE link-layer duplicate ack suppression

LL-SMART link-layer SMART-based selective acks

LL-SMART-TCP-AWARE link-layer SMART and duplicate ack suppression

SPLIT split-connection none

SPLIT-SMART split-connection SMART-based wireless connection

Table 1. Summary of protocols studied in this paper.

1 2 3 4

4 3

2

1

5

5

congestion window = 5

Figure 1. A typical loss situation

TCP Source

Base Station

TCP Receiver
Lossy Link

Packets Stored
at Sender

Packets in Flight

Acknowledgments Returning

generates messages that result in loss recovery. Although

this figure only shows data packets being lost, our experi-

ments have wireless errors in both directions.

3.1 End-To-End Schemes

Although a wide variety of TCP versions are used on the

Internet, the current de facto standard for TCP implementa-

tions is TCP Reno [26]. We call this the E2E protocol, and

use it as the standard basis for performance comparison.

The E2E-NEWRENO protocol improves the performance

of TCP-Reno after multiple packet losses in a window by

remaining in fast recovery mode if the first new acknowl-

edgment received after a fast retransmission is “partial”, i.e,

is less than the value of the last byte transmitted when the

fast retransmission was done. Such partial acknowledge-

ments are indicative of multiple packet losses within the

original window of data. Remaining in fast recovery mode

enables the connection to recover from losses at the rate of

one segment per round trip time, rather than stall until a

coarse timeout as TCP-Reno often would [9, 12].

The E2E-SMART and E2E-IETF-SACK protocols add

SMART-based and IETF selective acknowledgments

respectively to the standard TCP Reno stack. This allows

the sender to handle multiple losses within a window of out-

standing data more efficiently. However, the sender still

assumes that losses are a result of congestion and invokes

congestion control procedures, shrinking its congestion

window size. This allows us to identify what percentage of

the end-to-end performance degradation is associated with

standard TCP’s handling of error detection and retransmis-

sion. We used the SMART-based scheme [17] only for the

LAN experiments. This scheme is well-suited to situations

where there is little reordering of packets, which is true for

one-hop wireless systems such as ours. Unlike the scheme

proposed in [17], we do not use any special techniques to

detect the loss of a retransmission. The sender retransmits a

packet when it receives a SMART acknowledgment only if

the same packet was not retransmitted within the last round-

trip time. If no further SMART acknowledgments arrive, the

sender falls back to the coarse timeout mechanism to

recover from the loss. We used the IETF selective acknowl-

edgement scheme both for the LAN and the WAN experi-

ments. Our implementation is based on the RFC and takes

appropriate congestion control actions upon receiving

SACK information [4].

The E2E-ELN protocol adds an Explicit Loss Notification

(ELN) option to TCP acknowledgments. When a packet is

dropped on the wireless link, future cumulative acknowl-

edgments corresponding to the lost packet are marked to

identify that a non-congestion related loss has occurred.

Upon receiving this information with duplicate acknowl-

edgments, the sender may perform retransmissions without

invoking the associated congestion-control procedures. This

option allows us to identify what percentage of the end-to-

end performance degradation is associated with TCP’s

incorrect invocation of congestion control algorithms when

it does a fast retransmission of a packet lost on the wireless

hop. The E2E-ELN-RXMT protocol is an enhancement of

the previous one, where the sender retransmits the packet on

receiving the first duplicate acknowledgement with the ELN

option set (as opposed to the third duplicate acknowledge-

ment in the case of TCP Reno), in addition to not shrinking

its window size in response to wireless losses.

In practice, it might be difficult to identify which packets

are lost due to errors on a lossy link. However, in our exper-

iments we assume sufficient knowledge at the receiver

about wireless losses to generate ELN information. We

describe some possible implementation policies and strate-

gies for the ELN mechanism in Section 5.2.

3.2 Link-Layer Schemes

Unlike TCP for the transport layer, there is no de facto stan-

dard for link-layer protocols. Existing link-layer protocols

choose from techniques such as Stop-and-Wait, Go-Back-N,

Selective Repeat and Forward Error Correction to provide

reliability. Our base link-layer algorithm, called LL, uses

cumulative acknowledgments to determine lost packets that

are retransmitted locally from the base station to the mobile

host. To minimize overhead, our implementation of LL

leverages off TCP acknowledgments instead of generating

its own. Timeout-based retransmissions are done by main-

taining a smoothed round-trip time estimate, with a mini-

mum timeout granularity of 200 ms to limit the overhead of

processing timer events. This still allows the LL scheme to

retransmit packets several times before a typical TCP Reno

transmitter would time out. LL is equivalent to the snoop

agent that does not suppress any duplicate acknowledg-

ments, and does not attempt in-order delivery of packets

across the link (unlike protocols proposed in [15], [22]).

While the use of TCP acknowledgments by our LL protocol

renders it atypical of traditional ARQ protocols, we believe

that it still preserves the key feature of such protocols: the

ability to retransmit packets locally, independently of and

on a much faster time scale than TCP. Therefore, we expect

the qualitative aspects of our results to be applicable to gen-

eral link-layer protocols.

We also investigated a more sophisticated link-layer proto-

col (LL-SMART) that uses selective retransmissions to

improve performance. The LL-SMART protocol performs

this by applying a SMART-based acknowledgment scheme

at the link layer. Like the LL protocol, LL-SMART uses

TCP acknowledgments instead of generating its own and

limits its minimum timeout to 200 ms. LL-SMART is

equivalent to the snoop agent performing retransmissions

based on selective acknowledgements but not suppressing

duplicate acknowledgments at the base station.

We added TCP awareness to both the LL and LL-SMART

protocols, resulting in the LL-TCP-AWARE and LL-

SMART-TCP-AWARE schemes. The LL-TCP-AWARE

protocol is identical to the snoop protocol, while the LL-

SMART-TCP-AWARE protocol uses SMART-based tech-

niques for further optimization using selective repeat. LL-

SMART-TCP-AWARE is the best link-layer protocol in our

experiments — it performs local retransmissions based on

selective acknowledgments and shields the sender from

duplicate acknowledgments caused by wireless losses.

3.3 Split-Connection Schemes

Like I-TCP, our SPLIT scheme uses an intermediate host to

divide a TCP connection into two separate TCP connec-

tions. The implementation avoids data copying in the inter-

mediate host by passing the pointers to the same buffer

between the two TCP connections. A variant of the SPLIT

approach we investigated, SPLIT-SMART, uses a SMART-

based selective acknowledgment scheme on the wireless

connection to perform selective retransmissions. There is

little chance of reordering of packets over the wireless con-

nection since the intermediate host is only one hop away

from the final destination.

4. Experimental Results

In this section, we describe the experiments we performed

and the results we obtained, including detailed explanations

for observed performance. We start by describing the exper-

imental testbed and methodology. We then describe the per-

formance of the various link-layer, end-to-end and split-

connection schemes.

4.1 Experimental Methodology

We performed several experiments to determine the perfor-

mance and efficiency of each of the protocols. The proto-

cols were implemented as a set of modifications to the BSD/

OS TCP/IP (Reno) network stack. To ensure a fair basis for

comparison, none of the protocols implementations intro-

duce any additional data copying at intermediate points

from sender to receiver.

Our experimental testbed consists of IBM ThinkPad laptops

and Pentium-based personal computers running BSD/OS

2.1 from BSDI. The machines are interconnected using a 10

Mbps Ethernet and 915 MHz AT&T WaveLANs [27], a

shared-medium wireless LAN with a raw signalling band-

width of 2 Mbps. The network topology for our experiments

is shown in Figure 2. The peak throughput for TCP bulk

transfers is 1.5 Mbps in the local area testbed and 1.35

Mbps in the wide area testbed in the absence of congestion

or wireless losses. These testbed topologies represent typi-

cal scenarios of wireless links and mobile hosts, such as cel-

lular wireless networks. In addition, our experiments focus

on data transfer to the mobile host, which is the common

case for mobile applications (e.g., Web accesses).

In order to measure the performance of the protocols under

controlled conditions, we generate errors on the lossy link

using an exponentially distributed bit-error model. The

receiving entity on the lossy link generates an exponential

distribution for each bit-error rate and changes the TCP

checksum of the packet if the error generator determines

that the packet should be dropped. Losses are generated in

both directions of the wireless channel, so TCP acknowl-

edgments are dropped too. The TCP data packet size in our

experiments is 1400 bytes. We first measure and analyze the

performance of the various protocols at an average error rate

of one every 64 KBytes (this corresponds to a bit-error rate

of about 1.9x10-6). Note that since the exponential distribu-

tion has a standard deviation equal to its mean, there are

several occasions when multiple packets are lost in close

succession. We then report the results of some burst error

situations, where between two and six packets are dropped

in every burst (Section 4.5). Finally, we investigate the per-

formance of many of these protocols across a range of error

rates from one every 16 KB to one every 256 KB. The

choice of the exponentially distributed error model is moti-

vated by our desire to understand the precise dynamics of

each protocol in response to a wireless loss, and is not an

attempt to empirically model a wireless channel. While the

actual performance numbers will be a function of the exact

error model, the relative performance is dependent on how

the protocol behaves after one or more losses in a single

TCP window. Thus, we expect our overall conclusions to be

applicable under other patterns of wireless loss as well.

Finally, we believe that though wireless errors are generated

artificially in our experiments, the use of a real testbed is

still valuable in that it introduces realistic effects such as

wireless bandwidth limitation, media access contention,

protocol processing delays, etc., which are hard to model

realistically in a simulation.

In our experiments, we attempt to ensure that losses are only

due to wireless errors (and not congestion). This allows us

to focus on the effectiveness of the mechanisms in handling

such losses. The WAN experiments are performed across 16

TCP Source

10 Mbps Ethernet

TCP Receiver

2 Mbps WaveLAN
(lossy link)

Pentium-based PC
running BSD/OS)

Base Station
(Pentium PC
running BSD/OS)

(Pentium laptop
running BSD/OS)

Figure 2. Experimental topology. There were an addi-
tional 16 Internet hops between the source and base sta-

tion during the WAN experiments.

Internet hops with minimal congestion2 in order to study the

impact of large delay-bandwidth products.

Each run in the experiment consists of an 8 MByte transfer

from the source to receiver across the wired net and the

WaveLAN link. We chose this rather long transfer size in

order to limit the impact of transient behavior at the start of

a TCP connection. During each run, we measure the

throughput at the receiver in Mbps, and the wired and wire-

less goodputs as percentages. In addition, all packet trans-

missions on the Ethernet and WaveLan are recorded for

analysis using tcpdump [20], and the sender’s TCP code

instrumented to record events such as coarse timeouts,

retransmission times, duplicate acknowledgment arrivals,

congestion window size changes, etc. The rest of this sec-

tion presents and discusses the results of these experiments.

4.2 Link-Layer Protocols

Traditional link-layer protocols operate independently of

the higher-layer protocol, and consequently, do not neces-

sarily shield the sender from the lossy link. In spite of local

retransmissions, TCP performance could be poor for two

reasons: (i) competing retransmissions caused by an incom-

patible setting of timers at the two layers, and (ii) unneces-

sary invocations of the TCP fast retransmission mechanism

due to out-of-order delivery of data. In [10], the effects of

the first situation are simulated and analyzed for a TCP-like

transport protocol (that closely tracks the round-trip time to

set its retransmission timeout) and a reliable link-layer pro-

tocol. The conclusion was that unless the packet loss rate is

high (more than about 10%), competing retransmissions by

the link and transport layers often lead to significant perfor-

mance degradation. However, this is not the dominating

effect when link layer schemes, such as LL, are used with

TCP Reno and its variants. These TCP implementations

have coarse retransmission timeout granularities that are

typically multiples of 500 ms, while link-layer protocols

typically have much finer timeout granularities. The real

problem is that when packets are lost, link-layer protocols

that do not attempt in-order delivery across the link (e.g.,

LL) cause packets to reach the TCP receiver out-of-order.

This leads to the generation of duplicate acknowledgments

by the TCP receiver, which causes the sender to invoke fast

retransmission and recovery. This can potentially cause

degraded throughput and goodput, especially when the

delay-bandwidth product is large.

Our results substantiate this claim, as can be seen by com-

paring the LL and LL-TCP-AWARE results (Figure 3 and

Table 2). For a packet size of 1400 bytes, a bit error rate of

1.9x10-6 (1/65536 bytes) translates to a packet error rate of

about 2.2 to 2.3%. Therefore, an optimal link-layer protocol

that recovers from errors locally and does not compete with

TCP retransmissions should have a wireless goodput of

97.7% and a wired goodput of 100% in the absence of con-

gestion. In the LAN experiments, the throughput difference

between LL and LL-TCP-AWARE is about 10%. However,

the LL wireless goodput is only 95.5%, significantly less

than LL-TCP-AWARE’s wireless goodput of 97.6%, which

is close to the maximum achievable goodput. When a loss

occurs, the LL protocol performs a local retransmission rel-

atively quickly. However, enough packets are typically in

transit to create more than 3 duplicate acknowledgments.

These duplicates eventually propagate to the sender and

trigger a fast retransmission and the associated congestion

control mechanisms. These fast retransmissions result in

2. WAN experiments across the US were performed between 10

pm and 4 am, PST and we verified that no congestion losses

occurred in the runs reported.

LL LL-TCP-AWARE LL-SMART LL-SMART-TCP-AWARE

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

LAN: AbsoluteWireless Goodput
Wired Goodput

Figure 3. Performance of link-layer protocols: bit-error rate = 1.9x10-6 (1 error/65536 bytes), socket buffer size = 32
KB. For each case there are two bars: the thick one corresponds to the scale on the left and denotes the throughput in

Mbps; the thin one corresponds to the scale on the right and shows the throughput as a percentage of the maximum, i.e.
in the absence of wireless errors (1.5 Mbps in the LAN environment and 1.35 Mbps in the WAN environment).

Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Percentage of max.

WAN: Absolute Percentage of max.

T
h

ro
u

g
h

p
u

t
(%

 o
f

m
a
x

im
u

m
)

0

10

20

30

40

50

60

70

80

90

100

95.5
97.9
1.20

95.5
98.4
0.82

97.6
100.0
1.36 97.6

100.0
1.19

95.5
98.3
1.29

95.3
99.4
0.93

97.7
100.0

1.39 97.6
100.0

1.22

reduced goodput; about 90% of the lost packets are retrans-

mitted by both the source and the base station.

The effects of this interaction are much more pronounced in

the wide-area experiments — the throughput difference is

about 30% in this case. The cause for the more pronounced

deterioration in performance is the higher bandwidth-delay

product of the wide-area connection. The LL scheme causes

the sender to invoke congestion control procedures often

due to duplicate acknowledgments and causes the average

window size of the transmitter to be lower than for LL-TCP-

AWARE. This is shown in Figure 4, which compares the

congestion window size of LL and LL-TCP-AWARE as a

function of time. Note that the number of outstanding data

bytes in the network is the minimum of the congestion win-

dow and the receiver advertised window. This is bounded

by the receiver’s socket buffer size. In the congestion win-

dow graphs for each protocol, the receiver socket buffer is

32KB.

In the wide area, the bandwidth-delay product is about

23000 bytes (1.35 Mbps * 135 ms), and the congestion win-

dow drops below this value several times during each TCP

transfer. On the other hand, the LAN experiments do not

suffer from such a large throughput degradation because

LL’s lower congestion-window size is usually still larger

than the connection’s delay-bandwidth product of about

1900 bytes (1.5 Mbps * 10 ms). Therefore, the LL scheme

can maintain a nearly full “data pipe” between the sender

and receiver in the local connection but not in the wide area

LL LL-TCP-AWARE LL-SMART

LL-SMART-TCP-

AWARE

LAN (8 KB) 1.20 (95.6%,97.9%) 1.29 (97.6%,100%) 1.29 (96.1%,98.9%) 1.37 (97.6%,100%)

LAN (32 KB) 1.20 (95.5%,97.9%) 1.36 (97.6%,100%) 1.29 (95.5%,98.3%) 1.39 (97.7%,100%)

WAN (32 KB) 0.82 (95.5%,98.4%) 1.19 (97.6%,100%) 0.93 (95.3%,99.4%) 1.22 (97.6%,100%)

Table 2. This table summarizes the results for the link-layer schemes for an average error rate of one every 65536

bytes of data. Each entry is of the form: throughput (wireless goodput, wired goodput). Throughput is measured in

Mbps. Goodput is expressed as a percentage.

LL-TCP-AWARE

Figure 4. Congestion window size for link-layer protocols in wide area tests. The horizontal dashed line in the LL graph
shows the 23000 byte WAN bandwidth-delay product.

LL

0

8192

16384

24576

32768

40960

49152

57344

65536

0 10 20 30 40 50 60 70 80C
o
n

g
es

ti
o

n
 W

in
d

o
w

 (
b

y
te

s)
Time (sec)

0

8192

16384

24576

32768

40960

49152

57344

65536

0 10 20 30 40 50 60 70 80C
o
n

g
es

ti
o
n

 W
in

d
o
w

 (
b

y
te

s)

Time (sec)

Figure 5. Packet sequence traces for LL-TCP-AWARE and LL. No coarse timeouts occur in either case. For LL-TCP-
AWARE, the horizontal row of dots shows the times of wireless link retransmissions. For LL, the top row shows sender

fast retransmission times and the bottom row shows both local wireless and sender retransmissions.

Wired retransmissions

Wireless retransmissions
Wireless retransmissions

LL-TCP-AWARE LL

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 10 20 30 40 50 60 70 80

S
eq

u
en

ce
 N

u
m

b
er

 (
b

y
te

s)

Time (sec)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

S
eq

u
en

ce
 N

u
m

b
er

 (
b

y
te

s)

0 10 20 30 40 50 60 70 80
Time (sec)

one. The 10% LAN degradation is almost entirely due to the

excessive retransmissions over the wireless link and to the

smaller average congestion window size compared to LL-

TCP-AWARE. Another important point to note is that LL

successfully prevents coarse timeouts from happening at the

source. Figure 5 shows the sequence traces of TCP transfers

for LL-TCP-AWARE and LL.

In summary, our results indicate that a simple link-layer

retransmission scheme does not entirely avoid the adverse

effects of TCP fast retransmissions and the consequent per-

formance degradation. An enhanced link-layer scheme that

uses knowledge of TCP semantics to prevent duplicate

acknowledgments caused by wireless losses from reaching

the sender and locally retransmits packets achieves signifi-

cantly better performance.

4.3 End-To-End Protocols

The performance of the various end-to-end protocols is

summarized in Figure 6 and Table 3. The performance of

TCP Reno, the baseline E2E protocol, highlights the prob-

lems with TCP over lossy links. At a 2.3% packet loss rate

(as explained in Section 4.2), the E2E protocol achieves a

throughput of less than 50% of the maximum (i.e., through-

put in the absence of wireless losses) in the local-area and

less than 25% of the maximum in the wide-area experi-

ments. However, all the end-to-end protocols achieve good-

puts close to the optimal value of 97.7%. The primary

reason for the low throughput is the large number of time-

outs that occur during the transfer (Figure 7). The resulting

average window size during the transfer is small, preventing

the “data pipe” from being kept full and reducing the effec-

tiveness of the fast retransmission mechanism (Figure 8).

The modified end-to-end protocols improve throughput by

retransmitting packets known to have been lost on the wire-

less hop earlier than they would have been by the baseline

E2E protocol, and by reducing the fluctuations in window

size. The E2E-NEWRENO, E2E-ELN, E2E-SMART and

E2E-IETF-SACK protocols each use new TCP options and

more sophisticated acknowledgment processing techniques

to improve the speed and accuracy of identifying and

retransmitting lost packets, as well as by recovering from

multiple losses in a single transmission window without

timing out. The remainder of this section discusses the ben-

efits of three techniques — partial acknowledgments,

explicit loss notifications, and selective acknowledgments.

Partial acknowledgments: E2E-NEWRENO, which uses

partial acknowledgment information to recover from multi-

ple losses in a window at the rate of one packet per round-

trip time, performs between 10 and 25% better than E2E

over a LAN and about 2 times better than E2E in the WAN

experiments. The performance improvement is a function of

the socket buffer size — the larger the buffer size, the better

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

E2E E2E-NEWRENO E2E-SMART E2E-ELN E2E-ELNRXMT

Figure 6. Performance of end-to-end protocols: bit error rate = 1.9x10-6 (1 error/65536 bytes).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
h

ro
u

g
h

p
u

t
(%

 o
f

m
a

x
im

u
m

)

0

10

20

30

40

50

60

70

80

90

E2E-IETF-
SACK

LAN: Absolute Percentage of max.

WAN: Absolute Percentage of max.

97.5

97.5

0.70

97.3
97.3
0.31

97.7

97.3

0.89
97.5

97.5

0.64

97.2

97.2

1.25

97.5

97.5

0.80

97.5

97.5

1.12 97.5

97.5

0.93

97.6

97.6

0.64

97.5

97.5

0.95
97.4

97.4

0.72

E2E

E2E-

NEWRENO E2E-SMART

E2E-IETF-

SACK E2E-ELN

E2E-ELN-

RXMT

LAN (8 KB) 0.55 (97.0,96.0) 0.66 (97.3,97.3) 1.12 (97.6,97.6) 0.68 (97.3,97.3) 0.69 (97.3,97.2) 0.86 (97.4,97.3)

LAN (32 KB) 0.70 (97.5,97.5) 0.89 (97.7,97.3) 1.25 (97.2,97.2) 1.12 (97.5,97.5) 0.93 (97.5,97.5) 0.95 (97.5,97.5)

WAN (32 KB) 0.31 (97.3,97.3) 0.64 (97.5,97.5) N.A. 0.80 (97.5,97.5) 0.64 (97.6,97.6) 0.72 (97.4,97.4)

Table 3. This table summarizes the results for the end-to-end schemes for an average error rate of one every 65536

bytes of data. The numbers in the cells follow the same convention as in Table 2.

the relative performance. This is because in situations that

E2E suffers a coarse timeout for a loss, the probability that

E2E-NEWRENO does not, increases with the number of

outstanding packets in the network.

Explicit Loss Notification: One way of eliminating the long

delays caused by coarse timeouts is to maintain as large a

window size as possible. E2E-NEWRENO remains in fast

recovery if the new acknowledgment is only partial, but

reduces the window size to half its original value upon the

arrival of the first new acknowledgment. The E2E-ELN and

E2E-ELN-RXMT protocols use ELN information

(Section 3.1) to prevent the sender from reducing the size of

the congestion window in response to a wireless loss. Both

these schemes perform better than E2E-NEWRENO, and

over two times better than E2E. This is a result of the

sender’s explicit awareness of the wireless link, which

reduces the number of coarse timeouts (Figure 7) and rapid

window size fluctuations (Figure 8). The E2E-ELN-RXMT

protocol performs only slightly better than E2E-ELN when

the socket buffer size is 32 KB. This is because there is usu-

ally enough data in the pipe to trigger a fast retransmission

for E2E-ELN. The performance benefits of E2E-ELN-

RXMT are more pronounced when the socket buffer size is

smaller, as the numbers for the 8 KB socket buffer size indi-

cate (Table 3). This is because E2E-ELN-RXMT does not

wait for three duplicate acknowledgments before retrans-

mitting a packet, if it has ELN information for it. The maxi-

mum socket buffer size of 8 KB limits the number of

unacknowledged packets to a small number at any point in

time, which reduces the probability of three duplicate

acknowledgments arriving after a loss and triggering a fast

retransmission.

Despite explicit awareness of wireless losses, timeouts

sometimes occur in the ELN-based protocols. This is a

result of our implementation of the ELN protocol, which

does not convey information about multiple wireless-related

losses to the sender. Since it is coupled with only cumula-

tive acknowledgments, the sender is unaware of the occur-

rence of multiple wireless-related losses in a window; we

plan to couple SACKs and ELN together in future work.

Section 5.2 discusses some possible implementation strate-

gies and policies for ELN.

Selective acknowledgments: We experimented with two

different SACK schemes. In the LAN case, we used a sim-

ple SACK scheme based on a subset of the SMART pro-

posal. This protocol was the best of the end-to-end protocols

in this situation, achieving a throughput of 1.25 Mbps (in

contrast, the best local scheme, LL-SMART-TCP-AWARE,

obtained a throughput of 1.39 Mbps).

In the WAN case, we based our SACK implementation [4]

on RFC 2018. For the exponentially-distributed loss pattern

Figure 7. Packet sequence traces for E2E (TCP Reno) and E2E-ELN. The top row of horizontal dots shows the times
when fast retransmissions occur; the bottom row shows the coarse timeouts.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 50 100 150 200 250

S
eq

u
en

ce
 N

u
m

b
er

 (
b

y
te

s)

Time (sec)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 50 100 150 200 250

S
eq

u
en

ce
 N

u
m

b
er

 (
b

y
te

s)

Time (sec)

E2E E2E-ELN

Fast retransmissions

Coarse timeouts

Fast retransmissions

Coarse timeouts

Figure 8. Congestion window size as a function of time for E2E (TCP Reno) and E2E-ELN. This figure clearly shows
the utility of ELN in preventing rapid fluctuations, thereby maintaining a larger average congestion window size.

0

8192

16384

24576

32768

40960

49152

57344

65536

0 50 100 150 200 250

C
o
n

g
e
s
ti
o

n
 W

in
d

o
w

 (
b

y
te

s
)

Time (sec)

0

8192

16384

24576

32768

40960

49152

57344

65536

0 50 100 150 200 250

C
o

n
g
e

s
ti
o

n
 W

in
d

o
w

 (
b

y
te

s
)

Time (sec)

E2E E2E-ELN

we used, the throughput was about 0.8 Mbps, significantly

higher than the 0.31 Mbps throughput of TCP Reno. How-

ever, this is still about 35% worse than LL-OPT. Even

though SACKs allow the sender to often recover from mul-

tiple losses without timing out, the sender’s congestion win-

dow decreases every time there is a packet dropped on the

wireless link, causing it to remain small.

In summary, E2E-NEWRENO is better than E2E, especially

for large socket buffer sizes. Adding ELN to TCP improves

throughput significantly by successfully preventing unnec-

essary fluctuations in the transmission window. Finally,

SACKs provide significant improvement over TCP Reno,

but perform about 10-15% worse than the best link-layer

schemes in the LAN experiments, and about 35% worse in

the WAN experiments. These results suggest that an end-to-

end protocol that has both ELN and SACKs will result in

good performance, and is an area of current work.

4.4 Split-Connection Protocols

The main advantage of the split-connection approaches is

that they isolate the TCP source from wireless losses. The

TCP sender of the second, wireless connection performs all

the retransmissions in response to wireless losses.

Figure 9 and Table 4 show the throughput and goodput for

the split connection approach in the LAN and WAN envi-

ronments. We report the results for two cases: when the

wireless connection uses TCP Reno (labeled SPLIT) and

when it uses the SMART-based selective acknowledgment

scheme described earlier (labeled SPLIT-SMART). We see

that the throughput achieved by the SPLIT approach (0.6

Mbps) is quite low, about the same as that for end-to-end

TCP Reno (labeled E2E in Figure 6). The reason for this is

apparent from Figures 10 and 11, which show the progress

of the data transfer and the size of the congestion window

for the wired and wireless connections. We see that the

wired connection neither has any retransmissions nor any

timeouts, resulting in a wired goodput of 100%. However, it

(eventually) stalls whenever the sender of the wireless con-

nection experiences a timeout, since the amount of buffer

SPLIT SPLIT-SMART

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 9. Performance of split-connection protocols: bit error rate = 1.9x10-6 (1 error/65536 bytes).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
h

ro
u

g
h

p
u

t
(%

 o
f

m
a
x

im
u

m
)

0

10

20

30

40

50

60

70

80

90

100

LAN: Absolute Percentage of max.

WAN: Absolute Percentage of max.

97.3
100.0

0.60

97.2
99.9
0.58

97.2
100.0
1.30 97.6

99.8
1.10

Figure 10. Packet sequence trace for the wired and wireless parts of the SPLIT protocol. The wireless part has two
rows of horizontal dots: the top one shows the times of fast retransmissions and the bottom one the times of the time-

out-based ones.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 20 40 60 80 100 120

S
eq

u
en

ce
 N

u
m

b
er

 (
b

y
te

s)

Time (sec)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 20 40 60 80 100 120

S
eq

u
en

ce
 N

u
m

b
er

 (
b

y
te

s)

Time (sec)

Wired Wireless

Fast retransmissions

Coarse timeouts

SPLIT SPLIT-SMART

LAN (8 KB) 0.54 (97.4%,100%) 1.30 (97.6%,100%)

LAN (32 KB) 0.60 (97.3%,100%) 1.30 (97.2%,100%)

WAN (32 KB) 0.58 (97.2%,100%) 1.10 (97.6%,100%)

Table 4. Summary of results for the split-connection

schemes at an average error rate of 1 every 64 KB.

space at the base station (64 KB in our experiments) is

bounded3. In the WAN case, the throughput of the SPLIT

approach is about 0.58 Mbps which is better than the 0.31

Mbps that the E2E approach achieves (Figure 6), but not as

good as several other protocols described earlier. The large

congestion window size of the wired sender in SPLIT

enables a higher bandwidth utilization over the wired net-

work, compared to an end-to-end TCP connection where the

congestion window size fluctuates rapidly.

As expected, the throughput for the SPLIT-SMART scheme

is much higher. It is about 1.3 Mbps in the LAN case and

about 1.1 Mbps in the WAN case. The SMART-based selec-

tive acknowledgment scheme operating over the wireless

link performs very well, especially since no reordering of

packets occurs over this hop. However, there are a few

times when both the original transmission and the first

retransmission of a packet get lost, which sometimes results

in a coarse timeout (as described in Section 3.1). This

explains the difference in throughput between the SPLIT-

SMART scheme and the LL-SMART-TCP-AWARE

scheme (Figure 3).

In summary, while the split-connection approach results in

good throughput if the wireless connection uses special

mechanisms, the performance is worse than that of a well-

tuned, TCP-aware link-layer protocol (LL-TCP-AWARE or

LL-SMART-TCP-AWARE). Moreover, the link-layer pro-

tocol preserves the end-to-end semantics of TCP acknowl-

edgments. This demonstrates that the end-to-end connection

need not be split at the base station in order to achieve good

performance.

4.5 Reaction to Burst Errors

In this section, we report the results of some experiments

that illustrate the benefit of selective acknowledgments in

handling burst losses. We consider two of the best perform-

ing local protocols: LL-TCP-AWARE (Snoop) and LL-

SMART-TCP-AWARE (Snoop with SMART-based selec-

tive acknowledgments). LL-TCP-AWARE recovers from a

single loss by retransmitting the lost packet when two dupli-

cate acknowledgments arrive for it. It also keeps track of the

number of expected duplicate acknowledgments and the

next expected new acknowledgment after this local retrans-

mission. If this loss is part of a burst, the first new acknowl-

edgment to arrive after the duplicates will be less than the

next expected new one; this causes an immediate retrans-

mission of the lost segment. This is similar to the mecha-

nism used by E2E-NEWRENO (Section 3.1). LL-SMART-

TCP-AWARE uses the additional useful information pro-

vided by the SMART scheme — the sequence number of

the segment that caused the duplicate acknowledgment —

to accurately determine losses and recover from them.

Table 5 shows the performance of the two protocols for

bursts of lengths 2, 4, and 6 packets. These errors are gener-

ated at an average rate of one every 64 KBytes of data, and

2, 4, or 6 packets are destroyed in each case. Selective

acknowledgments improve the performance of LL-

SMART-TCP-AWARE over LL-TCP-AWARE by up to

30% in the presence of burst errors. While this is a fairly

3. A larger buffer at the base station will not necessarily improve

performance for two reasons: (1) we measure performance in

terms of receiver throughput, which is limited by the small conges-

tion window size of the wireless connection, and (2) a long enough

transfer will still fill up the buffer.

Figure 11. Congestion window sizes as a function of time for the wired and wireless parts of the split TCP connection.
The wired sender never sees any losses and maintains a 64 KB congestion window. However, the wireless TCP connec-

tion’s congestion window fluctuates rapidly.

0

8192

16384

24576

32768

40960

49152

57344

65536

0 20 40 60 80 100 120C
o

n
g

es
ti

o
n

 W
in

d
o

w
 (

b
y
te

s)

Time (sec)
0

8192

16384

24576

32768

40960

49152

57344

65536

0 20 40 60 80 100 120C
o

n
g

es
ti

o
n

 W
in

d
o
w

 (
b

y
te

s)

Time (sec)

Wired Wireless

Burst

Length

LL-TCP-

AWARE (Mbps)

LL-SMART-TCP-

AWARE (Mbps)

2 1.25 1.28

4 1.02 1.20

6 0.84 1.10

Table 5. Throughputs of LL-TCP-AWARE and LL-

SMART-TCP-AWARE at different burst lengths.

This illustrates the benefits of SACKs, even for a

high-performance, TCP-aware link protocol.

simplistic burst-error model, it does illustrate the problems

caused by the loss of multiple packets in succession. We are

in the process of experimenting with a temporal burst-loss

model based on average lengths of fades and other causes of

wireless losses. The parameters of this model are derived

from a trace-based modeling and characterization of the

WaveLAN network [23].

4.6 Performance at Different Error Rates

In this section, we present the results of several experiments

performed across a range of bit-error rates, for some of the

protocols described earlier — E2E (the baseline case), LL-

TCP-AWARE, LL-SMART-TCP-AWARE, E2E-SMART,

E2E-IETF-SACK, and SPLIT-SMART. We chose the best

performing protocols from each category, as well as some

other protocols (e.g., E2E-IETF-SACK) to illustrate some

interesting effects.

Figure 12 shows the performance of these protocols for an 8

MByte end-to-end transfer in a LAN environment, across

exponentially distributed error rates ranging from 1 error

every 16 KB to 1 error every 256 KB, in increasing powers

of two. We find that the overall qualitative results and con-

clusions are similar to those presented earlier for the 64 KB

error rate. At low error rates (128 KB and 256 KB points in

the graph), all the protocols shown perform almost equally

well in improving TCP performance. At the 16 KB error

rate, the performance of the TCP-aware link-layer schemes

is about 1.75-2 times better than E2E-SMART and about 9

times better than TCP Reno.

Another interesting point to note is the relative performance

of E2E-IETF-SACK and E2E-SMART, especially at the

high error rates. The congestion window does not grow

larger than a few packets in the steady state at these error

rates where there are multiple losses in many windows.

E2E-IETF-SACK does not retransmit any packet using

SACK information unless it receives three duplicate

acknowledgments (to overcome potential reordering of

packets in the network), which implies that no fast retrans-

missions are triggered if the number of packets in the win-

dow is less than four or five4. The sender’s congestion

window is often smaller than this, resulting in timeouts and

degraded performance. In contrast, our implementation of

E2E-SMART assumes no reordering of packets (which is

justified in the LAN case) and retransmits the lost packet

when the first duplicate acknowledgment with loss informa-

tion arrives. This reduces the number of timeouts and results

in better end-to-end performance. In Section 5.3, we outline

a scheme in which the IETF protocol can be modified to

work well even when the sender’s congestion window is not

large enough to provide enough duplicate acknowledg-

ments.

5. Discussion

In this section, we present a discussion of some miscella-

neous issues. We discuss the effects of handoff on TCP per-

formance, some implementation strategies and policies for

the ELN mechanism introduced in Section 3.1, and some

issues related to SMART-based and IETF selective

acknowledgment schemes.

5.1 Wireless Handoffs

Wireless networks are usually organized in a cellular topol-

ogy where each cell includes a base station that acts as a

router between the wireless subnet and a wireline backbone.

Mobile hosts typically communicate via the base station in

the cell they are currently located in. Examples of networks

organized in this fashion include cellular telephone net-

works and wireless local-area networks.

As a mobile host moves, it may get out of the range of its

current base station but still be within the range of other

neighboring base stations. To maintain the mobile host’s

connectivity, a handoff procedure is invoked to re-route traf-

fic to and from the mobile host via the new base station.

However, depending on the details of the handoff algo-

rithms, this procedure could lead to packet losses and reor-

dering, which in turn could cause significant deterioration in

the performance of ongoing TCP transfers [8].

Several proposals have been made for achieving fast hand-

offs. Two examples include multicast-based handoffs [25]

and hierarchical handoffs [9]. In both these schemes, hand-

offs are made fast by restricting updates to the immediate

vicinity of the mobile host. As a result the handoff latency

in a WaveLAN-based wireless local-area network is of the

order of 10-30 ms.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

16 32 64 128 256

� ������

��

��
��
��
��
��
��
��

�����������������������������
�����������������������������

����������������������������������

Figure 12. Performance of six protocols (LAN case)
across a range of bit-error rates, ranging from 1 error
every 16 KB to 1 every 256 KB shown on a log-scale.

E2E

E2E-IETF-SACK

LL-SMART-TCP-AWARE

LL-TCP-AWARE

SPLIT-SMART

E2E-SMART

Bit-error rate (1 error every x KBytes, average)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

4. This depends on whether delayed acknowledgments are used.

A small amount of buffering and retransmission from base

stations prevents packet loss during the short handoff

period. In [9], the buffering happens at the mobile host’s old

base station, which forwards packets to the new base station

at the time of handoff. In [25], one or more base stations in

the vicinity join a multicast group corresponding to the

mobile host and receive all packets destined to it, in antici-

pation of a handoff. When the handoff happens, the new

base station is readily able to forward the buffered and the

newly arriving packets without introducing any reordering,

thereby preventing unnecessary invocations of TCP fast

retransmissions. Experimental results reported in [25] indi-

cate that such fast handoffs have a minimal adverse effect

on TCP performance, even when the handoff frequency is

as high as once per second.

In contrast to the above schemes that operate at the network

layer, handoffs in a split-connection context, such as in I-

TCP [3], involve the transfer of transport-layer state from

the old base station to the new one. This results in signifi-

cantly higher latency; for example, [2] reports I-TCP hand-

off latencies of the order of hundreds of milliseconds in a

WaveLAN-based network.

5.2 Implementation Strategies for ELN

Section 3.1 described the ELN mechanism by which the

transport protocol can be made aware of losses unrelated to

network congestion and react appropriately to such losses.

In this section, we outline possible implementation strate-

gies and policies for this mechanism.

A simple strategy for implementing ELN would be to do so

at the receiver, as we did for the results presented in this

paper. In this method, the corruption of a packet at the link-

layer, indicated by a CRC error, is passed up to the transport

layer, which sends an ELN message with the duplicate

acknowledgments for the lost packet. In practice, it may be

hard to determine the connection that a corrupted packet

belongs to, since the header could itself be corrupted: this

can be handled by protecting the TCP/IP header using an

FEC scheme. However, there are circumstances in which

entire packets, including link-level headers, are dropped

over a wireless link. In such circumstances, the base station

generates ELN messages to the sender (in-band, as part of

the acknowledgment stream) when it observes duplicate

TCP acknowledgments arriving from the mobile host.

We expect Explicit Loss Notifications to be useful in the

context of multi-hop wireless networks, and are exploring

this in on-going work. Such networks (e.g., Metricom’s Ric-

ochet network [21]) typically use packet radio units to route

packets to and from a wired infrastructure. Here, in order to

implement ELN, periodic messages are exchanged between

adjacent packet radio units about queue lengths and this

information is used as a heuristic to distinguish between

congestion and packet corruption, especially when entire

packets (including headers) are corrupted or dropped over a

wireless link. This, coupled with a simple link-level scheme

to convey NACK information about missing packets, is suf-

ficient to generate ELN messages to the source.

5.3 Selective Acknowledgment Issues

Our experience with the IETF SACK scheme highlights

some weaknesses with it both when sender window sizes

are small. This situation can be improved by enhancing the

sender’s loss recovery algorithm as follows. In general, the

arrival of one duplicate acknowledgment at the receiver

indicates that one segment has successfully reached the

receiver. Rather than wait for three duplicate acknowledg-

ments and perform a fast retransmission, the sender now

transmits a new segment from beyond the “right edge” of

the current window upon the arrival of the first and second

duplicate acks. This probes the network for sustained con-

gestion and generates duplicate acknowledgments. Note

that we have not violated standard congestion control proce-

dures by doing this: we only send out a segment when one

has left the data pipe, following the principle of conserva-

tion of packets [13]. This enhancement can coexist with

SACKs to further avoid timeouts, since the arrival of an

acknowledgment with a SACK block indicating the recep-

tion of the newly transmitted segment is a strong indicator

that the original segment was lost, independent of whether

three duplicate acknowledgments arrive or not. Thus, this

mechanism will improve performance when the sender’s

window is small and losses occur, and is further explored

and described in [6].

6. Conclusions

In this paper, we have presented a comparative analysis of

several techniques to improve the end-to-end performance

of TCP over lossy, wireless hops. We categorize these tech-

niques as end-to-end, link-layer or split-connection based.

We use the end-to-end throughput, and the wired and wire-

less goodputs as metrics for comparison.

Our results lead to the following conclusions:

1. A reliable link-layer protocol that uses knowledge of TCP

(LL-TCP-AWARE) to shield the sender from duplicate

acknowledgments arising from wireless losses gives a 10-

30% higher throughput than one (LL) that operates indepen-

dently of TCP and does not attempt in-order delivery of

packets. Also, the former avoids redundant retransmissions

by both the sender and the base station, resulting in a higher

goodput. Of the schemes we investigated, the TCP-aware

link-layer protocol with selective acknowledgements per-

forms the best.

2. The split-connection approach, with standard TCP used

for the wireless hop, shields the sender from wireless losses.

However, the sender often stalls due to timeouts on the

wireless connection, resulting in poor end-to-end through-

put. Using a SMART-based selective acknowledgment

mechanism for the wireless hop yields good throughput.

However, the throughput is still slightly less than that for a

well-tuned link-layer scheme that does not split the connec-

tion. This demonstrates that splitting the end-to-end connec-

tion is not a requirement for good performance.

3. The SMART-based selective acknowledgment scheme

we used is quite effective in dealing with a high packet loss

rate when employed over the wireless hop or by a sender in

a LAN environment. In the WAN experiments, the SACK

scheme based on the IETF Draft resulted in significantly

improving end-to-end performance, although its perfor-

mance was not as good as in the best link schemes. From

our results we conclude that selective acknowledgment

schemes are very useful in the presence of lossy links, espe-

cially when losses occur in bursts.

4. End-to-end schemes, while not as effective as local tech-

niques in handling wireless losses, are promising since sig-

nificant performance gains can be achieved without any

extensive support from intermediate nodes in the network.

The explicit loss notification scheme we evaluated resulted

in a throughput improvement of more than a factor of two

over TCP-Reno, with comparable goodput values.

7. Future Work

Our experiments with various SACK and ELN mechanisms

demonstrate the significant benefits of such schemes, as

described in Section 5. We are in the process of evaluating

protocol enhancements based on these ideas in the presence

of both network congestion and wireless losses in different

network topologies, especially in networks with multiple

wireless hops. In addition, we are evaluating the perfor-

mance of several of the protocols described in this paper

under other patterns of loss derived from traces in [23].

We are investigating the impact of large variations in con-

nection round-trip times and the impact of bandwidth and

latency asymmetry on transport performance [5]. Large

round-trip variations are common in networks like the Met-

ricom Ricochet wireless network [21], especially in the

presence of bidirectional traffic. Bandwidth asymmetry is

prevalent in many cable and satellite networks with low-

bandwidth return channels.

8. Acknowledgments

We are grateful to Steven McCanne and the anonymous

reviewers for ACM SIGCOMM ’96 and IEEE/ACM Trans-

actions on Networking for several comments and sugges-

tions that helped improve the quality of this paper. We thank

Sally Floyd and Vern Paxson for useful discussions on

SACKs and related topics.

This work was supported by DARPA contract DAAB07-95-

C-D154, by the State of California under the MICRO pro-

gram, and by the Hughes Aircraft Corporation, Metricom,

Fuji Xerox, Daimler-Benz, Hybrid Networks, and IBM.

Hari is partially supported by a research grant from the

Okawa Foundation.

9. References

[1] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani,

and R. D. Gitlin. AIRMAIL: A Link-Layer Protocol

for Wireless Networks. ACM ACM/Baltzer Wireless

Networks Journal, 1:47–60, February 1995.

[2] A. Bakre and B. R. Badrinath. Handoff and System

Support for Indirect TCP/IP. In Proc. Second Usenix

Symp. on Mobile and Location-Independent Comput-

ing, April 1995.

[3] A. Bakre and B. R. Badrinath. I-TCP: Indirect TCP for

Mobile Hosts. In Proc. 15th International Conf. on

Distributed Computing Systems (ICDCS), May 1995.

[4] H. Balakrishnan. An Implementation of TCP Selective

Acknowledgments. ftp://daedalus.cs.berkeley.edu/

pub/tcpsack/, 1996.

[5] H. Balakrishnan, V. N. Padmanabhan, and R.H. Katz.

The Effects of Asymmetry on TCP Performance. In

Proc. ACM MOBICOM ’97, September 1997.

[6] H. Balakrishnan, V. N. Padmanabhan, S. Seshan,

M. Stemm, and R.H. Katz. TCP Behavior of a Busy

Web Server: Analysis and Improvements. Technical

Report UCB/CSD-97-966, University of California at

Berkeley, 1997.

[7] H. Balakrishnan, S. Seshan, and R.H. Katz. Improving

Reliable Transport and Handoff Performance in Cellu-

lar Wireless Networks. ACM Wireless Networks, 1(4),

December 1995.

[8] R. Caceres and L. Iftode. Improving the Performance

of Reliable Transport Protocols in Mobile Computing

Environments. IEEE Journal on Selected Areas in

Communications, 13(5), June 1995.

[9] R. Caceres and V. N. Padmanabhan. Fast and Scalable

Handoffs in Wireless Internetworks. In Proc. 1st ACM

Conf. on Mobile Computing and Networking, Novem-

ber 1996.

[10] A. DeSimone, M. C. Chuah, and O. C. Yue. Through-

put Performance of Transport-Layer Protocols over

Wireless LANs. In Proc. Globecom ’93, December

1993.

[11] K. Fall and S. Floyd. Simulation-based Comparisons

of Tahoe, Reno, and Sack TCP. Computer Communi-

cations Review, 1996.

[12] J. C. Hoe. Start-up Dynamics of TCP’s Congestion

Control and Avoidance Schemes. Master’s thesis,

Massachusetts Institute of Technology, 1995.

[13] V. Jacobson. Congestion Avoidance and Control. In

Proc. ACM SIGCOMM 88, August 1988.

[14] V. Jacobson and R. T. Braden. TCP Extensions for

Long Delay Paths. RFC, Oct 1988. RFC-1072.

[15] P. Karn. The Qualcomm CDMA Digital Cellular Sys-

tem. In Proc. 1993 USENIX Symp. on Mobile and

Location-Independent Computing, pages 35–40,

August 1993.

[16] P. Karn and C. Partridge. Improving Round-Trip Time

Estimates in Reliable Transport Protocols. ACM

Transactions on Computer Systems, 9(4):364–373,

November 1991.

[17] S. Keshav and S. Morgan. SMART Retransmission:

Performance with Overload and Random Losses. In

Proc. Infocom ’97, 1997.

[18] S. Lin and D. J. Costello. Error Control Coding: Fun-

damentals and Applications. Prentice-Hall, Inc., 1983.

[19] Mathis, M. and Mahdavi, J. and Floyd, S. and

Romanow, A. TCP Selective Acknowledgment

Options, 1996. RFC-2018.

[20] S. McCanne and V. Jacobson. The BSD Packet Filter:

A New Architecture for User-Level Packet Capture. In

Proc. Winter ’93 USENIX Conference, San Diego, CA,

January 1993.

[21] Metricom, Inc. http://www.metricom.com, 1997.

[22] S. Nanda, R. Ejzak, and B. T. Doshi. A Retransmis-

sion Scheme for Circuit-Mode Data on Wireless

Links. IEEE Journal on Selected Areas in Communi-

cations, 12(8), October 1994.

[23] G. T. Nguyen, R. H. Katz, B. D. Noble, and

M. Satyanarayanan. A Trace-based Approach for

Modeling Wireless Channel Behavior. In Proc. Winter

Simulation Conference, Dec 1996.

[24] J. B. Postel. Transmission Control Protocol. RFC,

Information Sciences Institute, Marina del Rey, CA,

September 1981. RFC-793.

[25] S. Seshan, H. Balakrishnan, and R. H. Katz. Handoffs

in Cellular Wireless Networks: The Daedalus Imple-

mentation and Experience. Kluwer Journal on Wire-

less Personal Communications, January 1997.

[26] W. R. Stevens. TCP/IP Illustrated, Volume 1. Addi-

son-Wesley, Reading, MA, Nov 1994.

[27] AT&T WaveLAN: PC/AT Card Installation and Oper-

ation. AT&T manual, 1994.

[28] R. Yavatkar and N. Bhagwat. Improving End-to-End

Performance of TCP over Mobile Internetworks. In

Mobile 94 Workshop on Mobile Computing Systems

and Applications, December 1994.

Hari Balakrishnan (S ’95 / ACM S ’95) is a Ph.D. candidate in

Computer Science at the University of California at Berkeley. His

research interests are in the areas of computer networks, wireless

and mobile computing, and distributed computing and communi-

cation systems. His current research is in the area of reliable data

transport over heterogeneous networking technologies.

Hari received a B. Tech. degree in Computer Science and Engi-

neering from the Indian Institute of Technology, Madras, in 1993

and an M.S. degree in Computer Science from Berkeley in 1995.

He received best student paper awards at the Winter Usenix ’95

and at the ACM Mobicom ’95 conferences, and is the recipient of

a research grant from the Okawa Foundation. On the WWW, his

URL is http://www.cs.berkeley.edu/~hari and his e-mail address is

hari@cs.berkeley.edu.

Venkata N. Padmanabhan (IEEE S ’94 / ACM S ’94) is a Ph.D.

candidate in Computer Science at the University of California at

Berkeley. He received his B.Tech. degree from the Indian Institute

of Technology, Delhi in 1993 and his M.S. degree from the Univer-

sity of California at Berkeley in 1995, both in Computer Science.

Venkat has done research in the areas of Computer Networking,

Mobile Computing and Operating Systems. The focus of his cur-

rent work is network support for efficient Web access, and data

transport over asymmetric networks. He received the best student

paper award at the Usenix ‘95 conference. He may be reached via

e-mail at padmanab@cs.berkeley.edu and on the Web at http://

www.cs.berkeley.edu/~padmanab.

Srinivasan Seshan (ACM M ’92) received a B.S. in Electrical

Engineering, an M.S., and a Ph.D. in Computer Science from the

University of California at Berkeley in 1990, 1993 and 1995

respectively. Since 1995, he has been a research staff member at

the IBM T.J. Watson Research Center. His research interests

include computer networks, mobile computing and distributed

computing. His e-mail address is srini@watson.ibm.com and his

WWW home page is at http://www.research.ibm.com/people/s/

srini.

Randy H. Katz (F ’96, ACM F ’96) is a professor of computer sci-

ence at the University of California at Berkeley, and is a principal

investigator in the Bay Area Research Wireless Access Network

(BARWAN) project. He has taught at Berkeley since 1983, with

the exception of 1993 and 1994 when he was a program manager

and deputy director of the Computing Systems Technology Office

at the Defense Department’s Advanced Research Projects Agency.

He has written over 130 technical publications on CAD, database

management, multiprocessor architectures, high performance stor-

age systems, video server architectures, and computer networks.

Dr. Katz received a B.S. degree at Cornell University, and an M.S.

and a Ph.D. at the University of California at Berkeley, all in com-

puter science. His e-mail address is randy@cs.berkeley.edu and his

WWW home page is http://www.cs.berkeley.edu/~randy.

	A Comparison of Mechanisms for Improving TCP Performance over Wireless Links
	Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan and Randy H. Katz
	{hari,padmanab,ss,randy}@cs.berkeley.edu
	Computer Science Division, Department of EECS, University of California at Berkeley

	Abstract
	1 . Introduction
	1. What combination of mechanisms results in best performance for each of the protocol classes?
	2. How important is it for link-layer schemes to be aware of TCP algorithms to achieve high end-t...
	3. How useful are selective acknowledgments in dealing with lossy links, especially in the presen...
	4. Is it important for the end-to-end connection to be split in order to effectively shield the s...

	2 . Related Work
	3 . Implementation Details
	Table 1. Summary of protocols studied in this paper.
	Figure 1. A typical loss situation
	3.1 End-To-End Schemes
	3.2 Link-Layer Schemes
	3.3 Split-Connection Schemes

	4 . Experimental Results
	4.1 Experimental Methodology
	Figure 2. Experimental topology. There were an additional 16 Internet hops between the source and...

	4.2 Link-Layer Protocols
	Figure 3. Performance of link-layer protocols: bit-error rate = 1.9x10-6 (1 error/65536 bytes), s...
	Table 2. This table summarizes the results for the link-layer schemes for an average error rate o...

	Figure 4. Congestion window size for link-layer protocols in wide area tests. The horizontal dash...
	Figure 5. Packet sequence traces for LL-TCP-AWARE and LL. No coarse timeouts occur in either case...

	4.3 End-To-End Protocols
	Figure 6. Performance of end-to-end protocols: bit error rate = 1.9x10-6 (1 error/65536 bytes).
	Table 3. This table summarizes the results for the end-to-end schemes for an average error rate o...

	Figure 7. Packet sequence traces for E2E (TCP Reno) and E2E-ELN. The top row of horizontal dots s...
	Figure 8. Congestion window size as a function of time for E2E (TCP Reno) and E2E-ELN. This figur...

	4.4 Split-Connection Protocols
	Figure 9. Performance of split-connection protocols: bit error rate = 1.9x10-6 (1 error/65536 byt...
	Figure 10. Packet sequence trace for the wired and wireless parts of the SPLIT protocol. The wire...
	Table 4. Summary of results for the split-connection schemes at an average error rate of 1 every ...

	Figure 11. Congestion window sizes as a function of time for the wired and wireless parts of the ...

	4.5 Reaction to Burst Errors
	Table 5. Throughputs of LL-TCP-AWARE and LL- SMART-TCP-AWARE at different burst lengths. This ill...

	4.6 Performance at Different Error Rates
	Figure 12. Performance of six protocols (LAN case) across a range of bit-error rates, ranging fro...

	5 . Discussion
	5.1 Wireless Handoffs
	5.2 Implementation Strategies for ELN
	5.3 Selective Acknowledgment Issues

	6 . Conclusions
	7 . Future Work
	8 . Acknowledgments
	9 . References

