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This paper considers the problem of scheduling jobs in a permutation flow shop with the objective of
minimising total earliness and tardiness. A genetic algorithm is proposed for the problem. This procedure and
five other procedures were tested on problem sets that varied in terms of number of jobs, machines and the
tightness and range of due dates. It was found that the genetic algorithm procedure was consistently effective
in generating good solutions relative to the other procedures.
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1. Introduction

The widespread adoption of lean production methods has caused early delivery of products as well as tardy delivery
to be viewed as undesirable. Early deliveries result in unnecessary inventory that ties up cash as well as space and
resources needed to maintain and manage inventory. Products that are delivered late can cause penalties such as lost
sales and loss of customer good will. This paper addresses this trend by considering an objective that sums the
penalties for earliness and tardiness for a set of jobs to be processed in a flow shop. Most research on flow shops has
assumed that the sequence of jobs to process will be the same on each machine. These schedules are referred to as
permutation schedules. This is done for two reasons. First it simplifies the computational effort and second it is
often not practical to change the sequence of jobs from one machine to the next. In this research only permutation
schedules are considered.

Formally, suppose there is a set of n jobs to be processed in a flow shop with M machines. Let dj be the due date
of job j ( j¼ 1, . . . , n). Let pjm and Cjm represent the processing time and completion time of job j ( j¼ 1, . . . , n) on
machine m (m¼ 1, . . . ,M). The earliness of job j, Ej, is defined as Ej¼max {dj�CjM, 0}, for j¼ 1, . . . , n and the
tardiness of job j, Tj, is defined as Tj¼max {CjM� dj, 0}, for j¼ 1, . . . , n. The objective function, Z, can be expressed
as Z¼

Pn
j¼1 Ej þ Tj.

Since the objective in the problem is non-regular, inserting idle time into a schedule for the jobs can help to
reduce the earliness of some jobs and thus improve the objective. However, in certain production environments, the
insertion of idle time may actually be undesirable, or even impossible. For instance, idle time should be avoided
when the capacity of the shop is limited when compared with the demand. Also, idle time should not be inserted
when the machine has a high operating cost, and/or when starting a new production run involves high setup costs or
times. Some specific examples of production environments where the insertion of idle time is undesirable have been
given by Landis (1993) and Korman (1994). In this research only schedules without unforced inserted idle time are
considered. Therefore if the job to be sequenced in position j is denoted as [j] and C[0]1¼ 0 then C[ j]1¼C[ j�1]1þ p[ j]1
and C[ j]m¼max {C[ j]m�1, C[ j�1]m}þ p[ j]m for m¼ 2, . . . ,M.

A large number of papers have been published on scheduling models with earliness and tardiness costs. Baker
and Scudder (1990) provide an excellent survey of the initial work on early/tardy scheduling. A recent survey of
multi-criteria scheduling which includes problems with earliness and tardiness penalties is given in Hoogeveen
(2005). Most of the research with an objective based on early and tardy job completion costs deals with single-
machine environments. Recent research for single-machine environments with an early/tardy objective and no idle
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time is summarised in Valente (2009). Scheduling models with inserted idle time, on the other hand, are reviewed in
Kanet and Sridharan (2000).

Only five papers address objectives based on earliness and tardiness costs in flow shops. Moslehi et al. (2009)
present an optimal procedure for minimising the sum of maximum earliness and tardiness in a two-machine flow
shop. Chandra et al. (2009) present approaches for permutation flow shop scheduling with earliness and tardiness
penalties when all the jobs have a common due date. Madhushini et al. (2009) present branch-and-bound algorithms
for scheduling permutation flow shops for a variety of objectives including minimising earliness and tardiness
without inserted idle time. Zegordi et al. (1995) present a simulated annealing algorithm with specialised knowledge
for scheduling permutation flow shops to minimise the sum of weighted earliness and tardiness without inserted idle
time. Rajendran (1999) presents heuristics for scheduling a kanban flow shop to minimise the sum of weighted flow
time, weighted tardiness and weighted earliness of containers.

Objectives that are based on meeting distinctive due dates are similar to the objective considered in this paper.
One such objective is minimising total tardiness. The reason the objectives are related is that our objective includes
total tardiness. Several heuristics have been found to be effective for scheduling flow shops to minimise total
tardiness, and other heuristics have been successfully implemented for single-machine scheduling for both the total
earliness and tardiness objective and the total tardiness objective. Vallada et al. (2008) found that neighbourhood
searches developed by Kim et al. (1996) and simulated annealing algorithms developed by Parthasarathy and
Rajendran (1997) and Hasiji and Rajendran (2004) were effective for minimising total tardiness in flow shops.
Framinan and Leisten (2008) developed a variable greedy algorithm for the problem and found it to be more
effective in minimising total tardiness than the simulated annealing algorithms in flow shops. Genetic algorithms
have been effective for minimising total tardiness in flow shops (Vallada and Ruiz 2010) and minimising total
earliness and tardiness on a single machine (Singh 2010). Holthaus and Rajendran (2005) developed a fast ant
colony algorithm that was found to be effective for scheduling a single machine to minimise total tardiness.

In this paper we propose a genetic algorithm for the problem. This algorithm is described in the next section.
Section 3 describes the computational tests and results and Section 4 concludes the paper.

2. Proposed genetic algorithm

A genetic algorithm is a metaheuristic search procedure that uses a multiple-solution search technique. This
approach has been found to quickly generate good solutions for a wide variety of scheduling problems. In a genetic
algorithm an initial population of chromosomes is first created and then successive populations (or generations) of
chromosomes are created using some methodology until a stopping condition is met. A chromosome corresponds to
a solution for the problem. For this problem solutions can be represented by a permutation sequence of the jobs.
The jth gene in a chromosome corresponds to the job in the jth position of a sequence.

Elements of the genetic algorithm proposed for the problem considered in this research include the initialisation
of the population, a selection mechanism, a mating operator, a mutation operator, local searches, a generational
scheme and stopping criteria. The genetic algorithm used in this research is referred to as GA.

2.1 Initial population

An initial population of 40 (population size) unique chromosomes (permutation sequences) is created. The
procedure creates 38 chromosomes randomly, one chromosome using the earliest due date (EDD) dispatching rule
and one chromosome using the NEHedd heuristic (Kim 1993). Each of the randomly generated chromosomes
(sequences) is created by first generating a random number between 0 and 1 for each job and then sorting the
numbers corresponding to each job (lowest to highest) to create a sequence of jobs (chromosome). If the sequence is
not already in the initial population it is added.

2.2 Selection operator

The genetic algorithm in this research uses a selection operator called n-tournament. With this approach a
percentage of individuals, a parameter called ‘‘pressure’’, is selected and the individual with the lowest total earliness
and tardiness among these individuals is selected for the mating process. The pressure parameter was set at
(10þ n=10

� �
� 5)%.
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2.3 Mating operator

Uniform order-based (UOB) crossover is used as the mating operator. The goal of this operator is to generate two
good individuals, called offspring, from two progenitors (chromosomes) that were selected using the selection
operator described in the previous subsection. The UOB crossover operator tries to copy jobs at each position from
the first parent with a probability pu1 to a child. The unfilled positions are then filled from the unused jobs in the
order they appear in the second parent. The operator then creates a second child by attempting to copy jobs at each
position from the second parent with a probability pu2 to a child. The unfilled positions are then filled from the
unused jobs in the order they appear in the first parent. The value of pu1 is set at ET (p2) / (ET (p1)þET (p2)) and
pu2, at ET (p1) / (ET (p1)þET (p2)), where ET (p1) and ET (p2) are the total earliness and tardiness associated with
the sequences of parents 1 and 2, respectively. With this approach, better parents tend to have more jobs copied to
children.

For example, consider the sequences associated with the following two parents:

Parent 1 : 1� 2� 3� 6� 5� 4

Parent 2 : 4� 5� 2� 3� 1� 6

If after the first step child 1 inherits positions 2, 5 and 6 from the first parent so that the partially formed child is
(_, 2, _, _, 5, 4) then the resulting sequence for the first child is:

3� 2� 1� 6� 5� 4:

The genetic algorithm in this research performs the mating operator with the two selected parents with a
probability of 35%.

2.4 Mutation operator

The genetic algorithm in this research uses a swap mutation operator. With this operator each job in the
permutation sequence is selected with a 3% probability and swaps positions with a job in a randomly chosen
different position in the sequence.

2.5 Local searches

Local searches are used in the genetic algorithm proposed in this research. The first local search is a job insertion
search. In this search a job is removed from the sequence and is inserted into all n positions. The final position of the
job is the position that results in the lowest total tardiness. This search is carried out in all n jobs of each generated
offspring after the mating and mutation operators have been applied with a probability of 12%. This local search is
also applied to the best individual found in the initial generation of the population. If the insertion search is not
applied, then one pass of an adjacent pairwise exchange procedure is carried out with a probability of 50%.

2.6 Generational scheme

The genetic algorithm proposed in this research has two criteria for accepting generated offspring into the
population: (1) an offspring must be better (have a lower total earliness and tardiness) than the worst individual in
the population; and (2) the offspring has a unique sequence (there are no other individuals in the population with the
same sequence).

2.7 Stopping criteria

The proposed genetic algorithm in this research has two stopping criteria: (1) if a solution is found with zero total
earliness and tardiness the procedure stops; and (2) if a time limit is exceeded when a generation is completed the
procedure stops.
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3. Computational test

The proposed genetic algorithm is tested on randomly generated problems of various sizes in terms of the number of
jobs and number of machines and under various conditions of due date range and tightness. Also, as a basis of
comparison, several other procedures are included in the computational test. An optimal branch-and-bound
procedure (O) was used to generate optimal solutions for small-sized problems (n¼ 8, 10 and 12).

The following heuristics are included: the simulated annealing algorithms of Zegordi et al. (1995) and
Parthasarathy and Rajendran (1997), a neighbourhood search based on the neighbourhood searches of Kim et al.
(1996), Framinan and Leisten (2008)’s variable greedy algorithm and the fast ant colony algorithm developed by
Holthaus and Rajendran (2005). The simulated annealing algorithm developed by Zegordi et al. (1995) considers
weighted earliness and tardiness for flow shops and is modified in this research by setting the weights for earliness
and tardiness for each job to 1. The procedure is referred to as ZSA in this research. The procedures by Kim et al.
(1996), Parthasarathy and Rajendran (1997) and Framinan and Leisten (2008) minimise total tardiness in flow
shops and are modified to consider the total earliness and tardiness objective in this research. Kim et al. (1996)’s
neighbourhood search (which includes both the insertion and swap operators) is referred to as NS, Parthasarathy
and Rajendran (1997)’s simulated annealing procedure is referred to as PRSA and Framinan and Leisten (2008)’s
variable greedy algorithm is referred to as FLVG. The fast ant colony algorithm by Holthaus and Rajendran (2005)
was modified for the flow shop environment and to consider the earliness and tardiness objective. This procedure is
referred to as FACO.

3.1 Data and performance measures

The heuristic procedures described in the previous subsection and the genetic algorithm described in Section 2 were
tested on problems of various sizes in terms of the number of jobs and the number of machines for 15 sets of
distributions of due date range and tightness. Each problem set consists of 10 problems. The problems within a
problem set have the same number of jobs and machines, and the due dates for the jobs are generated using the same
distribution. Eleven levels of number of jobs (n) to be scheduled were tested: n¼ 8, 10, 12, 15, 20, 25, 30, 40, 50, 75
and 100. Three levels of number of machines (M) were tested: M¼ 5, 10 and 20. The processing times of the jobs for
each machine were generated using a uniform distribution over the integers 1 and 100. The due dates for the jobs
were also randomly generated using a uniform distribution over the integers MS (1� r�R/2) and MS (1� rþR/2),
where MS is an estimated makespan found for the problem using the makespan lower bound proposed in Taillard
(1993), and R and r are two parameters called due date range and tardiness factors. Three levels of due date range
(R) were tested: R¼ 0.2, 0.6 and 1.0 and five levels of due date tightness (r) were tested: r¼ 0.0, 0.2, 0.4, 0.6 and 0.8.
These levels of R and r result in 15 sets of due date parameters for each n and M combination. After
some experimentation, a time limit was set to stop each heuristic procedure. The time limit was set to
(n � 0.2þ 0.5) � (n/20)2 � (M/5) seconds.

The procedures were coded in Turbo Pascal and were tested on a Dell Inspiron 1525GHz laptop computer. Each
procedure was performed once for each problem. The measures of performance used to evaluate the procedures for
the test for the small-sized problems (n¼ 8, 10 and 12) are the percentage deviation (% Dev) of the total earliness
and tardiness of the solution generated by each procedure from the optimal total earliness and tardiness and the
number of times each procedure generated an optimal solution. More specifically, the percentage deviation % Dev is
calculated as %Dev¼ [(Zh�ZO)/ ZO] � 100, where ZO¼ the total earliness and tardiness generated by the optimal
procedure, and Zh¼ the total earliness and tardiness of the solutions generated by the heuristic procedures (NS,
PRSA, ZSA, GA, FLVG, FACO). For the problems with more than 12 jobs, the measures of performance are the
percentage deviation (% Dev) of the total earliness and tardiness of the solution generated by each procedure from
the lowest total earliness and tardiness generated by the procedures and the number of times each procedure
generated the best solution. % Dev¼ [(Zh�ZB)/ Zh] � 100, where ZB¼ the lowest total earliness and tardiness of the
solutions generated by the three procedures, and Zh¼ the total earliness and tardiness of the solutions generated by
the heuristic procedures (NS, PRSA, ZSA, GA, FLVG, FACO).

3.2 Results of the test

Table 1 shows the % Dev for each procedure and the number of times each procedure generated an optimal solution
for each level of number of jobs to be sequenced (n) and number of machines (M) for the small-sized problems.
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The results show that the GA, FLVG and FACO procedures consistently generate optimal or close to optimal
solutions. Each of these procedures generated solutions that on average were within 1% of the total earliness and
tardiness of an optimal solution for each problem size and generated an optimal solution for over 50% of the
problems for each problem size. The GA procedure had the lowest % Dev for each problem size and generated the
most optimal solutions for eight of the nine problem sizes. The NS and PRSA procedures’ results were not as good
with average % Devs over 1% for several problem sizes and also generated an optimal solution for less than 50% of
the problems on several problem sizes. The ZSA procedure’s results were poor with average % Devs over 10% for
six of the nine problem sets and generating optimal solutions for less than 10% of the problems for eight of the nine
problem sets.

Tables 2, 3 and 4 show the % Dev for each procedure and the number of times each procedure generated the best
solution for each level of number of jobs to be sequenced (n). Table 2 shows the results for M¼ 5, Table 3, for
M¼ 10 and Table 4, for M¼ 20.

The results show that the GA procedure performs the best on each problem size. This procedure has the lowest
average % Dev for each problem size and generated the best solution more times than any of the other procedures
for each problem size. Also, the average % Dev for the GA procedure is less than 1% for 20 of the 24 problem sizes.
Among the other procedures, only the FLVG procedure has an average % Dev less than 1% on any of the problem
sizes. Generally, the PRSA procedure was second best and had average % Devs less than 3.5% for all problem sizes
and less than 2% for four problem sizes. The results for the FLVG and FACO procedures tended to deteriorate as
the number of jobs increased. The results for the ZSA procedure were very poor with average % Devs over 20% for
all problem sizes and did not generate a solution that was best for any problem.

These results indicate that the genetic algorithm is the best procedure for the problem. The results also show that
incorporating specialised knowledge for the problem into a simulated annealing algorithm will not necessarily result
in better solutions.

Table 1. Percent deviation from optimal solution and number of times optimal (in parentheses).

Problem size Procedure

n M NS PRSA ZSA GA FLVG FACO

8 5 1.45 (108) 0.93 (117) 1.06 (106) 0.01 (149) 0.10 (141) 0.02 (145)
8 10 1.10 (110) 0.65 (121) 0.55 (115) 0.00 (150) 0.03 (147) 0.00 (147)
8 20 0.82 (105) 0.60 (126) 0.67 (101) 0.00 (149) 0.02 (148) 0.00 (150)
10 5 1.32 (88) 1.25 (89) 2.07 (58) 0.09 (138) 0.21 (128) 0.16 (128)
10 10 2.30 (68) 0.97 (102) 1.70 (63) 0.08 (144) 0.33 (126) 0.11 (131)
10 20 0.58 (81) 0.57 (107) 1.37 (57) 0.06 (141) 0.08 (135) 0.06 (137)
12 5 2.31 (55) 2.11 (72) 4.45 (27) 0.27 (115) 0.57 (99) 0.70 (80)
12 10 2.72 (47) 1.64 (73) 3.74 (24) 0.40 (108) 0.55 (93) 0.53 (86)
12 20 1.83 (44) 1.21 (86) 2.86 (27) 0.10 (133) 0.35 (100) 0.28 (96)

Table 2. Percent deviation from best solution and number of times best (in parentheses) for M¼ 5.

n

Procedure

NS PRSA ZSA GA FLVG FACO

15 2.89 (45) 3.31 (43) 6.81 (8) 0.55 (108) 1.64 (55) 1.47 (39)
20 3.95 (28) 3.25 (37) 9.17 (1) 0.65 (86) 3.25 (19) 3.02 (10)
25 2.65 (31) 3.29 (29) 9.38 (1) 0.56 (88) 4.27 (15) 3.57 (9)
30 3.11 (34) 2.97 (27) 10.40 (0) 0.83 (78) 4.39 (18) 4.21 (4)
40 2.51 (29) 2.63 (36) 11.18 (0) 0.91 (79) 7.00 (5) 4.56 (1)
50 3.68 (30) 2.83 (40) 11.52 (0) 0.86 (73) 6.66 (7) 5.21 (1)
75 5.07 (9) 2.25 (41) 11.12 (0) 0.79 (90) 5.93 (6) 4.63 (4)
100 6.66 (3) 1.63 (61) 11.63 (0) 1.05 (70) 4.74 (12) 4.76 (4)
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In order to show the effect of the due date range (R) and tardiness factor (r) on the results, Tables 5 and 6 are
presented. Table 5 shows the % Dev by due date tardiness factor (r) for n¼ 50 and M¼ 10.

The results are consistent with previous results. The GA procedure’s % Dev averaged less than 2% for each of
the due date tightness parameters and was the lowest among the procedures for each of the values of r. Each of the
other procedures’ % Dev averaged greater than 3% for at least two values of r and all the other procedures, with the
exception of the PRSA procedure, had a % Dev that averaged greater than or equal to 5% for at least one of the due
date tightness parameters.

Table 6 shows the % Dev by due date range factor (R) for n¼ 50 and M¼ 10.
The results are again consistent with previous results. The GA procedure had the lowest average % Dev for each

value of R and averaged less than 1.25% for each of the values. None of the other procedures had a % Dev that was

Table 4. Percent deviation from best solution and number of times best (in parentheses) for
M¼ 20.

n

Procedure

NS PRSA ZSA GA FLVG FACO

15 2.40 (30) 1.65 (46) 4.34 (9) 0.22 (112) 0.84 (60) 1.02 (30)
20 2.98 (20) 2.16 (35) 6.45 (0) 0.40 (98) 1.97 (25) 2.50 (10)
25 3.00 (13) 2.76 (26) 7.61 (0) 0.39 (106) 3.09 (17) 3.70 (1)
30 3.83 (14) 3.09 (28) 9.71 (1) 0.53 (100) 3.98 (9) 4.60 (0)
40 4.07 (13) 3.27 (34) 9.99 (1) 0.71 (95) 4.30 (8) 5.70 (0)
50 3.92 (14) 3.21 (22) 11.82 (0) 0.59 (103) 6.12 (9) 6.66 (2)
75 4.97 (9) 2.24 (40) 11.82 (0) 1.04 (89) 5.59 (11) 6.21 (1)

100 7.02 (8) 2.26 (43) 12.41 (0) 1.03 (87) 4.67 (11) 5.63 (1)

Table 3. Percent deviation from best solution and number of times best (in parentheses)
for M¼ 10.

n

Procedure

NS PRSA ZSA GA FLVG FACO

15 4.09 (28) 1.82 (66) 6.03 (9) 0.39 (103) 1.40 (62) 1.68 (31)
20 4.01 (17) 2.77 (40) 8.15 (2) 0.55 (95) 2.98 (24) 2.76 (14)
25 3.54 (20) 2.92 (33) 9.27 (2) 0.52 (94) 3.71 (22) 4.44 (5)
30 3.90 (10) 3.08 (33) 10.33 (0) 0.52 (101) 4.77 (9) 4.83 (6)
40 4.02 (20) 2.82 (32) 12.26 (0) 0.87 (88) 5.74 (9) 6.53 (1)
50 4.07 (18) 2.69 (34) 12.07 (0) 0.75 (89) 6.59 (8) 5.70 (2)
75 7.54 (5) 2.35 (45) 13.08 (0) 0.82 (91) 5.63 (6) 6.05 (3)

100 7.94 (4) 1.99 (48) 13.88 (0) 1.19 (85) 5.28 (9) 5.80 (4)

Table 5. Percent deviation from best solution by r for n¼ 50
and M¼ 10.

R

Procedure

NS PRSA ZSA GA FLVG FACO

0.0 4.34 1.88 14.29 1.72 5.05 3.99
0.2 6.12 3.87 16.33 1.15 11.66 8.37
0.4 6.84 3.14 19.42 0.33 8.31 10.04
0.6 1.74 2.30 6.93 0.39 5.41 3.77
0.8 1.33 2.29 3.41 0.69 2.53 2.35

Table 6. Percent deviation from best solution by R for n¼ 50
and M¼ 10.

R

Procedure

NS PRSA ZSA GA FLVG FACO

0.2 2.78 2.00 9.06 0.68 5.15 4.34
0.6 2.84 2.89 8.45 0.41 6.51 4.56
1.0 6.60 3.19 18.71 1.16 8.12 8.22
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less than 2% for any value of R. It also appears that there is greater variability in the quality of the solutions
generated by the procedures when the range is high. % Devs generally increase for the procedures as R increases and
was greatest when R¼ 1.0.

4. Conclusion

In this paper a genetic algorithm was proposed for minimising total earliness and tardiness in permutation flow
shops without allowing unforced inserted idle time. This procedure and five other heuristic procedures were tested
on problems of various sizes in terms of the numbers of jobs and machines and 15 sets of distributions that
determine the tightness and range of due dates.

The results showed that the proposed genetic algorithm consistently generates solutions with a lower total
earliness and tardiness than the other procedures tested.

There are two possible avenues for additional research. One area of additional research would be lifting the
restriction of not allowing idle time to be inserted in the schedule. Since the objective is non-regular, inserting idle
time could reduce the objective so ways to insert idle time into a schedule to minimise the objective are needed. The
second area of additional research would be incorporating setup time considerations into the problem. The case
where setup times are sequence-dependent could be considered.
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