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ABSTRACT

North Atlantic, North Pacific, and southern right whales all produce the up call, a frequency-modulated 

upsweep in the 50-200 Hz range. This call is one of the most common sounds, and frequently the most 

common sound, received from right whales, and as such is a useful indicator of the presence of right whales 

for acoustic surveys. A data set was prepared of 1857 calls and 6359 non-call sounds recorded from North 

Atlantic right whales (Eubalaena glacialis) near Georgia and Massachusetts. Two methods for the 

detection of the calls were compared: spectrogram correlation and a neural network. Spectrogram 

correlation parameters were chosen two ways, by manual choice using a sample of 20 calls, and by an 

optimization procedure that used all available calls. Neural network weights were trained via 

backpropagation on 9/10 of the test data set. Performance was measured separately for calls of different 

signal-to-noise ratio, as SNR heavily influences the performance of any detector. Results showed that the 

neural network performed best at this task, achieving an error rate of less than 6%, and is thus the preferred 

detection method here. Spectrogram correlation may be useful in situations in which a large set of training 

data is not available, as manual training on a small set of examples achieved an error rate (26%) that may 

be acceptable for many applications. 

SOMMAIRE

Les baleines franches de l’Atlantique Nord, du Pacific Nord et Sud produisent toutes une vocalisation 

montante, soit un balayage ascendant modulé en fréquence dans la région de 50 à 200 Hz. Cette 

vocalisation est un des sons les plus communs produit par les baleines franches et, par le fait même, est un 

indicateur très utile de la présence des baleines lors de sondages acoustiques.  Un ensemble de données a 

été préparé avec 1857 vocalisations et 6359 sons non vocalisés enregistrés auprès de baleines franches de

l’Atlantique Nord (Eubalaena glacialis) près de la Georgie et du Massachusetts. Deux méthodes de 

détection des vocalisations ont été comparées: la corrélation de spectrogramme et le réseau neuronal.  Les 

paramètres de la corrélation de spectrogramme ont été choisis de deux façons: par choix manuel, en 

utilisant seulement 20 vocalisations, et par une optimisation de la procédure utilisant toutes les 

vocalisations. Les coefficients de pondération du réseau neuronal ont été établi par rétropropagation sur 

9/10 des données de test. Les performances ont été mesurées séparément pour des vocalisations ayant des 

rapports signal sur bruit différents, le rapport signal sur bruit ayant une grande influence sur tout détecteur.  

Les résultats démontrent que le réseau neuronal performe mieux dans ce genre de tâche, atteignant un taux 

d’erreur de moins de 6% et, par conséquent, est défini ici comme la meilleure méthode de détection. La 

corrélation de spectrogramme peut être utile dans les situations où un grand nombre de données de 

formation ne sont pas disponibles.  Le choix manuel sur de petite tranche d’échantillons a atteint un taux 

d’erreur (26%) qui pourrait être acceptable dans plusieurs applications. 
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1. INTRODUCTION

Right whales (Eubalaena spp.) are the world's most highly 

endangered large whale, and among the most highly 

endangered marine mammal of any kind (Clapham et al.

1999; Hilton-Taylor 2000; IWC 2001). They have thus been 

the focus of intense conservation interest (Silber and 

Clapham 2001). Acoustic methods have been proposed for 

use in right whale conservation principally in two ways 

(Gillespie and Leaper 2001). Acoustic surveys can be used 

to determine seasonal movements, habitat requirements, 

behavior, and other characteristics of right whales. These 

surveys can be done using either towed arrays, real-time 

sonobuoys (Desharnais et al. 2000; McDonald and Moore 

2002), or autonomous hydrophones (Clark et al. 2000; 

Waite et al. 2003; Wiggins 2003), instruments that record 

sound continuously for time periods of months to years. A 

second proposed application of acoustic methods is as part 

of a ship-strike avoidance system (Gillespie and Leaper 

2001). In such a system, right whales are acoustically 

detected and localized in real time and their locations passed 

to ships, which can then be steered so as to avoid the 

whales. For either of these applications, a problem arises: 

how to find the sounds of right whales amid the thousands 

of hours of data. These sounds can be found by manual 

scanning of spectrograms, but in most cases this is labor-

intensive and prohibitively expensive. 

Automatic detection is often a better solution. This involves 

having a computer analyze a sound signal and determine the 

times at which a desired sound is present. Having sound 

analyzed automatically offers advantages over manual 

scanning besides cost: a computer is not subject to fatigue; a 

computer is unbiased, or rather its bias is constant and does 

not change over time; a computer typically works quite 

quickly, as for instance when it took only a few days to 

detect right whale calls in five hydrophone-years of data 

(Waite et al. 2003); and a computer method may be 

replicated exactly for different applications, ensuring 

comparability of the results. 

A detection method is used for a sound of some desired 

type. In most cases, the desired sound is a stereotyped call 

made by a certain species, and this is true of right whales as 

well. One type of call frequently made by all three species 

of right whales is the low-frequency up call (Clark 1982), 

and indeed it is known to be one of the most common types 

of call in the species for which this has been quantified, 

Southern right whales (E. australis; Clark 1983) and North 

Pacific right whales (E. japonica; McDonald and Moore 

2002). Note that the call under consideration is the lower-

frequency up call between approximately 50 and 220 Hz 

(Clark 1982) rather than a higher-frequency call in the 300-

600 Hz range that has also been referred to as the up call 

(Vanderlaan et al. 2003). 

Because of the need for an automated method of detecting 

right whale calls, and because of the ubiquity of the up call 

in the sounds produced by right whales, it was decided to 

optimize a method for detecting up calls of North Atlantic 

right whales (E. glacialis). In this paper, we compare two 

principal methods of detecting right whale up calls, 

spectrogram correlation and a neural network. Two 

variations of the spectrogram correlation method are 

examined. The comparison is done on a test data set 

consisting of thousands of right whale up calls and other 

sounds recorded with them. 

2. METHODS

A comparison is done between two methods for detecting 

right whale up calls, spectrogram correlation (Mellinger and 

Clark 1997, 2000) and a neural network trained using 

backpropagation (Rumelhart and McClelland 1987). The 

spectrogram correlation method is developed separately in 

two different ways, by manual parameter choice and by an 

automated optimization procedure. Thus in effect there are 

three detection methods that are compared here: 

spectrogram correlation with manual parameter choice, 

spectrogram correlation with optimized parameter choice, 

and a neural network. 

2.1. Data Set 

Data for this comparison is from recordings made in Dec. 

1996 - Jan. 1997 from a cabled hydrophone array off 

Jacksonville, Florida; in May 2000 from “pop-up” 

autonomous hydrophones (Clark et al. 2000) in the Great 

South Channel, Massachusetts; and in March 2001 from 

pop-ups in Cape Cod Bay, Massachusetts. A spectrogram of 

each recording was made (frame size and FFT size 0.256 s, 

overlap 0.192 s, Hamming window) and the data were 

visually scanned for the presence of right whale up calls. 

Beginning and ending times of each call were marked, 

resulting in a set of 1857 total up calls. 

The training and testing of a detection method also required 

a set of other, non-call sounds. These should be 

representative sounds from the entire set of the recordings, 

and as such a set of randomly-chosen times (with times of 

up calls removed) should suffice. However, a better 

approach than choosing times randomly is to choose times 

at which some significantly loud sound occurs in the 

frequency range of interest. This approach is better than 

using random times because it targets those parts of the 

recordings that are likely to cause difficulties for a detection 

method; a set of random times is likely to include a lot of 

instances when only background noise is present, and these 

instances are not likely to be helpful for developing a robust 

detector. Accordingly, a process was run to find sounds in a 
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Recording location Date # up calls # non-call sounds

Off Jacksonville, Fla. Dec. ’96 - Jan. ’97     124     210 

Great South Channel, Mass.  May ’00     169   1421 

Cape Cod Bay, Mass. Mar. ’01   1564   4728

Total    1857   6359 

Table 1. Recording locations and dates and the number of up calls and non-call sounds.      

frequency band encompassing right whale up calls, 50-250 

Hz. These sounds included the right whale up calls, so the 

up calls were removed. The resulting set contained some 

right whale sounds – calls other than up calls – that were 

retained in the “non-call sounds” category since the problem 

here is to detect up calls. The set also contained a handful of 

“uncertain” sounds, those for which it was unclear whether 

or not the call was an up call; this happened either because a 

sound was too faint to determine whether it was a call or 

merely a bit of background noise, or because a call had an 

odd frequency contour that was somewhat, but not 

definitively, like an up call. These unclear sounds were 

removed from the non-call sound set. The resulting set 

contained 6359 non-call sounds used for training and 

testing. Table 1 shows the number of sounds from each 

recording location. 

2.2. Detection Process 

For both methods, the overall detection process is as 

follows. An input sound signal is transformed into a 

spectrogram, to which a conditioning technique – spectrum 

level equalization and normalization – is then applied. The 

normalized spectrogram is then used as input to the 

detection method (spectrogram correlation or neural 

network), resulting in a detection value D – a number 

indicating the certainty that a right whale up call is present. 

A threshold is then applied, and the times at which the 

detection function goes over threshold are considered to be 

detection events – right whale up calls. 

 In more detail, the first step in the detection process is 

making a spectrogram. The exact parameters involved in 

making the spectrogram vary between the three detection 

methods and are covered in more detail below. For all three 

methods, the next step is spectrogram level equalization and 

normalization. This is done by time-averaged spectrum 

equalizing (Van Trees 1968), followed by hard-limiting the 

lower and upper bounds of spectrogram amplitudes. In other 

words, the time-averaged spectrogram value is calculated 

for each frequency band of the spectrogram; this is 

subtracted from the spectrogram at each time step, and floor 

and ceiling values are applied. More exactly, let ),( ftS

represent the spectrogram. Then the normalized spectrogram 

),(ˆ ftS  is given by 

( 1 )       ),()1(),(),( fttMkftkSftM �����

( 2 )       ),(),(),(1 ftMftSftS ��

( 3 )  

where ),( ftM  represents the time-averaged spectrogram 

value at time t for frequency f, �t is the time step between 

spectrogram frames, k is a time constant that determines 

how quickly this process responds to changes in level in the 

spectrogram, ),(1 ftS is the normalized spectrogram, and 

Sfloor and Sceiling are the minimum and maximum normalized 

spectrogram values. The values of k, Sfloor, and Sceiling are 

chosen as explained below. 

This equalization process (Fig. 1) has two beneficial effects. 

It removes from the spectrogram any sounds lasting a 

sufficiently long time, including ship sounds, electrical 

noise, and wind noise. In effect, short-duration sounds – 

such as right whale up calls – are emphasized. It also 

normalizes average levels across frequency, relatively 

emphasizing fainter parts of the spectrogram. 

The next step in the detection process is application of one 

of the three detection methods: 

 (1) Spectrogram correlation by manual choice of 

parameters. Spectrogram correlation (Mellinger and Clark 

1997, 2000) operates by cross-correlating a synthetic kernel 

with a conditioned spectrogram of the input signal (Fig. 2).  

Correlation is done in only the time dimension of the 

spectrogram, so the result is a one-dimensional signal – the 

detection function d(t). An example is shown in Fig. 2c. The 

synthetic kernel is constructed for a specific call type, in this 

case a right whale up call. The kernel (Fig. 2b) has an axis 

matching the frequency contours of an up call; this part of 

the kernel is positive. Flanking areas of the kernel are 

negative, a design that results in the correlation's dot-

product producing zero when interfering sounds intersect 

both the axis and flanking regions.  Details about kernel 

design, including equations for making kernels, may be 

found elsewhere (Mellinger and Clark 2000).
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Figure 1. Example of spectrogram equalization and normalization. (a) Recording including two right whale up calls. Spectrogram 

parameters: frame size 0.128 s, FFT size 0.256 s, overlap 0.112 s, Hamming window. (b) The same spectrogram after equalization 

and normalization. 

Figure 2. Schematic depiction of spectrogram correlation. (a) Normalized spectrogram, as in Fig.1. (b) Spectrogram correlation 

kernel. (c) Detection function produced by the spectrogram correlation function; its peaks correspond to the times at which right

whale up calls are present. 

The performance of spectrogram correlation is affected by 

the choice of the spectrogram parameters of frame size, FFT 

size, overlap, and window type; by the equalization 

parameters k and Sfloor, and Sceiling; and by the kernel 

parameters of start frequency, end frequency, duration, and 

bandwidth. With such a large number of parameters, the set 

of reasonable combinations of parameter values exceeds 

106, far too many for exhaustive testing. Two approaches 

were taken to address this issue. In the first approach, the 

author visually examined and experimented with a random 

sample of 20 up calls from the set of 1857 marked calls. 

Parameters controlling the spectrogram correlation process 

were chosen by hand, in a sequence of successive steps: 

First spectrogram parameters (frame size, FFT size, overlap, 

and window type) were chosen such that the right whale up

calls appeared with reasonable clarity (in both time and 

frequency) in a spectrogram. Next, the time constant k was 

chosen for spectrogram equalization such that right whale 

up calls were relatively little affected, and common noise 

sounds such as from ships (Fig. 1) were largely removed. 

The author's experience is that a good value for k is one that 

causes a given noise level to decay to 1/e of its original 
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value after a time period of five times or more the length of 

the target call type – i.e., for up calls, after 5 or more 

seconds. 

Once the spectrogram and normalization parameters were 

chosen, it remained to decide on parameters for the 

spectrogram correlation kernel. This was done by measuring 

the start frequency, end frequency, duration, and bandwidth 

of the 20 example calls. In doing this, it was noted that the 

duration of the up calls was almost always less than about 1 

s, but different up calls spanned different frequency ranges. 

For instance, one call might range from 70 Hz to 150 Hz, 

and another from 120 Hz to 200 Hz. It is possible to make 

one kernel that would detect both of these sounds, one with 

a kernel axis from 70 Hz to 200 Hz lasting nearly 2 s; such a 

kernel would match the frequency sweep rate of both of 

those examples. But that kernel would be especially 

susceptible to interfering sounds, since the positive region 

of the kernel would be especially large for the size of any 

given call. To solve this problem, separate kernels were 

made for the two halves of the frequency range: one 

sweeping from 70 to 150 Hz, the other from 120 to 200 Hz. 

This produces two detection functions, one per kernel. 

These were combined at each time step by using the 

maximum value of the two to produce d(t). Another 

problem was that different up calls swept upwards at 

significantly different rates, and a given kernel did not 

perform well for all sweep rates. This problem was solved in 

a similar manner, by creating three kernels with three 

different sweep rates, cross-correlating them with the 

spectrogram, and taking the maximum value at each step. 

With kernels of different durations, a weighting factor 

proportional to the inverse of the kernel duration was 

needed so that cross-correlation values were comparably 

scaled. If di(t) is the cross-correlation result for the ith kernel, 

and gi is the duration of the ith kernel, then the overall 

detection function d(t) was given by 

( 4 ) )/)((max)( ii
i

gtdtd �

Not all combinations of kernel start/stop frequency and 

kernel duration were used, since only some of these 

combinations were observed among the 20 example calls. A 

total of five different kernels were ultimately used (Table 2), 

with the final detection function d(t) at each time t being the 

maximum of the five cross-correlations. Table 2 shows the 

values that were finally chosen by manual choice of 

parameters. 

Given the detection function d(t), the detection value D for a 

given call or non-call sound was simply the maximum of 

d(t) in a 2 s-long period centered on the call or non-call 

sound. A D value was calculated for each call in the training 

set to produce a collection of “call” detection values, and 

likewise for the non-call sounds to produce a collection of 

“non-call” detection values. 

(2) Spectrogram correlation with optimized parameter 

choice. A second method of choosing the parameters for the 

spectrogram correlation detector was to run an optimization 

procedure to find the set of parameters that worked best. 

“Best” was defined as the smallest false positive 

proportion(ep) at a fixed false-negative proportion (en) of 

10%. This terminology is explained in detail in the 

“Performance evaluation” section below. 

The optimization procedure used a fixed range of discrete 

possible values for each spectrogram correlation parameter 

(Table 3). This range for each parameter pi was determined 

as all values that seemed even slightly reasonable in 

examination of example calls. For instance, the parameter 

p9, the duration of the kernel, included values ranging from 

the measured durations of the shortest call found, 0.55 s, to 

that of the longest call, 1.14 s. Similar ranges were chosen 

for all nine parameters that determine the operation of the 

spectrogram correlation calculation. Parameter p8, “number 

of segments”, determines the number of kernels into which  

Spectrogram  

 frame size 0.256 s (512 samples) 

 FFT size 0.256 s (512 samples) 

 overlap 0.192 s (384 samples) 

 window type  Hamming 

Equalization  

 time to decay to 1/e 10 s (k = 0.0064) 

 floor value Sfloor 0.9 

 ceiling value Sceiling 1.5 

Kernel  

 bandwidth  10 Hz 

 combinations of 

       (f0, f1, duration)  

(70 Hz, 150 Hz, 0.6 s) 

(70 Hz, 150 Hz, 1.0 s) 

   (120 Hz, 200 Hz, 0.5 s)

   (120 Hz, 200 Hz, 0.7 s)

   (120 Hz, 200 Hz, 1.0 s)

Table 2. Parameter values for the spectrogram correlation 

detection method that were manually chosen by examination of 

20 example calls. The floor and ceiling values Sfloor and Sceiling

are spectrogram amplitudes whose scaling is unknown, so units 

are not given. 

the given frequency range is divided. For p8 > 1, the 

frequency range from f0 to f1 is divided into p8 separate, 

equal spans, and one kernel is constructed for each span 

These kernels are used as above: Each one is cross-

correlated with the input spectrogram, and the detection 

function d(t) at each time step t is the maximum of the 

cross-correlation functions. 
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The optimization procedure worked as follows. A set of the 

nine parameter values {pi}
i=1..9  was randomly chosen, i.e., 

one value was randomly chosen from the “set of values” in 

each line of Table 3. Performance was evaluated using this 

set of parameters by running the spectrogram correlation 

process on the entire data set of all calls and all non-call 

sounds, and (as described above) measuring ep at the point 

where en = 10%. The initial performance score sinit was this 

value of ep. Next, for the first parameter p1 from Table 3 

(spectrogram frame size), the value just below the 

randomly-chosen value was selected. For instance, if the 

randomly-chosen value for p1 was 0.128 s, then the value of 

0.064 s was selected. This value was substituted for p1 in the 

set {pi}, and the spectrogram correlation process was run 

and evaluated again to get a new score s1,low. (The subscripts 

indicate that the next-lower value for parameter 1 was used 

to calculate this score.) Then the next-higher value for p1

was used instead of the next-lower value (in the instance 

above, 0.256 s), and the resulting score s1,high was calculated. 

This process of trying each next-lower and next-higher 

parameter value was repeated for each parameter in {pi},

resulting in 18 scores {s1,low, ... s9,low, s1,high, ... s9,high}. The 

best – i.e., lowest – of these scores was examined. If it was 

better than sinit, then the parameter set corresponding to this 

best score was chosen, and the process was repeated. If that  

Parameter name Variable Set of values for optimization Optimized value

Spectrogram   

 frame size p1 0.064, 0.128, 0.256, 0.512 s 0.128 s 

 FFT size*  same as frame size 0.128 s 

 overlap*  3/4 of frame size 0.096 s 

 window type*  Hamming Hamming 

Equalization   

 time to decay to 1/e p2 1, 2.5, 5, 10, 20 s 1 s 

 floor value Sfloor p3 0.7, 0.8, 0.9, 1.0, 1.1 0.7 

 ceiling value Sceiling p4 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 1.7 

Kernel   

 bandwidth p5 5, 8, 10, 15, 20 Hz 20 Hz 

 start frequency f0 p6 70, 80, 90, 100, 110 Hz 80 

 end frequency f1 p7 150, 175, 200, 230 Hz 175 

 number of segments p8 1, 2, 3 1 

 duration p9 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 s 0.8 s 

Table 3. Parameters used in the optimization process for spectrogram correlation. Each parameter has specified here the variable

name pi, the set of possible values used in optimization, and the value of that parameter for the optimized set. Parameters marked 

with * are not independent, but rather are fixed or are determined by other parameter values. 

best score was no better than sinit, then repetition stopped 

and the resulting parameter set {pi} was considered the 

maximally-performing one.  

The procedure just described is a form of steepest-descent 

search in a discrete parameter space. Such searches are 

influenced, sometimes heavily, by the choice of starting 

point – by the randomly-chosen parameter set used. 

Accordingly, this optimization procedure was run 20 times, 

with the best-scoring parameter set chosen as the final 

result. This set is shown as the last column of Table 3.  

(3) Neural network. Neural networks have been used for 

detection of tonal sounds (Potter et al. 1994, Murray et al.

1998, Deecke et al. 1999), but not, to the author’s 

knowledge, heretofore for right whale calls. A feedforward 

neural network (Hagan et al. 1996) was constructed with 

252 input elements, 10 hidden units, and 1 output unit. Each 

hidden unit consisted of a weighted sum with bias followed 

by an arc-tangent nonlinearity (Hagan et al. 1996). The 

output unit was linear, consisting of just a weighted sum. 

Input to the network was a small piece of a spectrogram 

(frame size and FFT size 0.256 s, overlap 0 s, Hamming 

window), here called a minigram. Each minigram spanned 

the frequency range from 70 to 230 Hz and lasted 1.5 s. 

Such a minigram has 252 cells; it was the values 

(amplitudes) in this minigram that were used as input values 

to the neural network. Figure 3 shows some examples of call 

and non-call minigrams. 

Minigrams of 90% of the data set were used in training and 

testing the neural network. The training data for this 

network came from the set of 1857 up calls and 6359 non-

call sounds. For each of these sounds, a minigram was made 

from a spectrogram of the recording containing the sound. 

For each up call in the set, the start- and end-time of the 

minigram were set such that the frequency contour of the 
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call passed through the 120-Hz frequency bin of the 

spectrogram 0.55 s after the start of the minigram. Adjusting 

the timing in this manner time-aligned all of the up calls in 

the minigrams such that if the minigrams were laid atop one 

another, their frequency contours would occur along the 

same diagonal line, regardless of the start and end 

frequencies of the calls. Non-call sounds were similarly 

time-aligned, but since there was no frequency contour in 

the non-call sounds to use for alignment, they were aligned 

by centering the time of maximum energy in the minigram. 

Training the neural network required target values, values 

that the network was supposed to learn to produce for the 

call and non-call minigram inputs. These target values were 

set at +0.5 and -0.5, respectively. The network was trained 

using these call and non-call minigrams. Actually not all of 

the available minigrams were used for training; one-tenth of 

the calls and one-tenth of the non-call sounds, randomly 

chosen, were reserved for testing the trained network. This 

was done because neural networks have enough parameters, 

in the form of connection weights, that they are capable of 

learning their training set – basically, learning to identify 

specific minigrams by idiosyncratic characteristics of those 

minigrams. For this reason, it is better to test a network with 

“new” data absent from its training data set. (This problem 

does not exist with the optimization procedure for 

spectrogram correlation, because the number of parameters 

– nine – is far too small for the process to learn specific 

calls.)

.

Figure 3. Examples of (a) up call minigrams and (b) non-call minigrams.

The network, coded using the Matlab neural network 

toolbox, was trained using standard gradient-descent 

backpropagation with an adaptive learning rate (Hagan et al

1996). Before starting training, the network weights were 

initialized to small random values so that different units 

would adapt differently. Training was done in “batch 

mode,” i.e., all of the call and non-call minigrams were 

presented in parallel, output values for each input were 

computed, and all network weights were updated. This 

constituted one epoch of training. Training was done for 

5000 epochs in all, a number chosen because at that point 

the rate of performance improvement per epoch had become 

very small. 

After this training was complete, the network was tested 

with the one-tenth of the calls and non-call sounds that were 

not used for training. For a given network input (a minigram 

of the call or non-call sound), the detection value D was 

simply the network output. The set of D values for the set of 

calls and the set for the non-call sounds were used in 

measuring the performance of the network. 

2.3. Performance Evaluation 

Performance was evaluated by raising and lowering a 

threshold and comparing the threshold to detection values 

produced by each detection method. For the spectrogram 

correlation detection method using either type of parameter 

choice, a given threshold was compared to the maximum of 

the detection function d(t) in a 2 s long period centered on 

each up call or non-call sound. For the neural network, the 

threshold was compared to the output of the network for 

each call or non-call sound.  

time

(b)

(a)
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For either detection method and for a given threshold, two 

error measures were determined: the false negative 

proportion en, which is the proportion of missed calls as a 

fraction of all calls, and the false positive proportion ep, the 

proportion of wrongly detected noise sounds as a fraction of 

all noise sounds. Raising the threshold makes the proportion 

of false negatives rise and the number of false positives fall, 

and inversely for lowering the threshold. By varying the 

threshold between the lowest and highest values produced 

by any given detection method, one could obtain a 

parametric curve – the performance curve – detailing the 

performance of the detection method. Figure 4 shows some 

examples of such curves. This curve is analogous to the 

Receiver Operating Characteristic (ROC) curve used in 

measurement of radar system performance. 

A special point on the performance curve was used for 

comparison of methods. This was the point at which the 

false-negative proportion en was 10%. The 10% false-

negative level was chosen because an up call detection 

method is probably useful even if it misses 10% of the calls 

present: Right whales make calls in clusters lasting a few 

minutes and containing an average of 2 calls (North Atlantic 

right whales; Matthews et al. 2001) to over an hour and 

containing 10-15 calls (North Pacific right whales; 

McDonald and Moore 2002). With a 10% missed-call rate – 

i.e., a 90% detection rate – and assuming that the probability 

of detection is independent from one detection to the next, 

the probability that a detector would miss a cluster ranges 

from 0.01 down to 10-10 or less. A detector might thus some 

calls but would be unlikely to miss a whale.  

The false-positive proportion ep corresponding to the 10% 

false-negative point was used as a performance metric, a 

metric named the single-point score. By choosing this single 

point on the curve, performance measurement for a given 

detection method and its configuration parameters was 

reduced to a single number, enabling direct comparison of 

disparate methods (and, as explained above, enabling the 

spectrogram correlation optimization procedure to choose 

the “best” parameter set). 

The performance of any call-detection method depends 

critically on the signal-to-noise ratio (SNR) of the calls 

under consideration. The SNR of a given call was 

characterized as the ratio of the average power during the 

call in the 50-250 Hz frequency band to the average “noise 

power,” the power in the 10 s before and 10 s after the call. 

Note that since this calculation is done before any kind of 

spectrum equalization, tonal background noise that 

fluctuates in intensity can make calls that are relatively 

apparent in a normalized spectrogram have an SNR of 0 dB 

or even less. The performance curve was calculated 

separately for calls with SNR <0 dB, calls with SNR from 

0-10 dB, calls with SNR from 10-20 dB, and calls with SNR 

>20 dB. 

3. RESULTS

The performance of spectrogram correlation with manually-

picked parameters is shown in Fig. 4a. This figure shows a 

series of parametric performance curves, one curve for each 

range of call SNRs; each point on this curve corresponds to 

a certain threshold value, and the (x,y) location plotted is the 

point (ep, en), i.e., the false-positive vs. false-negative error 

proportions. In such a plot, the lower-left area is the region 

of least error and hence of best performance. The single-

point score on a given curve may be found by drawing a 

horizontal line from the 10% mark on the y-axis, seeing 

where this line intersects the curve, and determining the x-

axis value of the intersection. Note that the axes of this plot 

are logarithmic, so constant ratios are the same size, and 

small distances on the plot can correspond to relatively large 

differences in performance. Figure 4b shows the 

performance curves for spectrogram correlation when the 

parameters are chosen by the optimization procedure (see 

also the rightmost column of Table 3), while Fig. 4c shows 

the curves for the neural network. Figure 4d is a comparison 

of performance curves for the three detection methods; it 

was made using all calls regardless of SNR. In this figure, 

the single-point score is indicated for the neural network 

(6%) and spectrogram correlation with manually chosen 

parameters (26%). 

Figure 5 shows some of the calls that resulted in high output 

values when used as input to the neural network. 

4. DISCUSSION 

As expected, performance of all methods as measured by 

the ROC curve generally improved with increasing SNR, 

typically by a factor of 3-6p in going from the calls with 

SNR less than 0 dB to those with SNR greater than 20 dB. 

Also note that performance varied only somewhat between 

the calls with 10-20 dB SNR and those with >20 dB SNR. 

One reason for this may be that the calls with 10 dB SNR 

contain as much information as the spectrogram correlation 

method is able to use; the missed calls may be due to other 

effects such as odd frequency contours that do not match the 

usual up call contour. 

The performance of the optimized spectrogram correlation 

method (Fig. 2b, and rightmost column of Table 3) was 

significantly better than that of spectrogram correlation with 

manually-chosen parameters. It is not surprising to find a 

difference, as the optimization procedure used the entire 

data set to choose its parameters, while the manually-chosen 

parameters were selected using only a small subset. In 

addition, the optimization procedure used many days of
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Fig. 4. Performance curves of the various methods. In each, the false positive rate ep is plotted versus the false negative rate en. (a) 

Performance of spectrogram correlation using manually-chosen parameters. The labels on each curve shows the signal-to-noise 

ratio of the calls used for that curve. (b) Performance of spectrogram correlation using parameters found by the optimization 

procedure. (c) Performance of the neural network. (d) Performance comparison of the three methods, with calls of all signal-to-

noise ratios lumped together. 

Figure 5. Examples of some of the noise sounds that resulted in large positive outputs of the neural network, i.e., outputs that are 

similar to those. Many of these have sound in a band from lower left to upper right, exactly where right whale up calls have sound. 
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computer time (though using a relatively inefficient 

algorithm), in contrast to the manual method which required 

only a few hours of the author’s time. However, the degree 

of difference was surprisingly large, with the optimized 

method generally performing better by a factor of two to 

five.

Neural network performance (Fig. 4c) was somewhat better 

than the optimized spectrogram correlator for calls of poor 

SNR, though slightly worse for calls of high SNR. Stated 

another way, the performance curves of the neural network 

were more closely bunched than those of the optimized 

spectrogram correlator. This difference may be a reflection 

of the fact that the neural network had more tunable 

parameters, and was thus able to adapt to the types of calls – 

particularly faint calls – and non-call sounds better than the 

spectrogram correlator. Its range of variation between low-

SNR and high-SNR calls was therefore smaller. 

The performance curves of Figs. 4a and 4c show anomalies 

in which the performance for calls of greater SNR was 

occasionally worse than that for calls lesser SNR. It is not 

known why this occurred; it may have something to do with 

the fact that SNR was measured before spectrum 

equalization, while the methods operate from a spectrogram 

to which equalization has been applied.  

As shown in Fig. 4d, the neural network performed better 

than either spectrogram correlation method – substantially 

better than with manually-chosen parameters, and somewhat 

better than with optimized parameters over most of the 

range of measurement. There are regions at either end of the 

curves (the low false-negative and low false-positive ends) 

at which optimized spectrogram correlation performed 

slightly better than optimized spectrogram correlation, but 

in the broad middle range, the neural network was better. 

This raises the question of whether spectrogram correlation 

is useful at all. There are three answers to this question: 

1) No. The neural network with weights adjusted by the 

training process described above is plainly the preferred 

method for detecting the right whale up calls in this data set, 

and probably for detecting right whale up calls in other data 

sets.

2) Possibly. One open question is how well the neural 

network would work for right whales recorded in different 

locations or at different times of year. This network is 

optimized for the sounds (both calls and non-call sounds) 

with which it was trained, but its performance would 

probably degrade for data collected in a different sonic 

environment – where, for instance the types of transient 

interfering sounds were different. Performance of 

spectrogram correlation would probably degrade too, but it 

might degrade less, since the spectrogram correlation 

process and parameters are less finely tuned to the set of 

training calls and especially non-noise sounds. Whether this 

is true is a matter for future research. 

3) Yes. The spectrogram correlation method worked 

reasonably well when its parameters were chosen manually 

from only a few (20) example calls. Spectrogram correlation 

may be useful for detecting other call types from right 

whales, or calls from other animal species. In many cases, a 

large set of recordings containing thousands of training calls 

may not exist, or resources may not be available for a 

person to mark where in the recordings the desired calls are. 

Having such a set of marked calls is a prerequisite for 

training a neural network; in the absence of the marked 

calls, spectrogram correlation may well be a viable option. 

A single-point score of 26% false detections, as achieved by 

spectrogram correlation, is quite tolerable for many 

applications. For instance, if the application is determining 

whether calls of a certain type occur in a large body of 

recordings (e.g., Clark et al. 2000, Waite et al. 2003), then 

using spectrogram correlation with manual choice of 

parameters could result in detection of most or all of the 

desired calls, in addition to a small set of undesired non-call 

sounds. Examining an extra 26% of a small set of detections 

is almost trivial. In such a case, spectrogram correlation 

would have worked well. 

Another case in which spectrogram correlation might be 

useful is when minimizing the number of missed calls (false 

negatives) is the desired. If, for instance, one desired a 

missed-call rate of 1%, then optimized spectrogram 

correlation is the best-performing method. Setting the 

detection threshold for such a missed-call rate would 

necessarily lead to a large number of false detections (>50% 

in this case), but that could well be acceptable for some 

applications. One example is a real-time system for avoiding 

ship strikes, in which a human operator would check each 

possible detection before announcing the presence of a right 

whale. In such a system, the cost of a false detection could 

be only minimal, but that of a missed detection extremely 

high. 

How would the neural network, which was trained using 

discrete minigrams, be used in applications such as real-time 

detection where the signal is continuous in time? The 

network would be applied once per spectrogram time slice, 

by extracting the time-frequency portion of the spectrogram 

– the minigram – that begins at that time slice and has the 

same frequency bounds and duration as the minigrams used 

for training. The network would produce an output value for 

this input minigram;  the network's successive output values 

over time would constitute a detection function, similar to 

that of Fig. 2b. A threshold could then be applied to this 

function, and supra-threshold peaks in the detection function 
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would indicate where a right whale call was most likely to 

be present. 

Neural networks offer promise as a high-performance 

method for call detection. There remain a number of 

research issues about them. A large training set is needed for 

the neural network, but how large? A better phrasing of this 

question is to ask how network performance would degrade 

with smaller training sets. A related question is whether 

selecting subsets of the training set – say, calls that span the 

perceived range of variation of right whale up calls – would 

lead to equally good performance. Related to both of these 

is the optimum design of the neural network: would 

networks of fewer or more hidden units, or different training 

regimes, have performed substantially differently? These 

questions are further topics for research. 

In conclusion, the neural network was generally found to 

perform the best at the task of detecting right whale up calls 

in a data set consisting of 1857 up calls from North Atlantic 

right whales and 6359 non-call sounds. The network 

outperformed spectrogram correlation over most of the 

range of desired performance; this was true when the 

spectrogram correlation process used a manually-chosen set 

of parameters, as well as when parameters were chosen by 

an optimization procedure. The neural network is thus the 

best choice for the detection of right whale up calls from the 

given recording locations and probably elsewhere. Despite 

the superior performance of the neural network, 

spectrogram correlation is still a viable option for call types 

for which a large set of marked training examples is not 

available, or for when a very low number of missed calls is 

desired. 
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