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Abstract

Two Monte Carlo simulations were performed to compare methods for estimating and testing
hypotheses of quadratic effects in latent variable regression models. The methods considered in
the current study were (a) a 2-stage moderated regression approach using latent variable scores,
(b) an unconstrained product indicator approach, (c) a latent moderated structural equation
method, (d) a fully Bayesian approach, and (e) marginal maximum likelihood estimation. Of the 5
estimation methods, it was found that overall the methods based on maximum likelihood
estimation and the Bayesian approach performed best in terms of bias, root-mean-square error,
standard error ratios, power, and Type I error control, although key differences were observed.
Similarities as well as disparities among methods are highlight and general recommendations
articulated. As a point of comparison, all 5 approaches were fit to a reparameterized version of the
latent quadratic model to educational reading data.
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With the arrival of new estimation techniques, structural equation modeling (SEM) has been
extended in recent years to accommodate nonlinearities between endogenous and exogenous
latent variables. Positing a structural model with nonlinear terms is often necessary to
adequately account for the complexities often underlying real-world phenomena found in the
behavioral and social sciences (Moosbrugger, Schermelleh-Engel, Kelava, & Klein, 2009).
Of the numerous nonlinear relations that are possible (see, e.g., Klein & Muthén, 2007;
Wall, 2009), a simple quadratic function with a single exogenous variable and its squared
manifestation remains an attractive alternative among practitioners due to its effectiveness in
adequately summarizing many experimental processes within the observed range of the data
(Cudeck & du Toit, 2002).

Estimation of regression models with quadratic effects composed of continuous latent
variables has garnered a great deal of attention from methodologists since the seminal article
by Kenny and Judd (1984). Many estimation alternatives exist within the more general
polynomial specification, yet the vast majority of methodological studies that investigate the
relative effectiveness of different methods have focused on structural models with
multiplicative terms representing interactions among exogenous latent variables.

In contrast, estimation methods for models with only second-degree polynomial terms have
been examined with less frequency (Marsh, Wen, & Hau, 2006). The methodological
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approaches that currently exist to test for the necessity of quadratic effects generally fall into
distinct categories: (a) latent variable score approaches (e.g., Schumacker, 2002; a method
of moments two-step estimation procedure; Wall & Amemiya, 2003); (b) product indicator
approaches (e.g., Bollen, 1996; Hayduk, 1987; Jaccard & Wan, 1995; Ping, 1996), which
may be further categorized as fully constrained (Algina & Moulder, 2001; Jöreskog & Yang,
1996), partially constrained (generalized appended product indicator; Wall & Amemiya,
2001), and unconstrained (Marsh, Wen, & Hau, 2004); (c) maximum likelihood estimation
(Wall, 2009), which may be further categorized as marginal maximum likelihood (Cu-deck,
Harring, & du Toit, 2009; Klein & Moosbrugger, 2000) and an approximate maximum
likelihood estimation scheme (Klein & Muthén, 2007); and finally (d) Bayesian estimation
(Lee, 2007; Lee, Song, & Poon, 2004; Wall, 2009).

Although some simulation studies have compared a small subset of these methods for
estimating quadratic effects, the primary objective of this study was to do a more
comprehensive investigation of a broader set of methods. Moreover, we illustrate the
practical implications of using the different methods under investigation by applying them to
data from a reading comprehension assessment.

We have divided this article into the following main sections. In the next section we review
a nonlinear structural equation model that specifies a quadratic relation between endogenous
and exogenous latent variables. We then review the five estimation methods used in the
comparisons vis-à-vis Monte Carlo simulation. We then describe the factors thought to
impact the performance of these estimation methods and summarize what other simulation
studies have found. We outline the first of two simulations that examine the performance of
the five estimation methods in terms of parameter bias, root-mean-square error (RMSE), and
standard error ratio. In a subsequent section, we describe the second simulation designed to
compare the estimation methods in terms of their power to detect the presence of the
quadratic effect as well as their ability to control Type I error rate. We draw conclusions
based on the results of the simulation and provide recommendations as to which methods are
preferred across examined simulation conditions. Lastly, we fit reading data using all five
methods from a sample of fourth-grade students.

Nonlinear Structural Equation Models

SEM, initially conceived as an analytic method for modeling linear relations among latent
variables, can be extended, at least conceptually, to include nonlinear effects in a
straightforward manner. Like its linear counterpart (e.g., Wall, 2009), a nonlinear structural
equation model defines two regression models that play distinctive roles in formulating
various substantive problems: (a) a measurement model that defines the relation of the latent
independent (exogenous) and dependent (endogenous) variables to their observed variable
indicators, and (b) the structural model, which delineates the effects of the exogenous latent
variables on the endogenous variable.

Figure 1 displays a prototypical nonlinear structural equation model with six observed
variables and two latent variables, one with a linear and a quadratic term and one with only a
linear term; the structure of this model is the one that we use for the simulation study in this
article.

Specifically, on the top and right-hand side, shown in squares, are six manifest variables that
can be collected in a vector Zi = (Zi, . . . , Z6i)′ whose scores are observed for the ith
individual. In the center, shown in circles, are the three unobserved (i.e., latent) variables, f1,

f2, and , that arise from the two core latent variables, f1 and f2, that can be collected in a
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vector fi = (f1i, f2i)′. The full nonlinear structural equation model can then be specified as
follows:

(1)

(2)

where, in Equation 1, τ is a (p × 1) vector of intercepts, Λ is the (p × q) matrix of factor
loadings relating each latent variable in fi to its measured variable indicators in Zi, and ei
represents the (p × 1) vector of unique factors independent of fi with E(ei) = 0 and Var(ei) =
Θ, where Θ is diagonal. The regression coefficients γ0, γ1, and γ2 are the intercept and

direct path estimates of the first-order latent variable f2i and quadratic term , respectively.
The sign of γ2 indicates whether the endogenous–exogenous curvilinear relation is concave
(negative implies curving downward) or convex (positive implies curving upward). Figure 2
illustrates a scenario with only a quadratic component, in which change in the latent
criterion f1 is increasing across initial values of the latent predictor, f2; attains some
maximum level of performance or proficiency; and finally declines as the values of the
latent predictor continue to increase. A convex relation would show initial decline of the
criterion to a minimum value at which point the criterion values rebound and begin to
increase at larger values of the latent predictor.

Lastly, a common assumption is that the exogenous factor f2i comes from a normal
distribution having mean κ1 and variance ϕ1. For the structural model in Equation 2, it is

assumed the residuals di have E(di) = 0 and , and are independent of f2i as well
as ei.

For the purpose of our simulation studies, we use a model with two latent variables with
three observed indicators each for both endogenous and exogenous latent variables. For
identification purposes and to set the scale of the latent variables, we chose to set a single
factor loading to 1 and corresponding intercept to 0 for both f1i and f2i. The measurement
model for six observed variables, xmi and ymi for m = 1, 2, 3, is

(3)

As discussed at the outset of this article, the parameters in such a nonlinear structural
equation model can be estimated with a variety of methods, which we describe in the
following section. Note that we are specifically interested in reliably testing whether

quadratic latent variable effects, such as those represented by  in Figure 1 above, are
statistically necessary.

Estimation Methods

Latent Variable Scores

One traditional method that has been used to test for nonlinear relations between latent
variables involves a two-step process based on latent variable (i.e., factor) scores. Latent
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variable scores (referred to in the simulations as LVS) represent estimates of individuals’
scores on an underlying latent factor. In the first step, factor scores for the endogenous and
exogenous latent variables f1 and f2 are computed. In the second step, for each individual's
estimated latent variable score, f̂2i is squared to form the latent variable score for the

quadratic effect, , and finally all latent variable scores are submitted to a multiple
regression analysis (Schumacker, 2002). Procedures for testing quadratic effects through
multiple regression analyses can be found in Cohen, Cohen, West, and Aiken (2003).

Due to the straightforward manner in which latent variable scores are computed, coupled
with the simplicity of least-squares estimation in subsequent regression analyses, use of
factor scores for structural models with quadratic effects seems like a sensible approach.
However, potential disadvantages exist that might impede their widespread use for these
types of methods. As Bollen (1989) pointed out, because latent variable scores represent
only estimates of individuals’ true scores on the underlying latent factors, their scores may
still contain measurement error. As a consequence, many methodological researchers
contend that factor score regression will produce biased and/or inconsistent estimates of the
structural model parameters (e.g., Bartholomew, 1987; Lastovicka & Thamodaran, 1991).
These drawbacks notwithstanding, using latent variable scores does reduce measurement
error, and consequently, this approach for estimating quadratic effects between latent
variables is still advantageous over using observed scores within multiple regression
analyses.

Secondly, because the number of latent variables and errors of measurement is greater than
the number of observed variables, there exist an infinite number of potential solutions for the
specific factor scores. This is known as the factor score indeterminacy problem (e.g.,
Mulaik, 2009). As a consequence, numerous estimation methods have been put forth to
compute these factor scores. Several studies have been conducted to compare the various
methods of estimating latent variable scores (e.g., Gorsuch, 1974; Lastovicka &
Thamodaran, 1991; Mulaik, 1972). Lastovicka and Thamodaran (1991) conducted a
parameter recovery simulation study comparing the least squares regression method,
Bartlett's method, Anderson and Rubin's method, and another method proposed by
Thurstone (as cited in Lastovicka & Thamodaran, 1991). In addition, Lastovicka and
Thamodaran used an ad hoc procedure using a factor score extension proposed by Dwyer (as
cited in Lastovicka & Thamodaran, 1991), as well as the commonly used method of simply
summing an individual's responses on all variables (assuming they are coded in the same
direction). Similar results were found among the six estimation methods. The Dwyer
extension method resulted in the closest recovery of multiple R and had the lowest standard
error of measurement associated with the regression beta weights. The Anderson and Rubin
(1956) method, a revision of Bartlett's method, resulted in the most accurate recovery of the
beta weights and had a comparable standard error of measurement associated with the
regression beta weights to that of the Dwyer extension method. The other three methods
were somewhat comparable.

In this study we use a modification of Anderson and Rubin's (1956) method as described in
Jöreskog (2000). The procedure has the advantage of producing factor scores that have the
same means and covariance matrix as the latent variables themselves. Jöreskog showed that
when the mean vector fits perfectly—which is always the case when τ in Equation 2 is
unconstrained—the sample factor score estimates will be unbiased. Consequently, the
estimated latent variable scores used as observed variables will get the same parameter
estimates for coefficients in Equation 3. This is the default procedure in LISREL 8.80
(Jöreskog & Sörbom, 2006), the program we used to carry out the estimation of the latent
variable score approach.
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Unconstrained Product Indicator Approach

For the proposed quadratic model, the unconstrained method requires researchers to use all

paired products of observed variables as indicators of the latent quadratic term,  (e.g., x2 =
x1 · x1). This is what Marsh et al. (2004) referred to as a matched-pairs strategy. That is, for
the measurement model in Equation 3, the three products of the observed variables xmi that
would need to be constructed in the data set are

(4)

Note that the observed variables xmi are not mean centered before constructing their
products. Although multicollinearity will certainly exist between the first-order terms and
their corresponding derived quadratic terms (Aiken & West, 1991), Wall (2009)
demonstrated the equivalence of the regression coefficient of the highest order term (in this
case the quadratic term) and its standard error when the observed variables were mean
centered and when they were not. Because our focus is on reliably estimating the coefficient
of the quadratic term, we proceed with not mean centering the indicators of the first-order
predictor, f2.

The modified measurement model incorporating the newly formed product indicators of 
is

(5)

Note the difference in notation in Equation 5 compared with Equation 3. Under the
assumption that the exogenous latent variable is normally distributed, product indicator
approaches were proposed that demonstrated how parameters of the model corresponding to
the nonlinear latent variable could be expressed as nonlinear functions of other model
parameters (see, e.g., Algina & Moulder, 2001; Jöreskog & Yang, 1996, for constrained
estimation approaches; Wall & Amemiya, 2003, for a partially constrained approach).
Though admittedly ad hoc in nature, these methods were introduced primarily to make
maximum likelihood estimation of nonlinear structural models feasible. Aside from the
regression coefficients for the structural model, other model parameters to be estimated
include observed variable intercepts, factor loadings, unique variable variances and
corresponding covariances (see, e.g., Marsh et al., 2006, for more detail), and factor means,
variance, and covariances.

In this study, we follow the unconstrained approach (referred to in the simulations as UNC)
introduced by Marsh et al. (2004) in which error variances, intercepts, factor loadings, and
factor means associated with the nonlinear factor are allowed to be freely estimated, thereby
eliminating the potential for incorrectly mis-specifying these nonlinear relations under real
data-analytic modeling conditions (Marsh et al., 2006). Of the product indicator approaches,
the unconstrained approach has been shown to be more robust than its competitors under
nonnormal distributional conditions and can be implemented in current SEM software
programs in a straightforward manner. For the purposes of this study, we used LISREL 8.80
(Jöreskog & Sörbom, 2006) to carry out the estimation of the unconstrained product
indicator approach.
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Approaches Utilizing the Likelihood

Some methods to estimating nonlinear structural models such as Equation 2 require working
directly with the likelihood based on the joint distribution of observed data Zi and latent
variables fi. Maximum likelihood estimation of nonlinear structural equation models of this
type has been considered most extensively in an important series of articles by Lee and his
colleagues (Lee, Song, & Lee, 2003; Lee et al., 2004; Lee & Zhu, 2002).

Given the measurement model and nonlinear quadratic structural model in Equation 2 and
Equation 3, respectively, for the ith individual, this likelihood function associated with a
sample Z1, . . . , Zn can be written as in Equation 3. Following the notation in Wall (2009),
let θm represent the measurement model parameters (i.e., parameters in Λ, Θ) and θs denote

the nonlinear structural parameters (i.e., γ0, γ1, γ2, ). Note that . The likelihood
can then be written from the joint distribution of the response vector Z1 and the random
latent variable fi conditional on the parameter vector θ as follows:

(6)

When either the measurement or structural model has nonlinear relations in the conditional
means, or the underlying exogenous factor and/or error terms are not normally distributed,
the integral in Equation 6 is analytically intractable.

Moreover, the likelihood in Equation 6 is difficult to estimate due to the computation of the
potentially high-dimension integral over the latent quantities. This is especially true for
nonlinear structural models that have multiple nonlinear effects (Moosbrugger et al., 2009).
However, modern statistical estimation approaches and optimization schemes have made
these computationally intensive problems more accessible to practitioners. Though several
methods have been espoused (see, e.g., Skrondal & Rabe-Hesketh, 2004), in the context of
estimating quadratic structural models, two general estimation schemes are (a) to
approximate the integral in Equation 6 directly or (b) to circumvent the integration by
implementing the expectation–maximization (EM) algorithm (Dempster, Laird, & Rubin,
1977). The EM algorithm is central to the latent moderated structural equation approach
described below.

Latent Moderated Structural Equations

Rather than directly approximate the integral in Equation 6, Klein and Moosbrugger (2000)
proposed the latent moderated structural equation method (referred to in the simulations as
LMS), which does not require the creation of indicators for the quadratic latent variable (a
condition for the unconstrained approach) and recognizes the nonnormal distribution of the
quadratic latent variable. It does, however, assume that the exogenous latent variable and
structural equation errors are normally distributed. The EM algorithm is used to compute
maximum likelihood estimates of the parameters.

Following Klein and Moosbrugger (2000), the form of a general interaction model with
squared terms of two exogenous continuous latent variables as well as their cross product is
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where η is an endogenous latent variable, α is an intercept term, Γ is a (1 × k) parameter
vector associated with the linear latent exogenous variables, ξ is a (k × 1) vector of latent
exogenous variables, Ω is a (k × k) matrix of parameters that correspond to nonlinear factors
of ξ′ξ, and ζ is the error term. In the case of the quadratic structural model in Equation 2, ξ
and Ω are both scalars,

The quadratic model specified in Equation 1 and Equation 2 comprises a vector of indicators
with six elements Z = (x′, y′) = (x1, x2, x3, y1, y2, y3)′ and can be represented as a finite
mixture of multivariate normal distributions. The indicator vector x is assumed to be
normally distributed, whereas indicator vector y is not assumed to be normally distributed

because the quadratic term  is in the structural model. Linear and nonlinear effects are
separated and decomposed into independent random z variables via the Cholesky
decomposition of the covariance matrix of the manifest indicators, Σ. The vector z is made
up of vectors z1 and z2, which represent the linear and nonlinear effects, respectively. From
this, a continuous mixture of normal densities with z1 as the mixing vector can be derived. A
subsequent partitioned mean vector and covariance matrix can then be obtained. If the
quadratic effect exists, and thus γ2 differs from 0, then the integral of the mixture cannot be
solved analytically. In this case it is approximated by Gaussian–Hermite quadrature
formulas of numerical integration (Pinheiro & Bates, 1995) within an EM algorithmic
scheme from which maximum likelihood estimates of the mixture probabilities and mixture
components are obtained (Klein & Moosbrugger, 2000).

The LMS method, which is currently implemented in Mplus (Muthén & Muthén, 2007), can
be used to fit the quadratic model to data. In this study, we used Mplus 6.1 to carry out
estimation of the quadratic structural model using this method.

Marginal Maximum Likelihood

Several methods have been proposed that attempt to handle the multidimensional integration
in Equation 6 directly. These methods—Laplace's approximation, Gaussian–Hermite
quadrature, adaptive Gaussian quadrature, and importance sampling—have been coined
exact methods in the literature (Pinheiro & Bates, 1995), but all are trying to approximate
the area of the distributions of the latent exogenous variables. The family of so-called exact
likelihood methods maximizes the likelihood function directly using deterministic or
stochastic approximation to handle the integral. From this class, Gaussian–Hermite
quadrature (nonadaptive) was used in the simulation to facilitate marginal maximum
likelihood estimation (referred to in the simulations as MML). Gaussian–Hermite quadrature
approximates each integral by a weighted average of the integrand evaluated at specific
points over a grid centered at 0. The more grid points that are evaluated, the more precise the
approximation of the integral will be (Skrondal & Rabe-Hesketh, 2004). With this rule, an
integral over a function of the type v(t) = g(t)exp(–t2) is approximated by the sum
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where wk and xk are the weights and nodes of the Hermite polynomial of degree Q. It can be
shown (Stroud & Secrest, 1966, Section 1) that the approximation is exact if g(t) is of degree
2Q – 1. It can also be shown (Krommer & Ueberhuber, 1994, Section 4.2.6) that the
approximation converges to the true integral as the number of quadrature points, Q,
increases.

The primary reason to examine just the nonadaptive Gaussian– Hermite quadrature method
is based on the rate of convergence. Through preliminary investigations, we found that
convergence rates for integration methods (i.e., adaptive Gaussian quadrature, importance
sampling, Laplace's approximation) in which the nodes are rescaled or estimated, relied too
heavily on good starting values of the parameters—especially the variance and covariance
parameters of the exogenous factor and unique factors—to make the simulation feasible. We
found that nonadaptive quadrature was less sensitive to starting values, but required more
quadrature points to approximate the integral with satisfactory precision.

In the current study, we used a nonadaptive quadrature with Q = 30 quadrature points to
approximate the integral followed by a quasi-Newton optimization scheme. The number of
points was chosen after some initial investigation of the performance of the method to
converge to a reasonable solution. Moreover, because the LMS method also requires an
integration scheme using Gaussian–Hermite quadrature within the EM algorithm, setting the
number of points to a universal value could make the results between these methods more
comparable. For the simulation study, Gaussian–Hermite quadrature was implemented in
SAS PROC NLMIXED (Wolfinger, 1999).

Bayesian Estimation

In the MML method described above, the elements of θ in Equation 6 were considered fixed
parameters in the population, and fi were random latent variables coming from a
distribution, p(fi|θ). The random latent variables in fi were not estimated explicitly in the
maximum likelihood procedure but marginalized out by integration. In a secondary step,
predicted factor scores could be obtained for each individual. In a Bayesian approach
(referred to in the simulation as BAY) there is no distinction between random latent
variables and model parameters, as all are considered random quantities (Gelman, Carlin,
Stern, & Rubin, 2004). That is, in the Bayesian approach, vector fi contains parameters, and
the parameter vector θ is assigned a distribution called a prior distribution, p(θ) (Lee, 2007).

A fully Bayesian approach to estimating nonlinear structural equation models relies on an
application of Bayes’ theorem, which states

where p(x | θ) is the conditional distribution of the data x given model parameters θ, p(θ) is
the prior probability distribution of the parameters, and p(x) = ∫p(x|θ)∂θ represents a
normalizing constant to make p(θ | x) a proper density function. Direct computation of the
integral in Equation 6 is bypassed by noticing that the posterior distribution is proportional
to the product of the likelihood function and prior distributions:

(7)
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Draws from the posterior distribution can be obtained via Markov chain Monte Carlo
(MCMC) simulation methods. MCMC methods are useful in sampling from the multivariate
densities, which are not easy to sample from, usually by breaking these densities down into
more tractable univariate or multivariate densities (Lynch, 2007). That is, MCMC methods
sidestep sampling directly from the joint posterior distribution by sampling from the full
conditional posteriors of each parameter conditioned on the data and the most recent value
of all other parameters (see, e.g., Lee, Song, & Tang, 2007; Wall, 2009).

As is true with any type of model for multivariate data, the key to specifying a nonlinear
structural equation model within any MCMC framework is properly setting up the prior
distributions on the model parameters. This section describes conjugate priors (of the same
family as the likelihood) for each of the parameters. Note, however, that priors need not be
from the same distributional family as the likelihood. Lynch (2007) observed that a feature
of the Bayesian framework that is particularly attractive is that it provides a natural
mechanism for incorporating known constraints on values of model parameters and other
subject matter knowledge through the specification of suitable proper prior distributions.

Recall that in Equation 6 that θ comprises all model measurement and structural parameters

—τ, Λ, Θ, γ, κ1, ϕ , —from Equation 2 and Equation 3. The conjugate priors for the
intercepts, factor loadings, and unique factor variances from Equation 1 are for k = 1, . . . , p:

where μ0k, φ0k, α0ek, β0ek, λ0k, and  are hyperparameters. The conjugate priors for the
regression coefficients, regression residuals, and exogenous latent variable are

Again, μ0γj, φ0γj, μ0f, φ0φ, μ0d, φ0d, μf, φ0f, α0φ, and β0φ are hyperparameters. If
hyperparameters in the conjugate prior distributions are not known, then they may be treated
as unknown parameters and thus have their own hyperparameters. Song and Lee (2001)
pointed out conjugate prior distributions with known values work well for many SEM
applications, and assigning specific values for hyperparameters would indicate available
prior knowledge. In general, informative priors are assigned small variance in the
corresponding distributions; otherwise large variance should be selected. In the latter case,
these prior distributions are known as diffuse or noninformative. Following Wall (2009), we
used the following noninformative priors for the simulation: τk ~ N(0, 0.0001); λk ~ N(0,

0.0001); ; γj ~ N(0, 0.0001); μ0f ~ N(0, 0.0001);

; d ~ N(0, φ0d and .

Although the flexibility of Bayesian estimation is in part due to the ability to specify prior
distributions, this is also one of the main criticisms of the estimation framework (Paap,
2002). Estimates can sometimes be quite sensitive to the choice of priors and
hyperparameters, even when conjugate priors are used. Furthermore, although large sample
sizes can sometimes negate the impact of priors, there are many instances where the
specification of prior distributions can have a large impact on estimates. Thus, an initial
exploration as to the sensitivity of the expected results based on different priors for the
current simulation was completed. Each of the priors was set for each parameter and tested
to make sure the distributions did not overwhelm the data.
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Bayesian estimation for the current study was executed with WinBUGS (Spiegelhalter,
Thomas, Best, & Lunn, 2002). To begin running the full-scale simulation with MCMC
estimation, we investigated an adequate number of burn-in and estimation cycles with a
reasonable number of simulated draws from the posterior distribution. The number of burn-
in iterations can be determined by plots of the simulated sequences generated from different
starting values of the parameter under investigation. At convergence, parallel sequences
generated with different starting values should “mix” together well. Examples of sequences
for which convergence looks reasonable and sequences that have not reached convergence
are presented in Figure 3.

Based on different starting values, the Gelman–Rubin convergence statistic (as modified by
Brooks and Gelman, 1998) can also be computed to help assess convergence. The Gelman–
Rubin convergence statistic as implemented in WinBUGS finds the ratio of between-chain
variability to within-chain variability. Due to how it is scaled, values of the statistic close to
1 represent convergence. In preliminary analyses, we examined convergence plots and
descriptive statistics, statistics of posterior parameters, history of cycles, and densities of the
posterior data under both severe and nonsevere conditions to select the number of burn-in
cycles and adequate estimate cycles per replication in the final simulation analyses.
Consequently, we took a burn-in phase of 3,000 iterations and collected 2,000 observations
after convergence for obtaining the Bayesian point estimates of the parameters and their
corresponding standard error estimates.

Simulation Study 1

The design of the first simulation study was a 5 (sample size levels) × 3 (observed variable
reliability levels) × 3 (latent variable distribution levels) × 2 (observed variable distribution
levels) × 5 (methods of estimation) completely crossed factorial design resulting in 450
possible combinations. Of primary concern were those factors that have been shown to
impact methods of estimation in past methodological studies. Levels of the manipulated
factors were chosen to (a) correspond to realistic analytic environments found in practice
and (b) push the various estimation methods to the breaking point. As a reviewer pointed
out, this latter motive might produce more divergent performance of the various methods
and thus provide clearer guidance for practitioners, who likely will use these methods under
diverse data conditions. The independent manipulated factors and rationale of choices for
the levels of those factors are described in detail in the following subsections.

Indicator Reliability

One advantage of structural equation models over traditional regression models for observed
variables is that, by definition, latent variables are measured without random error. Thus, for
fully latent estimation methods in which estimation of the measurement model and structural
model is performed simultaneously, unreliability of the indicators may pose fewer problems.
However, for nonfully latent estimation methods, such as multiple regression analyses with
predicted factor scores, reliability of the indicators has been known to impact estimates of
structural coefficients (Dimitruk, Schermelleh-Engel, Kelava, & Moosbrugger, 2007). In
other simulation studies (see, e.g., Weiss, 2010), indicator reliability has been shown to
affect power to detect the interaction effect in a latent variable interaction model. For these
reasons it will be a factor manipulated in the design. Commensurate with past simulation
studies (see, e.g., Algina & Moulder, 2001; Jaccard & Wan, 1995), reliabilities of observed
variables were simulated to be .65 and .85, representing fair and good values, respectively.
A more extreme reliability level (indicating poor reliability) of .45 was also examined. We
chose the indicator reliabilities to be equal across the indicator variables. This decision was
made in part by the practical realities of executing the simulation, although we do recognize
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that in real-world applications the reliabilities for each observed variable indicator could
very well be distinct.

Sample Size

We used five sample sizes (n = 50, n = 100, n = 250, n = 500, and n = 1,000) reflecting
various degrees of estimation precision for measurement and structural parameters,
respectively. Three of the sample sizes—n = 100, n = 250, n = 500—reflect those used in
past simulation designs that investigated nonlinear effects (see, e.g., Klein & Muthén, 2007;
Marsh et al., 2004; Moulder & Algina, 2002), whereas the other two represent more extreme
conditions. A sample size of 50 was chosen to reflect a very small, perhaps even unrealistic,
sample size; n = 1,000 was chosen on the upper end to reflect a very large sample size. From
preliminary investigations across both high-risk and low-risk condition combinations, it was
determined that for even more extreme sample sizes (e.g., n = 2,000), the increase in
estimation precision relative to that observed when n = 1,000 was negligible.

Nonnormal Distributions

Several estimation methods, including four under investigation in this study, rely on the
assumption that either the observed indicator variables follow a multivariate normal
distribution or the exogenous latent predictor is normally distributed, or both. Maximum
likelihood estimation tends to be fairly robust to violations of normality in terms of bias of
parameter estimates (e.g., Boomsma, 1983). However, results from past simulation studies
do suggest that nonnormality leads to serious underestimation of standard errors and biased
chi-square values (Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 1992; Jöreskog &
Yang, 1996). Of importance to the current study, underestimation of standard errors is an
indication that Type I error rates may be much greater than the nominal level. For testing the
quadratic effect, false rejection of the null hypothesis could occur with greater frequency
than what the nominal level would suggest.

Even in the best circumstances within a maximum likelihood estimation framework, when
the observed variables follow a multivariate normal distribution and the exogenous latent

predictor is normally distributed, the quadratic term  will necessarily not be normally
distributed. Consequently, the endogenous dependent variable, f1, will not be normally
distributed (Jöreskog & Yang, 1996; Klein & Moosbrugger, 2000). Marsh et al. (2004)
suggested examining the effects of nonnormality in both observed and latent variables,
although more recent studies (e.g., Klein & Muthén, 2007) have noted that if the exogenous
latent variable is nonnormal, then indicators formed from them would be nonnormal as well.
However, for completeness, we examined nonnormality for both observed and latent
variables.

It should be pointed out that previous studies have only investigated the impact of mild
nonnormality on estimating nonlinear effects (Klein & Moosbrugger, 2000; Klein &
Muthén, 2007; Marsh et al., 2004; Wall & Amemiya, 2001). Specifically, for the nonnormal
conditions within these studies, data were generated for exogenous latent variables from
distributions with skew ranging from –2.0 to 1.5 and kurtosis ranging from –1.5 to 6.0.
Kline (2011) suggested that extreme skew is defined by skew values greater than an absolute
value of 3.0 and extreme kurtosis is defined by absolute kurtosis values ranging from 8.0 to
over 20.0. He further suggested that kurtosis values greater than the absolute value of 20
may indicate serious problems with nonnormality. On the basis of these heuristic values for
skew and kurtosis, the skew and kurtosis values for previous studies are categorized to be
fairly mild.
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Fleishman's (1978) polynomial transformation procedure was used to generate combined
levels of skewness and kurtosis for the nonnormal distributions of the exogenous latent
variable. Three levels were assessed: (a) skewness = 0, kurtosis = 0 (normal condition); (b)
skewness = 2, kurtosis = 7 (moderate nonnormality); and (c) skewness = 3 and kurtosis = 20
(severe nonnormality). The same procedure was used to generate two levels of observed
variable nonnormality: (a) skewness = 0, kurtosis = 0 (normal condition), and (b) skewness
= 2, kurtosis = 6 (moderate nonnormality). Descriptive statistics were computed for a
number of data sets to ensure that the population levels of skew and kurtosis were obtained.
In all there are 3 × 2 = 6 fully crossed distributional conditions. A summary of all
manipulated conditions can be found in Table 1.

Nonmanipulated Factors

In past methodological studies (see e.g., Jaccard & Wan, 1995; Kelava, Moosbrugger,
Dimitruk, & Schermelleh-Engel, 2008; Marsh et al., 2004), the effects of multicollinearity
have been investigated primarily for latent interaction models where the correlation between
exogenous latent first-order predictors could be manipulated. For the quadratic model,
multicollinearity does exist between the first-order latent predictor and its squared
manifestation because the latter is derived from the former. In practice, researchers might
center the first-order exogenous latent predictor before squaring that term to eliminate what
Cohen et al. (2003) have coined nonessential multicollinearity. This is the correlation due to
the scaling of the variables. Because the regression coefficient and its standard error of the
highest order term in the model (in this case the quadratic term) are mathematically
equivalent (Wall, 2009), differences between centered and uncentered models that address
issues inherent with multicollinearity will not be examined further.

Data Generation

The first simulation examines parameter recovery and accuracy of the regression
coefficients and their corresponding standard errors under different (a) sample sizes, (b)
reliability of the indicators, (c) various distributions of the indicators as well as the latent
variables, and (d) estimation methods.

All simulated variables were derived based on the population model depicted in Figure 1
following structural and measurement models in Equation 2 and Equation 3, respectively.
The following population values were selected for the regression parameters: γ0 = 3, γ1 = –
1, and γ2 = 0.25. The errors, e1i, . . . , e6i, were generated under the distributional conditions
previously described, with the variances of the errors chosen so that the reliability of each
indicator adhered to the study levels detailed above. Error term di was generated from a
normal distribution with mean 0 and with Var(d) taken so that R2 = .5. The latent factor, f2i,
was generated under the distributional study conditions with mean 3 and variance 1.

For each of the 450 possible condition combinations, 500 data sets were generated with
SAS.1 As for the number of replications, Bandalos (2006) suggested that 500 replications
were large for SEM Monte Carlo simulation studies. She argued that this number of
replications would provide stable standard error estimates even when data were generated to
come from a nonnormal distribution. Once the data were generated, they were analyzed with
the aforementioned statistical software.

1SAS code for data generation can be downloaded from the first author's website (http://education.umd.edu/EDMS/fac/Harring/
webpage.html). The LISREL code, Mplus code, WinBUGS code, and SAS NLMIXED code to run each of the five methods can be
found in the Appendix.
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Evaluation Criteria

The empirical performance of each estimation method was evaluated on the basis of

. Bias for each parameter was calculated as the difference between
the mean of the estimates obtained from the 500 replications and the true value. Hoogland
and Boomsma (1998) suggested as a criterion that the absolute value of bias be less than .05
for parameter estimates in a particular condition, or across conditions in a study, to be
considered unbiased. Other criteria have been considered for other measures of bias, such as
relative bias (see, e.g., Gagné, 2004; Hoogland & Boomsma, 1998). In the current study, we
adopted Hoogland and Boomsma's suggested value of .05 to demarcate bias and unbiased
parameter estimates. RMSE is the square root of the expected squared loss around the true
parameter value and was computed for the mth element of parameter vector θ as

where θ0(m) is the true parameter for the mth element of θ and  is the estimate
obtained by the approach under consideration. The accuracy of the estimated standard errors

was evaluated by calculating the ratio  (see, e.g., Lee, Poon, &

Bentler, 1995), where  is the square root of the mean of the variance of the

estimates of  obtained from the 500 replications and  is the sample standard

deviation obtained from . If the standard errors are accurate,  should be

close to , and the ratio  should be approximately 1.0.
Values less than 1 would indicate that the standard errors are being systematically
underestimated, which would lead to inflated Type I error when the parameter null
hypotheses are true. On the other hand, standard error ratios greater than 1 would lead to
inflated Type II error rates for detecting nonzero parameters.

Convergence to a proper solution was also tracked, as some methods demonstrated a lack of
convergence to a proper solution at the more extreme levels of the conditions. In situations
in which replicates did not converge, replacement replications were not generated. Thus, the
computations of the outcome criteria are based on only those converged replications.

Research Questions

Specific research questions we address in this simulation study are

1. Do differences exist among the five estimation methods in terms of bias? If so,
which manipulated study conditions influence the accuracy of parameter recovery?

2. Do differences exist among the five estimation methods in terms of variability of
estimates as measured by RMSE? If so, which manipulated study conditions
influence variability of the parameter estimates?

3. Do differences exist among the five estimation methods in terms of the accuracy of
computing standard errors of the parameter estimates? If so, which manipulated
study conditions influence standard error estimation accuracy?
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Results of Simulation Study 1

Convergence

Convergence was monitored, as some methods were thought to be negatively impacted by
the extreme sample size and distributional conditions. For the LVS method, which used
ordinary least squares estimation, convergence was not an issue. Similarly, there were few,
if any, convergence issues with the LMS, MML, and BAY approaches, although the MML
method had a small number of replicates that did not converge, particularly when the sample
size was small (n = 50 and n = 100) and the exogenous predictor distribution was severely
nonnormal (skew = 3, kurtosis = 20). However, the number of nonconvergent solutions was
less than 1% of all replicates in any particular cell of the design. For the UNC method,
sample size, nonnormality, and indicator reliability did have a modest negative impact on
the rate of convergence.

When the exogenous predictor was severely nonnormally distributed, the indicator reliability
was poor, and the sample size was 50 or 100, the UNC approach was unable to converge for
approximately 1%–8% of the replicate data sets. When sample size increased to 250 or
higher, the indicator reliability increased, or the exogenous predictor deviated modestly from
normality, the UNC approach reached convergence for all replicates.

Bias, RMSE, and Standard Error Ratio

Bias, RMSE, and standard error ratio from Simulation Study 1 for the intercept, γ0, and the
first-order linear term, γ1, paralleled the results for the quadratic coefficient, and as such are
not shown to conserve space. Tables 2, 3, and 4 display the effects of sample size,
nonnormality, and estimation method on parameter bias, RMSE, and standard error ratio of
estimates of the quadratic coefficient γ2 across the three levels of indicator reliability.

Bias—Bias was positive for all methods except the LVS method, which produced estimates
that were consistently negative. Marginally across all other conditions, the UNC method
showed the least amount of bias, followed closely by the MML and LMS estimation
methods. This result is commensurate with results from past simulation studies that have
examined nonlinear effects in structural equation models (e.g., Marsh et al., 2004). In
reference to the criterion of .05, the UNC method produced bias estimates, particularly when
the reliability of the indicators was poor coupled with small sample size. The LVS method
demonstrated the greatest bias (negative), with average values of bias exceeding .05 in
absolute value. Again, this occurred when the reliability was moderate (.65) or poor (.45)
and the sample size was small to moderate. The MML, BAY, and LMS methods produced
estimates that were less biased compared with the UNC and LVS methods and were
insensitive to the effects of unreliable indicators and sample size. As anticipated, bias across
conditions decreased as sample size increased, but there was a pattern indicative of
diminishing returns for sample sizes larger than 500. Bias in parameter estimates produced
by the MML, BAY, and LMS procedures were comparable to the UNC method when
reliability of the indicators was good (e.g., reliability = .85). Perhaps not too surprisingly,
bias was greatest for all methods (relative to themselves) at the extreme small sample size (n
= 50) coupled with poor indicator reliability (reliability = .45) and exogenous factor
nonnormality (NN-4, NN-5, and NN-6). Essentially, all methods produced more biased
estimates in these nonnormal conditions compared with case when the indicators were
nonnormal and the factors were normally distributed.

RMSE—Variability of the quadratic parameter estimate as measured by RMSE showed
predictable, systematic change across study conditions of sample size and indicator
reliability, yet less anticipated results across nonnormality conditions. As for estimation
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methods, the UNC, LMS, BAY, and MML methods showed comparable RMSE values
across study conditions. The LVS estimates were more variable overall than those generated
by the other four methods. However, this result may be explained, in part, by the fact that
the LVS method showed the most consistent and greatest overall parameter bias among the
estimation approaches. Because the RMSE comprises both parameter estimate variability
and bias, it is difficult to disentangle the extent that these values for the LVS method were
influenced by parameter bias when using this measure.

As predicted, the parameter was more precisely estimated as the sample size and indicator
reliability increased. Unexpectedly, in the nonnormal conditions, RMSE values tended to
decrease slightly in the more extreme exogenous factor nonnormality conditions.

Standard error ratio—Standard error ratio was perhaps the most revealing of the
outcome variables and the one that seems to have received the smallest amount of attention
in the literature. In its current usage, the ratio communicates how the standard error of the
estimated parameter compares with an empirically derived standard deviation that represents
the true variability of the sampling distribution of the regression coefficient in the
population. A value of 0.80, for example, would indicate that the standard error that is
computed could be up to 20% smaller than what would be realistic in the population. The
implication is that for values straying too far below 1.0, a proliferation of Type I error is
likely, given that standard error estimates will be on average too small. On the other hand,
ratio values above 1.0 would indicate that Type II error is probable given that the standard
error estimates will be on average too large.

The results of the simulation study in terms of the relative ratio are displayed graphically in
Figure 4. As Figure 4 shows, the ratio of standard errors is not the same across estimation
methods. The MML and LMS methods produced standard errors that are closest to the
standard deviation computed from the empirical sampling distribution of γ2, as the median
ratios from these two methods are near 1.0, 0.946, and 0.949, respectively. The UNC and
LVS methods are distinctive in that they demonstrate up to a 19% decrease in the magnitude
of the standard error (UNC = 0.858 and LVS = 0.810). Standard error ratios were more
variable for the BAY approach compared with the MML and LMS approaches. The BAY
approach demonstrated better ratio performance in smaller sample sizes (ratio = 0.975 for n
= 50 and ratio = 0.967 for n = 100) than the likelihood-based competitors, but was
consistently less than 1.0 overall and demonstrated poorer performance as the sample size
increased. This result was counter to that found in a small simulation by Lee (2007).

Simulation Study 2

It is frequently the case that inferential procedures for nonlinear structural models involve
testing whether the regression coefficient for the nonlinear term is statistically significant.
To address the performance of such test procedures under the five methods of estimating
latent variable quadratic effects, we conducted a second Monte Carlo simulation study. All
variables were simulated to come from a population in which

(8)

where the mean and variance of f2i were set to 3 and 1, respectively. The effect size to be
manipulated represents the additional variance that the quadratic effect explains in f1 above
and beyond that which can be explained by the first-order effect, and is equal to the value
expressed by (Marsh et al., 2004)2
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(9)

Effect sizes for the quadratic effect were chosen to correspond to 0% (to investigate Type I
error rates), 5%, and 10%, and are similar to values found in other studies (see, e.g.,
Dimitruk et al., 2007; Jaccard & Wan, 1995). To generate the data, the linear and quadratic
coefficients in Equation 9 were computed to correspond to effect sizes above with constant

variance—Var(d) = 10. In the situation with no effect, , γ0 = 3, γ1 = 3.162, and γ2 =

0. For , γ0 = 3, γ1 = 0.082, and γ2 = 0.5. And lastly, for , γ0 = 3, γ1 = –
1.243, and γ2 = 0.707. Five sample sizes were examined (n = 50, n = 100, n = 250, n = 500,
n = 1,000); reliability of the indicators followed those values chosen in Simulation Study 1,
namely .45, .65, and .85. Because the impact of nonnormality of the observed variables was
negligible, only latent variable nonnormal conditions were examined, and follow the
conditions of the first simulation study. The three conditions were (a) skewness = 0, kurtosis
= 0; (b) skewness = 2, kurtosis = 7; and (c) skewness = 3, kurtosis = 20.

Therefore, the design of the second simulation study was a 3 (effect size) × 5 (sample size
levels) × 3 (observed variable reliability levels) × 3 (latent variable distribution levels)
completely crossed factorial design resulting in 135 possible combinations. In each
condition, 500 data sets were generated. The five estimation schemes were then employed to
analyze the data sets in each cell.

Research Questions

4 Do differences exist among the five methods in terms of Type I error rate
control? If so, which manipulated study conditions influence Type I error rates?

5 Do differences exist among the five estimation methods in terms of power to
detect the quadratic effect? If so, which manipulated conditions influence
power?

Type I Error Rate and Power

The empirical Type I error rates of the nominal size α = .05 two-sided tests (under the null
hypothesis, H0 : γ2 = 0) when using the five estimation procedures are given in Table 5. The
Type I error rate was computed as the proportion of converged solutions that had a
statistically significant quadratic effect (at the .05 level) in the simulated data when H0 was
true. In addition, empirical power (probability of rejecting a false null hypothesis, H0 : γ2 =
0) was computed and tabulated under the 5% and 10% effect size conditions. Bradley (1978)
presented both conservative and liberal criteria for identifying conditions in which
hypothesis testing procedures work adequately. His conservative criterion was .045 ≤ α ≤ .
055, and his liberal criterion was .025 ≤ α ≤ .075. For this study, the liberal criterion was

2Marsh et al. (2004) computed an effect size for an interaction effect. Because the quadratic can be thought of as a latent variable
interacting with itself, the quadratic effect above is a simplified version of that presented in Marsh et al.:
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used to identify conditions for which the Type I error rate was unacceptable. These are
indicated in italics in Table 5.

Type I error rate—It is evident from the reported values that when the sample size was
large (i.e., n = 500 or n = 1,000) and data were normally distributed, all methods did a good
job at controlling the Type I error rate under all conditions except the most unreliable (i.e.,
reliability = .45). Under this severe condition, all the methods rejected the null hypothesis
more frequently than the nominal level would predict, except when coupled with large
sample size.

When data were nonnormally distributed, the UNC and LVS approaches had better Type I
error rates than the other methods, and furthermore, the Type I error rate was close to the
desired alpha level as indicator reliability and sample size increased. Overall, The LMS,
MML, and BAY methods had high Type I error rates when the data were nonnormal,
although these rates were mitigated by the severity of the nonnormality (e.g., better Type I
error control in the mild nonnormal condition). Also, as nonnormality became more severe,
Type I error rate soared as high as 15% and 13% for the LMS and MML approaches,
respectively, albeit the degree of inflation diminished as the reliability of the indicators
increased from .45 to .85. The Type I error rate under the BAY approach also showed
elevated levels across conditions of nonnormality and reliability but diminished as the
sample size increased.

Empirical power—In response to Research Question 5, the values in Table 6 and Table 7
were examined. Empirical power is represented by the proportion of converged solutions
that have a statistically significant quadratic effect in the simulated data when the population

quadratic effect was not equal to 0. Empirical power rates for effect sizes  and

 were computed with an alpha level of .05, and are displayed in Table 6 and Table 7,
respectively.

As anticipated, empirical power increased as the size of the effect increased from 5% to 10%
across methods and conditions. That is, when medium to large quadratic effects exist in the
population, the methods were able to detect them with a great deal of certainty for moderate
sample sizes under suboptimal reliability and normality conditions. This was the case even
when the sample size was extremely small (n = 50) and the indicators were unreliable
(reliability = .45).

In general, all the estimation approaches had lower power when the observed variables were
measured unreliably, the sample size was small, and the data were nonnormal. When the
reliability was low and data were normally distributed, the MML, BAY, and LVS
approaches had the highest power to detect true quadratic effect, although the UNC and
LMS methods did not lag far behind. Predictably, power increased across all estimation
methods as reliability and sample size increased.

Conclusions and Recommendations

For the quadratic model, both the Bayesian approach and the methods based on maximum
likelihood (MML, LMS, and UNC approaches) appeared to outperform the moderated
multiple factor score regression method (LVS) in terms of bias in the coefficient for the
quadratic term as well as in the precision of estimation. Of additional concern, the standard
error ratios for the LVS method were well below 1.0, which may indicate a tendency for
increased Type I error. Although power to detect effects with the LVS method was adequate
across many conditions, when paired with the other results, we recommend that the LVS
method not be used in lieu of other approaches.
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The UNC, MML, LMS, and BAY approaches were comparable in terms of parameter bias
and RMSE across the study conditions. Bias was affected by sample size and indicator
reliability, but in predictable ways, commensurate with results from past simulation studies
that have examined nonlinear effects in structural equation models (Marsh et al., 2004). The
different methods were particularly similar for situations in which sample sizes were
adequate (n > 100), indicator variables were somewhat reliable (reliability > .65), and
exogenous factor distributions were normal or mildly nonnormal. It should be noted that for
combinations of small sample size, poor indicator reliability, and nonnormality of the
exogenous predictors, the methods performed much worse than when sample size was
larger, the observed variables were moderately reliable, and the exogenous predictor
distributions did not deviate greatly from normality; although the more extreme conditions
appeared to impact the UNC method more than the MML, LMS, and BAY approaches. This
simulation study did not incorporate the method recently introduced by Mooijaart and
Bentler (2010) that effectively counteracts the effects of nonnormality. Because
nonnormality is expected in nonlinear structural models, this particular approach may have
some advantage over the methods investigated here, although the extent of its potential
benefit would require additional investigation.

Greater differences among methods were observed for the standard error ratio. The MML
and LMS methods were comparable and superior in terms of accuracy of the standard errors
of the regression coefficients. As was true in the small simulation study conducted by Lee
(2007), the BAY approach had ratios that worked well for small sample sizes. In contrast,
however, for larger sample sizes the approach produced more erratic behavior in ratio
values. This was an interesting finding, which we could not readily explain. The UNC
method consistently underestimated the standard errors, resulting in the chance for inflated
Type I error.

The UNC method held Type I error rates at the nominal level across different reliability and
nonnormality conditions, and it provided sufficient power to detect medium to large
quadratic effects due to low standard errors. Both MML and LMS methods demonstrated
adequate Type I error control under normality, but under nonnormal conditions, rates were
inflated. Both of these methods displayed more than enough power to detect real quadratic
effects. The LVS method consistently demonstrated poor properties across many of the
examined conditions. However, these results may be a consequence of measurement error at
the regression modeling level and not the result of the manipulated conditions.

These results point us to the following recommendations:

1. The LVS approach is not recommended at this time. It consistently demonstrated
poor properties across many of the examined conditions. These results may be a
consequence of measurement error at the regression modeling level and not the
result of the manipulated conditions, however. Before advocating its use, further
investigation into what role measurement error plays is warranted.

2. Under ideal data-analytic conditions—high indicator reliability normality, and
larger sample sizes—we recommend the MML, LMS, or BAY method, as they
appear to be comparable in terms of parameter accuracy and estimation precision.
The BAY approach is better for small sample sizes, whereas the LMS and MML
methods are recommended for larger sample sizes (n > 250).

3. Under less optimal study conditions, especially for mild to severe nonnormality, the
UNC method is recommended. The UNC method held Type I error rates at the
nominal level across moderate reliability and nonnormality conditions, and it
provided sufficient power to detect medium to large quadratic effects.
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Empirical Example

For illustrative purposes, we examined the quadratic effect of latent decoding on latent
fluency using all five estimation methods. Two of the principal skills implicated in reading
comprehension are decoding, which is the ability to connect letters and sounds to read
words, and fluency, which is accurate and automatic decoding at an appropriate pace.
According to the verbal efficiency theory (Perfetti, 1985), decoding must be fluent in order
to free up cognitive resources to focus on comprehension, the end goal of reading. A study
of 230 fourth-grade students obtained from a large urban school district found that latent
fluency mediates the relation between latent decoding and latent reading comprehension
(Silverman, Speece, Harring, Ritchey, & Cutting, 2010). In addition, theory suggested that
there might be a curvilinear relationship between decoding and fluency such that as
decoding ability increases, fluency initially increases at a faster rate, reaches a peak, and
then decreases or levels off once decoding skills reach an advanced level. In the current
example, latent decoding (DEC) was measured by tasks assessing spelling, word
discrimination, phonological elision, pseudoword repetition, word attack, and word
identification, and is on the scale of the Woodcock–Johnson III Word Identification standard
scores (M = 100, SD = 15; Woodcock, McGrew, & Mather, 2001). Latent fluency (FLU)
was measured by tasks assessing oral passage reading fluency, word identification fluency,
spelling fluency, rapid automatized letter naming, silent reading fluency, pseudoword
decoding efficiency, and sight word efficiency, and is on the scale of oral passage reading
fluency words correct per minute (norm referenced scores between 80 and 120; Hasbrouck
& Tindal, 1992). Estimates of reliability from the sample for decoding ranged from .42
(phonological elision) to .87 (word identification). Estimates of reliability of measures of
fluency ranged from .40 (pseudoword decoding efficiency) to .83 (word identification
fluency). Note that these values were commensurate with the reliability conditions used in
the simulation studies. A suggested measurement model for the six observed measures,
DECj, j = 1, . . . , 6, and seven observed measures for fluency, FLUk, k = 1, . . . , 7, is

The structural model is the conventional quadratic model with decoding mean centered to
make the interpretation of the intercept more sensible:

(10)

The coefficients in Equation 11 are interpreted as

β0: Value of FLU at the mean of DEC

β1: Instaneous rate of change at the mean of DEC

β2: Curvature (changing rate of change) in FLU over values of DEC.
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A comparison of the regression coefficients of the structural model and corresponding
standard errors across the five estimation methods can be found in Table 8.

It is clear that although the coefficients are not the same across methods, they are strikingly
similar. Across methods the standard errors of the coefficients were small compared with
their corresponding estimates, and each would be statistically significant at most practical
nominal levels. The average fluency score for a subject with average decoding is
approximately 130 (see β0 in Table 8). The quadratic coefficient (see β2 in Table 8)
estimated by each method was small and negative, indicating downward curvature in the
fitted function. Differences in the estimated structural regression parameters can best be seen
by examining a plot of the fitted functions computed for each method. Under Equation 9 and
with the results from the MML method, the variance that the quadratic effect of decoding
explains in fluency above and beyond that which can be explained by the first-order effect is
0.027. In terms of the simulation study, this effect would be considered small to moderate.

With the output from all five methods, the fitted functions in Figure 5 give the estimated
relation over the range of decoding: 60 ≤ DEC ≤ 150. The fitted relations are consistent with
the researcher's hypothesis that at advanced levels of decoding (about 2 standard deviations
above the mean ≈ 140), there is a point at which fluency reaches its maximum. Further
fluency at this level of decoding likely fails to add to improved reading comprehension, and
may in fact hinder comprehension if students are reading too fast and not paying attention to
what they are reading.

Why were the outcomes so similar? One explanation for these findings might be found by
connecting the results of the simulation studies to the sample data used in the empirical
example. From the simulation studies, combinations of poor reliability (e.g., .45), smaller
sample sizes (e.g., n = 50 or 100), and moderate to extreme nonnormality (e.g., skew = 2, 3;
kurtosis = 7, 20) appeared to have the greatest marginal impact on the methods in terms of
bias and standard error ratio. Aside from a single indicator of both decoding and fluency, the
reliability estimates would be categorized as fair and good, .65 to .85. The sample univariate
skew and kurtosis measures for decoding ranged from 0.084 to –0.75, and kurtosis ranged in
absolute value from 0.47 to 1.14. For fluency, sample skew and kurtosis indices ranged from
–0.12 to –0.99 and 0.08 to 0.92, respectively. In terms of the study conditions, these values
would indicate modest departures from normality. Lastly, the sample size, n = 230, would be
considered moderate in terms of the simulation study conditions. Thus, it may not be too
surprising, given that the UNC, MML, LMS, and BAY methods were similar in terms of
parameter bias under more favorable data-analytic conditions, that the methods produced
estimates that were quite close to one another. It should be noted that the estimate for the
quadratic coefficient under the LVS approach was smaller than those produced by the other
methods. This also coincides with the findings of the simulation study, as the LVS method
consistently underestimated the quadratic coefficient across most study conditions. All the
methods were able to find this small quadratic effect. This, too, corresponds to the results of
Simulation Study 2, as the power was ample to detect moderate effects across methods and
study conditions.

Discussion

Quadratic effects between continuous variables are often hypothesized in the social sciences
because, when coupled with a linear component, they adequately approximate many
curvilinear behavioral processes. Although many simulation studies have been conducted to
compare estimation approaches of nonlinear effects in SEM, an overwhelming majority of
these studies has focused on latent interactions (with the notable exception of Marsh et al.,
2004). An examination of quadratic effects was conducted in the current study via Monte
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Carlo simulation to compare five methods for estimating the quadratic relation between
latent variables: the two-stage moderated regression approach using latent variable scores,
the unconstrained approach, the latent moderated structural equation approach, marginal
maximum likelihood, and a fully Bayesian approach. These methods span the continuum of
approaches currently available to practitioners. These methods were not scrutinized in
isolation but rather in realistic data-analytic conditions (nonnormality, reliability, sample
size, and effect size) in which practitioners using latent variable methods often work and
under more extreme conditions as well.

Our findings in the simulation studies, coupled with our real data analysis, are consistent
with the literature in the following ways. As with past simulation studies, exogenous
predictor non-normality and indicator variable reliability tended to have the greatest impact
on the ability of the methods to accurately and precisely estimate the quadratic effect with
sample size exerting less influence. All methods appeared to control Type I error fairly well
except at the most extreme data-analytic conditions, within which all methods performed
poorly.

There are also some important new insights that can prove useful for practitioners who are
interested in modeling quadratic effects within an SEM framework. For example, unlike
with other simulation studies, we studied not only the effects of real-world data-analytic
conditions on the ability to estimate quadratic effects, but also those that pushed the
boundaries of what might be deemed minimally acceptable in practice. Severe nonnormality,
poor indicator reliability, and overly small sample sizes appear to have the greatest negative
impact on the estimation accuracy, precision, and deflation of standard errors of the
quadratic parameter. Because all the methods investigated here performed poorly under
these circumstances, if data exhibit these characteristics in practice, statistical conclusions
should be made cautiously. From the knowledge gained from carrying out this study, we are
more convinced that the efficacy of the Bayesian approach should be investigated on its own
merits and not necessarily compared with likelihood-based methods for this type of
nonlinear structural equation model. Our uneasiness stems from the fact that we, like some
others who have ventured down this path (e.g., Lee, 2007), have set up the simulation
“game” somewhat unfairly. Aside from the philosophical differences that exist between
frequentist and Bayesian approaches, the obvious advantages that the Bayesian framework
offers were not exploited. For example, as was previously mentioned, in a Bayesian
approach prior knowledge about model parameters including their distributional
assumptions can be incorporated into the model formulation. In the simulation studies
executed in this article, we used noninformative conjugate priors, which put the
preponderance of weight in estimating the posterior distribution on the data (or the
likelihood). We would expect the Bayesian method under this scenario to behave very
similarly to the marginal maximum likelihood method. For this set of simulation conditions,
it did. What has been learned? We encourage further exploration into the Bayesian approach
that was not investigated here. Specifically, there is a need to better understand the impact of
prior distributions (not only the values of hyperparameters characterizing the distributions
but also the choices of distributions themselves) on parameter recovery and accuracy of
standard errors of the estimates.

The five estimation approaches reviewed here constitute both popular estimators and
approaches that are derived in a sensible but admittedly ad hoc manner. All these methods
can be used to estimate the quadratic structural model developed here as well as the full
quadratic model that includes the interaction between exogenous predictors. Unfortunately,
not all these methods can be extended easily to the general class of nonlinear structural
equation models. This is certainly the case for the LMS method, which allows only
quadratic terms to be formulated. It is not obvious how indicator variables would be
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constructed for transcendental functions of exogenous latent variables (i.e., ef2 or ln(f2))
with the ad hoc UNC method. Even marginal maximum likelihood, with its ability to handle
the most general cases, suffers the deficiency of lengthy estimation times for
multidimensional integration of order greater than three or four. The Bayesian approach also
allows for the most general model specification and has the ability to incorporate prior
information about model parameters—which can be seen as both an asset and a liability
depending on one's familiarity with specifying a model within this framework. Lastly, the
LVS method, with all its statistical drawbacks, can also handle very broad nonlinear models.
In the second stage of the estimation process, nonlinear least squares estimation would need
to be employed for intrinsically nonlinear functions, otherwise ordinary least squares can be
used. Despite the findings from this study and others, in the end, the complexity of the
structural model may ultimately have the greatest impact on which estimation method or
approach will be endorsed.

All five estimation methods were employed and fit to reading data from a sample of fourth-
grade students. The estimated pa rameters and their corresponding standard errors were
similar but not identical, which leaves some question as to the comparability of the methods.
On the basis of the results of the simulation studies in this article, further exploration into the
distribution of the variables and the reliability of the predictors paired with the moderate
sample size may lead to choosing a particular method because it is optimal under these
analytic circumstances.
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Appendix

Computer Code for Five Estimation Methods

Data for the simulation were coded in SAS Interactive Matrix Language. The following
input statements were used to run each of the methods in the various statistical software
programs.

Multiple Regression Using Latent Variable Scores (Implemented in LISREL)

LISREL code to create latent variable scores

Estimating the measurement model and latent variable scores

DA NI=6 NO=&SAMP

RA FI=C: \quadsim\Cell&COUNT2\quad_r_&COUNT1..dat

LA

Y1 Y2 Y3 ×1 ×2 ×3

MO NY=3 NE=1 NX=3 NK=1 TX=FU,FI TY=FU,FI

LY=FU,FI LX=

FU,FI C TE=DI,FR TD=DI,FR PH=SY,FR KA=FR AL=FR

LE
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eta

LK

ksi1

FR LX(2,1) LX(3,1) LY(2,1) LY(3,1)

FR TX(2,1) TX(3,1) TY(2,1) TY(3,1)

VA 1.00 LX(1,1) LY(1,1)

VA 0.00 TX(1,1) TY(1,1)

PS=QUADRATIC.psf

OU

SAS code to read in new data file, create the quadratic term, and run the regression analysis
using the latent variable scores

Data LVS;

Infile QUADRATICnew.raw dlm=′′ firstobs=1;

Input Y1-Y3 ×1-X3 eta ksi1;

ksi1ksi1=ksi1**2;

run;

Proc Reg Data=LVS tableout edf simple outest=params;

Model eta=ksi1 ksi1ksi1 / scorr2;

run;

Unconstrained Model (Implemented in LISREL)

LISREL code to run the unconstrained model

DA NI=9 NO=500

RA FI=C:\Quadratic\QUADRATIC.dat

LA

y1 y2 y3 x1 x2 x3 x1x1 x2x2 x3x3

MO NY=3 NE=1 NX=6 NK=2 TX=FU,FI TY=FU,

FI LY=FU,FR PS=FR C

PH=FU,FR TE=DI,FR TD=SY,FI AL=FR KA=FR

LE
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eta

LK

ksi ksi*ksi

FI LY 1 1

FR LX 2 1 LX 3 1 LX 5 2 LX 6 2

FR TX 2 1 TX 3 1 TX 5 1 TX 6 1

FR TY 2 1 TY 3 1

VA 1 LY 1 1 LX 1 1 LX 4 2

VA 0 TX 1 1 TY 1 1

FR GA 1 1 GA 1 2

FR TD(1,1) TD(2,2) TD(3,3) TD(4,4) TD(5,5) TD(6,6)

FR TD(4,1)

FR TD(5,2)

FR TD(6,3)

OU AD = OFF IT = 5000 XM

Latent Moderated Structural (LMS) Model (Implemented in Mplus)

TITLE: Quadratic SEM Using LMS in Mplus

DATA: FILE IS C:\Quad\SASMplus\Cell1\Data\quad&rep.dat;

VARIABLE: NAMES = y1-y6;

USEVARIABLES ARE y1-y6;

ANALYSIS: TYPE = RANDOM;

ALGORITHM = INTEGRATION;

INTEGRATION = GAUSS(30);

ADAPTIVE = OFF;

STITERATIONS = 50;

ITERATIONS = 5000;

SDITERATIONS = 250;

MITERATIONS = 1000;

MODEL:
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f2 BY y4 y5*.7 y6*.7; [y4@0];

f1 BY y1 y2*.7 y3*.7; [y1@0];

f1SQ | f1 XWITH f1;

f2 ON f1*-1 f1SQ*.25;

[f1*3 f2*3];

f1*1;

f2*.5;

y1*.4 y2*.4 y3*.4 y4*.4 y5*.4 y6*.4;

OUTPUT: Tech1 Tech8;

savedata: results are C:\Quad\SASMplus\Cell1\Output\out&rep.dat;

Bayesian Approach (Implemented in WinBUGS)

The Bayesian approach used the R2WinBUGS library and bugs function in R. R was
utilized as the platform to call WinBUGS and collate results upon convergence of the
program. There is a debugging option in the bugs function that allows monitoring of the
iteration history and mixing. We used this extensively in the beginning to identify
problematic code. The bugs function requires three files to call the WinBUGS program:

quad.sim <- bugs(d, init, parameters, “quadwin.txt”, n.chains=3, n.iter=5000,
n.burnin=floor(3000), debug=FALSE)

File 1: Initial Values (init)

init=function(){list(gam=c(3,-1,.25), lam=c(.7,.7,.7,.7), psiinv=c(.001,.001, .
001,.001,.001,.001),muksi=3, phi1inv=1)}

File 2: Parameters to Monitor (parameters) parameters = c(“gam”, “lam”, “psi”, “muksi”,
“phi1”)

File 3: Model Statement (quadwin.txt) model{for(i in 1:100){

#Specify the measurement model

z[i,1]~dnorm(mu[i,1],psiinv[1])

z[i,2]~dnorm(mu[i,2],psiinv[2])

z[i,3]~dnorm(mu[i,3],psiinv[3])

z[i,4]~dnorm(mu[i,4],psiinv[4])

z[i,5]~dnorm(mu[i,5],psiinv[5])

z[i,6]~dnorm(mu[i,6],psiinv[6])

mu[i,1] <- ksi[i]
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mu[i,2] <- int[1] + lam[1]*ksi[i]

mu[i,3] <- int[2] + lam[2]*ksi[i]

mu[i,4] <- eta[i]

mu[i,5] <- int[3] + lam[3]*eta[i]

mu[i,6] <- int[4] + lam[4]*eta[i]

#Specify the nonlinear structural model

eta[i] <- gam[1] + gam[2]*ksi[i] + gam[3]*ksi[i]*ksi[i] + delta[i]

#Specify the random parts of the latent distribution

ksi[i]~dnorm(muksi,phi1inv)

delta[i]~dnorm(0.0,deltainv) }

#Priors for Psi

for (t in 1:6){ psiinv[ta]~dgamma(0.1,0.1) psi[ta] <- 1/psiinv[ta] }

#Priors for Lam for (k in 1:4){ lam[k]~dnorm(0.0,0.0001) }

#Priors for Int for (k in 1:4){ int[k]~dnorm(0.0,0.0001) }

#Priors for Gamma for (j in 1:3){ gam[j]~dnorm(0.0,0.0001) }

#Priors for muksi and phi1 and delta

muksi~dnorm(0.0,0.0001)

phi1inv~dgamma(0.1,0.1)

phi1 <- 1/phi1inv

deltainv~dgamma(0.1,0.1)

ddelta <- 1/deltainv }

Marginal Maximum Likelihood (Implemented in SAS PROC NLMIXED)

Note that the “general” function in PROC NLMIXED could have also been used to carry out
maximum likelihood estimation. However, the data would need to be in a slightly different
format.

proc nlmixed data=longquad noad qpoints=30 tech=quanew lis=2 lsp=.1

maxiter=5000 maxfu=10000;

***starting values;

parms mu21 = 0 mu31 = 0 mu52 = 0 mu62 = 0

lam21 = 0.7 lam31 = 0.7 lam52 = 0.7 lam62 = 0.7
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alpha = 3 phi = 1 var_d = 10

psi1 = 0.4 psi2 = 0.4 psi3 = 0.4

psi4 = 10

psi5 = 4

psi6 = 6

gam0 = 3

gam1 = 0.082

gam2 = 0.5;

if (item eq 1) then do;

mu = 1*f1;

sig2 = psi1;

end;

if (item eq 2) then do;

mu = mu21 + lam21*f1;

sig2 = psi2;

end;

if (item eq 3) then do;

mu = mu31 + lam31*f1;

sig2 = psi3;

end;

f2 = gam0 + gam1*f1 + gam2*f1**2 + d;

if (item eq 4) then do;

mu = 1*f2;

sig2 = psi4;

end;

if (item eq 5) then do;

mu = mu52 + lam52*f2;

sig2 = psi5;

end;
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if (item eq 6) then do;

mu = mu62 + lam62*f2;

sig2 = psi6;

end;

model y~normal(mu,sig2);

random f1 d~normal([alpha,0], [phi,0,var_d]) subject = id;

bounds var_d > 0;

run;

References

Aiken, LS.; West, SG. Multiple regression: Testing and interpreting interactions. Sage; Newbury Park,
CA: 1991.

Algina J, Moulder BC. A note on estimating the Jöreskog–Yang model for latent variable interaction
using LISREL 8.3. Structural Equation Modeling. 2001; 8:40–52. doi:10.1207/
S15328007SEM0801_3.

Anderson, TW.; Rubin, H. Statistical inference in factor analysis.. In: Neyman, J., editor. Proceedings
of the Third Berkeley Symposium on Mathematical Statistics and Probability. Vol. 5. University of
California Press; Berkeley: 1956. p. 111-150.

Bandalos, DL. The use of Monte Carlo studies in structural equation modeling research.. In: Hancock,
GR.; Mueller, RO., editors. Structural equation modeling: A second course. Information Age;
Greenwich, CT: 2006. p. 385-426.

Bartholomew, D. Latent variable models and factor analysis. Griffin; London, England: 1987.

Bollen, KA. Structural equations with latent variables. Wiley; New York, NY: 1989.

Bollen KA. An alternative two-stage least squares (2SLS) estimate for latent variable equation.
Psychometrika. 1996; 61:109–121. doi: 10.1007/BF02296961.

Boomsma, A. On the robustness of LISREL against small sample size and non-normality. University
of Groningen; Groningen, the Netherlands: 1983. (Unpublished doctoral dissertation)

Bradley JV. Robustness? British Journal of Mathematical and Statistical Psychology. 1978; 31:144–
152. doi:10.1111/j.2044-8317.1978.tb00581.x.

Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. Journal
of Computational and Graphical Statistics. 1998; 7:434–455. doi:10.2307/1390675.

Cohen, J.; Cohen, P.; West, SG.; Aiken, LS. Applied multiple regression/correlational analysis for the
behavioral sciences. 3rd ed.. Erlbaum; Hillsdale, NJ: 2003.

Cudeck R, du Toit SHC. A version of quadratic regression with interpretable parameters. Multivariate
Behavioral Research. 2002; 37:501–519. doi:10.1207/S15327906MBR3704_04.

Cudeck R, Harring JR, du Toit SHC. Marginal maximum likelihood estimation of a latent variable
model with interaction. Journal of Educational and Behavioral Statistics. 2009; 34:131–144. doi:
10.3102/1076998607313593.

Curran PJ, West SG, Finch JF. The robustness of test statistics to nonnormality and specification error
in confirmatory factor analysis. Psychological Methods. 1996; 1:16–29. doi:10.1037/1082-989X.
1.1.16.

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society: Series B. Methodological. 1977; 39:1–38. doi:
10.2307/2984875.

Harring et al. Page 28

Psychol Methods. Author manuscript; available in PMC 2012 October 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Dimitruk P, Schermelleh-Engel K, Kelava A, Moosbrugger H. Challenges in nonlinear structural
equation modeling. Methodology: European Journal of Research Methods for the Behavioral and
Social Sciences. 2007; 3:100–114. doi:10.1027/1614-2241.3.3.100.

Fleishman AI. A method for simulating non-normal distributions. Psychometrika. 1978; 43:521–532.
doi:10.1007/BF02293811.

Gagné, P. Generalized confirmatory factor mixture models: A tool for assessing factorial invariance
across unspecified populations. University of Maryland; College Park: 2004. (Unpublished
doctoral dissertation)

Gelman, A.; Carlin, JB.; Stern, HS.; Rubin, DB. Bayesian data analysis. 2nd ed.. Chapman & Hall;
London, England: 2004.

Gorsuch, RL. Factor analysis. Saunders; Philadelphia, PA: 1974.

Hasbrouck JE, Tindal G. Curriculum-based oral reading fluency norms for students in Grades 2
through 5. Teaching Exceptional Children. 1992; 24:41–44.

Hayduk, LA. Structural equation modeling with LISREL: Essentials and advances. Johns Hopkins
University; Baltimore, MD: 1987.

Hoogland JJ, Boomsma A. Robustness studies in covariance structure modeling: An overview and
meta-analysis. Sociological Methods & Research. 1998; 26:329–367. doi:
10.1177/0049124198026003003.

Hu L, Bentler PM, Kano Y. Can test statistics in covariance structure analysis be trusted?
Psychological Bulletin. 1992; 112:351–362. doi:10.1037/0033-2909.112.2.351. [PubMed:
1454899]

Jaccard J, Wan CK. Measurement error in the analysis of interaction effects between continuous
predictors using multiple regression: Multiple indicator and structural equation approaches.
Psychological Bulletin. 1995; 117:348–357. doi:10.1037/0033-2909.117.2.348.

Jöreskog, KG. Latent variable scores and their uses. 2000. Retrieved from http://www.ssicentral.com/
lisrel/advancedtopics.html

Jöreskog, KG.; Sörbom, D. LISREL for Windows [Computer software]. Scientific Software
International; Lincolnwood, IL: 2006.

Jöreskog, KG.; Yang, F. Nonlinear structural equation models: The Kenny–Judd model with
interaction effects.. In: Marcoulides, GA.; Schumacker, RE., editors. Advanced structural equation
modeling: Issues and techniques. Erlbaum; Mahwah, NJ: 1996. p. 57-88.

Kelava A, Moosbrugger H, Dimitruk P, Schermelleh-Engel K. Multicollinearity and missing
constraints: A comparison of three approaches for the analysis of latent nonlinear effects.
Methodology: European Journal of Research Methods for the Behavioral and Social Sciences.
2008; 4:51–66. doi:10.1027/1614-2241.4.2.51.

Kenny DA, Judd CM. Estimating the nonlinear and interactive effects of latent variables.
Psychological Bulletin. 1984; 96:201–210. doi:10.1037/0033-2909.96.1.201.

Klein A, Moosbrugger H. Maximum likelihood estimation of latent interaction effects with the LMS
method. Psychometrika. 2000; 65:457–474. doi:10.1007/BF02296338.

Klein A, Muthén BO. Quasi-maximum likelihood estimation of structural equation models with
multiple interaction and quadratic effects. Multivariate Behavioral Research. 2007; 42:647–673.
doi:10.1080/00273170701710205.

Kline, RB. Principles and practice of structural equation modeling. 3rd ed.. Guilford Press; New York,
NY: 2011.

Krommer, AR.; Ueberhuber, CW. Numerical integration on advanced computer systems. Springer-
Verlag; New York, NY: 1994. doi: 10.1007/BFb0025796

Lastovicka JL, Thamodaran K. Common factor score estimates in multiple regression problems.
Journal of Marketing Research. 1991; 28:105–112. doi:10.2307/3172730.

Lee, SY. Structural equation modeling: A Bayesian approach. Wiley; London, England: 2007. doi:
10.1002/9780470024737

Lee S-Y, Poon W-Y, Bentler PM. A two-stage estimation of structural equation models with
continuous and polytomous variables. British Journal of Mathematical and Statistical Psychology.
1995; 48:339–358. doi:10.1111/j.2044-8317.1995.tb01067.x. [PubMed: 8527346]

Harring et al. Page 29

Psychol Methods. Author manuscript; available in PMC 2012 October 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.ssicentral.com/lisrel/advancedtopics.html
http://www.ssicentral.com/lisrel/advancedtopics.html


Lee S-Y, Song X-Y, Lee JCK. Maximum likelihood estimation of nonlinear structural equation models
with ignorable missing data. Journal of Educational and Behavioral Statistics. 2003; 28:111–134.
doi:10.3102/10769986028002111.

Lee SY, Song XY, Poon WY. Comparison of approaches in estimating interaction and quadratic
effects of latent variables. Multivariate Behavioral Research. 2004; 39:37–67. doi:10.1207/
s15327906mbr3901_2.

Lee SY, Song XY, Tang NS. Bayesian methods for analyzing structural equation models with
covariates, interaction, and quadratic latent variables. Structural Equation Modeling. 2007;
14:404–434. doi:10.1080/10705510701301511.

Lee S-Y, Zhu H-T. Maximum likelihood estimation of nonlinear structural equation models.
Psychometrika. 2002; 67:189–210. doi: 10.1007/BF02294842.

Lynch, SM. Introduction to applied Bayesian statistics and estimation for social scientists. Springer;
New York, NY: 2007. doi:10.1007/978-0-387-71265-9

Marsh HW, Wen Z, Hau KT. Structural equation models of latent interactions: Evaluation of
alternative estimation strategies and indicator construction. Psychological Methods. 2004; 9:275–
300. doi: 10.1037/1082-989X.9.3.275. [PubMed: 15355150]

Marsh, HW.; Wen, Z.; Hau, KT. Structural equation models of latent interaction and quadratic effects..
In: Hancock, GR.; Mueller, RO., editors. Structural equation modeling: A second course.
Information Age; Greenwich, CT: 2006. p. 225-265.

Mooijaart A, Bentler PM. An alternative approach for nonlinear latent variable models. Structural
Equation Modeling. 2010; 17:357–373. doi:10.1080/10705511.2010.488997.

Moosbrugger, H.; Schermelleh-Engel, K.; Kelava, A.; Klein, AG. Testing multiple nonlinear effects in
structural equation modeling: A comparison of alternative estimation approaches.. In: Teo, T.;
Khine, MS., editors. Structural equation modeling in educational research: Concepts and
applications. Sense; Amsterdam, the Netherlands: 2009. p. 103-136.

Moulder BC, Algina J. Comparison of methods for estimating and testing latent variable interactions.
Structural Equation Modeling. 2002; 9:1–19. doi:10.1207/S15328007SEM0901_1.

Mulaik, SA. The foundations of factor analysis. McGraw-Hill; New York, NY: 1972.

Mulaik, SA. Foundations of factor analysis. 2nd ed.. Chapman & Hall/CRC Press; Boca Raton, FL:
2009.

Muthén, LK.; Muthén, BO. Mplus user's guide. 5th ed.. Muthén & Muthén; Los Angeles, CA: 2007.

Paap R. What are the advantages of MCMC based inference in latent variable models? Statistica
Neerlandica. 2002; 56:2–22. doi:10.1111/1467-9574.00060.

Perfetti, CA. Reading ability. Oxford University Press; New York, NY: 1985.

Ping RA Jr. Latent variable interaction and quadratic effect estimation: A two-step technique using
structural equation analysis. Psychological Bulletin. 1996; 119:166–175. doi:
10.1037/0033-2909.119.1.166.

Pinheiro JC, Bates DM. Approximations to the log-likelihood function in the nonlinear mixed-effects
model. Journal of Computational and Graphical Statistics. 1995; 4:12–35. doi:10.2307/1390625.

Schumacker RE. Latent variable interaction modeling. Structural Equation Modeling. 2002; 9:40–54.
doi:10.1207/S15328007SEM0901_3.

Silverman, R.; Speece, D.; Harring, JR.; Ritchey, M.; Cutting, RJ. What is the role of fluency in
reading comprehension? Poster presented at the Pacific Coast Research Conference; Coronado,
CA. 2010, February;

Skrondal, A.; Rabe-Hesketh, S. Generalized latent variable modeling: Multilevel, longitudinal, and
structural equation models. Chapman & Hall/CRC Press; Boca Raton, FL: 2004.

Song X-Y, Lee S-Y. Bayesian estimation and test for factor analysis model with continuous and
polytomous data in several populations. British Journal of Mathematical and Statistical
Psychology. 2001; 54:237–263. doi:10.1348/000711001159546. [PubMed: 11817092]

Spiegelhalter, DJ.; Thomas, A.; Best, NG.; Lunn, D. WinBUGS user manual (Version 1.4). MRC
Biostatistics Unit 26; Cambridge, England: 2002.

Stroud, AH.; Secrest, D. Gaussian quadrature formulas. Prentice Hall; Englewood Cliffs, NJ: 1966.

Harring et al. Page 30

Psychol Methods. Author manuscript; available in PMC 2012 October 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Wall, MM. Maximum likelihood and Bayesian estimation for nonlinear structural equation models..
In: Millsap, RE.; Maydeu-Olivares, A., editors. The Sage handbook of quantitative methods in
psychology. Sage; London, England: 2009. p. 540-567.

Wall MM, Amemiya Y. Generalized appended product indicator procedure for nonlinear structural
equation analysis. Journal of Educational and Behavioral Statistics. 2001; 26:1–29. doi:
10.3102/10769986026001001.

Wall MM, Amemiya Y. A method of moments technique for fitting interaction effects in structural
equation models. British Journal of Mathematical and Statistical Psychology. 2003; 56:47–63. doi:
10.1348/000711003321645331. [PubMed: 12803821]

Weiss, BA. A comparison of methods for testing interaction effects in structural equation modeling.
University of Maryland; College Park: 2010. (Unpublished doctoral dissertation)

Wolfinger, RD. Fitting nonlinear mixed models with the new NLMIXED procedure (Paper 287). SAS
Institute; Cary, NC: 1999.

Woodcock, R.; McGrew, K.; Mather, N. Woodcock–Johnson Test of Cognitive Abilities. 3rd ed..
Riverside; Itasca, IL: 2001.

Harring et al. Page 31

Psychol Methods. Author manuscript; available in PMC 2012 October 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 1.
Nonlinear structural equation model with one latent criterion, f1; one latent exogenous

predictor, f2; and its corresponding latent quadratic term, . The exogenous and
endogenous latent variables are each measured by three indicators (X1, X2, X3, and Y1, Y2,
Y3, respectively).
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Figure 2.
Generic graph of a quadratic relationship between latent criterion, f1, and exogenous
predictor, f2.
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Figure 3.
Sample traces of chains: traces of three chains for a factor loading for which convergence
looks reasonable (A) and traces of three chains for a regression coefficient that have not yet
reached convergence (B).
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Figure 4.

Box plots for the estimated coefficients of  in structural model (2) averaged across sample
size, distributional, and reliability conditions. The five methods are unconstrained (UNC),
latent variable score (LVS), Bayesian (BAY), latent moderated structural equations (LMS),
and marginal maximum likelihood (MML). Error bars indicate standard errors.

Harring et al. Page 35

Psychol Methods. Author manuscript; available in PMC 2012 October 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 5.
Fitted quadratic structural model for latent fluency versus latent decoding across the five
estimation methods. UNC = unconstrained method; LVS = latent variable score method;
BAY = Bayesian method; LMS = latent moderated structural equation method; MML =
marginal maximum likelihood method.
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