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SUMMARY. We consider the analysis of clinical trials that involve randomization to an active treatment (7'= 1) or a control
treatment (7" = 0), when the active treatment is subject to all-or-nothing compliance. We compare three approaches to
estimating treatment efficacy in this situation: as-treated analysis, per-protocol analysis, and instrumental variable (IV)
estimation, where the treatment effect is estimated using the randomization indicator as an IV. Both model- and method-of-
moment based IV estimators are considered. The assumptions underlying these estimators are assessed, standard errors and
mean squared errors of the estimates are compared, and design implications of the three methods are examined. Extensions
of the methods to include observed covariates are then discussed, emphasizing the role of compliance propensity methods and
the contrasting role of covariates in these extensions. Methods are illustrated on data from the Women Take Pride study, an
assessment of behavioral treatments for women with heart disease.

KEY WORDS: As-treated analysis; Causal inference; Efficacy; Instrumental variables; Per-protocol analysis; Principal strati-

fication; Propensity scores.

1. Introduction

Randomized clinical trials that compare treatments are gen-
erally straightforward to analyze, but the analysis and inter-
pretation is complicated when individuals do not comply with
their assigned treatments. The gold-standard analysis of such
trials in drug approval processes is intention to treat (ITT),
where individuals are classified in treatment comparisons ac-
cording to their assigned treatments, regardless of whether
they complied with the treatment. I'TT analysis preserves the
benefits of randomization, and it provides valid measures of
the effect of treatment assignment, sometimes called treat-
ment effectiveness. The analysis is less compelling for estimat-
ing treatment efficacy, the effectiveness of a treatment when
it is in fact taken.

Simple approaches to estimating treatment efficacy are as-
treated (AT) analysis, where participants are classified ac-
cording the treatment actually received, and per-protocol
(PP) analysis, which restricts analysis to participants who
comply with the assigned treatment. These analyses estimate
treatment efficacy, because they classify participants accord-
ing to received treatment, but they are subject to selection
bias, in that participants who comply with a treatment may
be a biased sample of participants randomized to that treat-
ment. The bias may be reduced by adjustment for covari-
ates, but it remains a concern. Thus much current clinical
trial practice for estimating efficacy involves an unappealing
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choice between I'TT analysis, which is protected from bias by
randomization but is really estimating effectiveness, and PP
and AT analyses, which measure efficacy but are potentially
biased by treatment noncompliance.

Another more recent approach to estimating efficacy treats
the randomization as an instrumental variable (IV), in eco-
nomic parlance. In simple terms the IV estimator corrects the
ITT estimator for noncompliance, based on certain assump-
tions about the outcomes for noncompliers under both treat-
ments. This approach yields a direct estimate of treatment
efficacy, and is protected from selection bias by the random-
ization. On the other hand, it does require certain assump-
tions to be valid, and it also yields estimators with potentially
high variance, particularly if the treatment compliance rate is
low. Model-based versions of the IV estimator have been pro-
posed that are potentially more efficient, although they make
stronger distributional assumptions.

This article has two objectives. First, we provide a side-
by-side comparison of the PP, AT, and IV estimators in the
situation with no covariates. Two key ideas here are the defi-
nition of a causal effect of an active treatment as the difference
in hypothetical outcomes under that treatment and a control
treatment (Rubin, 1974, 1977, 1978); and principal stratifica-
tion, where individuals are stratified according to the values of
the posttreatment variable under both treatments, rather than
simply under the treatment actually observed (Frangakis and
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Rubin, 2002). The latter paper generalized the application
of the potential outcomes framework in the compliance set-
ting (Baker and Lindeman, 1994; Angrist, Imbens, and Rubin,
1996, henceforth denoted as AIR) to any postrandomization
variable. White (2005) adopts a similar framework in arguing
for IV over PP analysis in the context of randomized trials.
We include AT in our analysis, provide a more overt discussion
of the contrasting assumptions of the methods, and compare
their precisions and mean squared errors (MSEs). Second, we
discuss and compare the role of covariates, and in particular
compliance propensities proposed in this article, in improving
the performance of the PP, AT, and IV estimators. We show
that covariates can reduce bias and weaken the assumptions
for PP and AT estimation, but not for ITT or IV estimation;
however, they can improve precision for all the methods. We
propose covariate-adjusted IV estimators. Finally we outline
extensions to more general settings.

A subset of the data from the “Women Take Pride” (WTP)
study, a behavior cardiovascular intervention study (Janevic
et al., 2003), is used to compare the various estimators of
treatment efficacy. Participants are older women with heart
disease, and the intervention consists of 6 weekly classes to
groups of six to eight women, where strategies for managing
the disease are developed. Compliance is defined here as at-
tendance at least one class, and hence the analysis does not
distinguish between women who fully comply and women who
partially comply with treatment—see Baker (2000) for more
discussion of this issue. We compare subjects randomized to
this treatment group (R = 1, n = 190) with subjects random-
ized to a control “usual care” treatment (R = 0, n = 184) on
one of the main study outcomes. We apply the IV, AT, and
PP methods to the WTP study without and with covariates.
We discuss the underlying assumptions of these methods in
this study, and note that the assumptions for estimating effi-
cacy that are suitable for clinical trials, such as the exclusion
restriction (ER) that is required by the IV, might not hold for
behavior intervention studies, which are often unblinded.

2. Estimation of Treatment Efficacy: The Case of No
Covariates

2.1 Estimands of Treatment Efficacy

We consider randomized studies involving random assignment
to an active treatment (R = 1) and a control treatment (R =
0). We assume the treatments are subject to all-or-nothing
compliance (Baker, 1997), so that the actual treatment re-
ceived (say T(R)) can differ from the treatment assigned (R).
Specifically, we assume that the population can then be di-
vided into three groups: never-takers (C = n), who take the
control treatment whether they are assigned to the control
or active treatment (T'(1) = T(0) = 0), compliers who take
the treatment they are assigned (C = ¢) (T'(R) = R), and
always-takers (C' = a), who take the active treatment whether
assigned the active or control treatment (7'(1) = 7'(0) = 1).
We assume that there are no defiers who take the opposite
treatment to that assigned. This is also called the monotonic-
ity assumption. We make the stable unit-treatment value as-
sumption (SUTVA; Rubin, 1978), which implies that com-
pliance and outcomes for individuals are not affected by the
assignments and outcomes of other individuals in the sample
(AIR). It is justified in the WTP study, because individuals
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given the control treatment did not have access to the classes
in the intervention arm.

We call C principal compliance, because it is a special case
of principal stratification where the posttreatment variable is
compliance; subjects are classified by their compliance un-
der both treatments (Frangakis and Rubin, 2002). Princi-
pal compliance differs from observed compliance, which con-
cerns only whether a participant complied with the assigned
treatment. Observed noncompliers in the treatment group are
never-takers (C' = n), observed compliers in the treatment
group are compliers or always-takers (C' = c or a), observed
noncompliers in the control group are always-takers (C = a),
and observed compliers in the control group are compliers or
never-takers (C'= ¢ or n). Thus C is only partly observed.
Because it is unaffected by the treatment assigned, it can be
used as a stratification variable in treatment comparisons, if
the missing data problem can be solved.

Table 1A shows a classification of the population by R and
C, assuming a proportion « of the population is assigned to
the treatment, and population proportions 7, , 7., 7, of never
takers, compliers, and always takers, respectively. The entries
reflect independence of R and C, which is a consequence of
random treatment assignment.

Consider now an outcome variable Y, and let u,; denote
the mean of Y when assigned R = r (r = 0, 1) for the sub-
population with C' = j, (j = n, ¢, or a); let g,; denote the
corresponding sample mean, and m,; the corresponding sam-
ple size. Table 1B displays population means of Y, with square
parentheses when corresponding sample quantities are not ob-
served. The observed sample counts and means are shown in
Table 1C. Because there are six cell means in Table 1B, and
only four observed means, two restrictions on the means are
needed to just identify the model. See White (2005) for a
similar presentation of the data.

An ITT estimate in this setting is:

51'1"1‘ = Y1+ — Yo+- (1)

It is protected from selection bias by the randomization, and
it measures treatment effectiveness, the causal effect of assign-
ing the treatment without regard to compliance. It arguably
does not provide a satisfactory estimate of efficacy, that is, the
effect of the treatment itself, because a treatment that is not
taken cannot be expected to be effective. We present ITT es-
timates here for completeness, but focus on other approaches
to estimating efficacy that use compliance information.

Two estimands of treatment efficacy have been considered
(Robins, 1989; Robins and Greenland, 1996; Imbens and Ru-
bin, 1997b). The complier-average causal effect (CACE) is
the average treatment effect (ATE) in the subpopulation of
principal compliers:

dCACE = H1e — Hoc, (2)

(AIR). The ATE is defined as the difference in mean outcome
if all individuals had been assigned and complied with the
treatment (7 = 1) and the mean if all individuals had been
assigned and complied with the control treatment (7 = 0).
The ATE requires assumptions about the treatment outcome
for noncompliers, in the counterfactual event that they had
complied with the treatment. Whether this counterfactual
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Table 1

Classifications by treatment and principal compliance: (A) population proportions; (B) population

mean outcomes; (C) observed

means (sample counts)

Principal compliance C

(A) Population proportions A C N ALL
Randomized treatment R 0 (1—-a)m, (1-a)m. 1 - a)m, -«
1 T, QT QT p «
ALL Ta Te Ty
Principal compliance C
(B) Population mean outcomes A C N ALL
Randomized treatment R 0 hoa [10c] [ton ] Lot
1 [Mla] [Mlc] Hin Hi+
ALL [11+a] (1] (1]
[.] = quantity in parentheses not directly estimable without assumptions
Principal compliance C
C. Observed means (sample counts) A C N ALL
—_—~
Randomized treatment R 0 Yoa (Moa) To(e+n) (Mo(esn)) Fo+ (Mmoy)
—_—
1 gl(c+a) (ml(c+a)) gln (mln) gH» (ml+)
ALL ? ? ?

event is meaningful arguably depends on context. For exam-
ple, noncompliance to a behavioral treatment such as an ex-
ercise regime might plausibly be changed by increased moti-
vation, as might occur if evidence of success of the treatment
becomes widely known. On the other hand, if noncompliance
to a drug is the result of intolerable side effects, then compli-
ance may require a reformulation of the drug to remove the
side effects. This may change the properties of the drug, and
estimation of the ATE is consequently more speculative.

In the absence of covariates, the ATE and CACE are the
same if the ATE is the same for compliers as for noncompliers
if they had in fact complied. When this assumption does not
hold, the ATE and CACE differ, but additional information
is needed to estimate the difference. In the case where covari-
ate information is available, the usual additional assumption
to identify the ATE is that the ATE is the same for compli-
ers and noncompliers within strata defined by the covariates.
The CACE and ATE are then the same within strata, but
the overall CACE weights the stratum effects by the covari-
ate distribution of compliers, and the overall ATE weights
the stratum effects by the covariate distribution of compli-
ers and noncompliers. This difference is likely to be minor in
many applications. We focus here on the CACE, in order to
avoid the need for assumptions about counterfactual condi-
tions. Bang and Davis (2007) compare estimators of the ATE
by simulation.

2.2 The Assumptions of AT, PP, and IV Estimators

The quantity ¢1. — 7o, directly estimates the CACE in equa-
tion (2), but 7. and o, are not observed, and additional as-
sumptions are needed to identify the estimate. One possibility
is to assume

NCECM P Hoe = Hon s NCETM P Hie = Mlas (3)

which asserts that the mean outcome under the control treat-
ment is the same for compliers and never-takers (“no com-
pliance effect for controls,” or NCEC), and the mean out-
come under the active treatment is the same for compliers
and always-takers (“no compliance effect for treatment,” or
NCET). Conditions (3) for the means are implied by the con-
ditional independence assumptions

NCEC:[Y AC|C =nore,R=0],

NCET: [Y AC|C =aorc,R=1], (4)

where the symbol A denotes independence. White (2005) calls
deviations from these assumptions “selection effects.” Under
NCEC, and NCET,,, it is natural to estimate both po. and
ton DY Yoe+n) and both pi. and pria by ¥i(cra), yielding the
PP estimate

()

of the CACE. The problem is that the underlying NCEC, and
NCET, assumptions are strong and widely viewed as unac-
ceptable, because compliers and never-takers may differ on
various unobserved characteristics related to the outcome un-
der the control treatment, and similarly compliers and always-
takers may differ on characteristics related to the outcome un-
der the active treatment. White (2005) argues that NCEC,
and NCET,, may be plausible in double-blind prevention tri-
als where the active agent has low rates of adverse events,
and noncompliance relates to treatment discontinuation, be-
cause treatment discontinuation is relatively unlikely to be
related to prognosis. NCEC, and NCET, can be weakened

dpp = gl(c+a) - g0(0+n)7
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by adjusting for known covariates, as discussed Section 4, but
they remain strong and questionable assumptions that need
to be critically evaluated.

A different, potentially more palatable way of identifying
the CACE is to note that participants in the subpopulation
of never-takers (C'= n) are randomly assigned to treatment
or control, and in both cases they receive T = 0. Similarly
always-takers (C' = a) receive T = 1 whether assigned to treat-
ment or control. If outcomes do not depend on the treatment
assigned in these two subpopulations (e.g., Baker and Kramer,
2005), then the ER assumption follows:

ER:Y AR|C=n]; [Y AR|C =ad]. (6)

The term ER originates in the econometric literature (e.g.,
AIR), although Greenland (2000) cautions that equation (6)
differs from other ERs in that independence is defined within
principal compliance strata. The ER implies that the means
in Table 1B are such that:

ERu Hon = Hins Hoa = Mia- (7)

The label ER,, denotes “exclusion restriction for means”; and
is weaker than ER because it equates the means rather than
the full distribution. The ER assumptions equation (6) or
(7) are generally considered more plausible than NCEC and
NCET, but they remain assumptions, because the outcome
may be affected by whether treatment or control is assigned
even though the resulting treatment remains the same, partic-
ularly in trials of behavioral interventions. Under ER or ER,,,
Y1 1s an unbiased estimate of both p, and w1, , and g, is an
unbiased estimate of both pg, and p1,. These estimates lead
to the following estimate of the CACE, which is consistent
under ER or ER, because the numerator and denominator
are unbiased estimates of their respective estimands:

SIV = (gH - §0+)/(1 —Tq — ﬁrL)v (8)

where 7, = mg, /mo. and 7, = my, /mi; estimate the pro-
portions of always-takers and never-takers. Equation (8) is
sometimes termed the IV estimate, because it is has the form
of an IV estimate with the randomization indicator as the
instrument. Because under ER the treatment effect is zero
for the always-takers and never-takers, Srv inflates the ITT
estimate ¥, — goy by the estimated proportion 1 — &, — 7, of
compliers (Baker and Lindeman, 1994; AIR).

Suppose we assume NCEC,, NCET,, and ER, simultane-
ously:

NCECN +ER,u THon = Hin = Hoc = Ho,
NCETM +ERM:/“L1(1 = Hoa = H1c = M1, (9)

or the corresponding conditional independence assumptions
NCEC + ER, NCET + ER. The natural estimates of uy and
1 pool the data for all cases according to treatment received,
yielding the AT estimator of the CACE:

ml(c+a)g1((‘,+a) + M0 Yoa
M(c+a) + Mg

oar = 1 — Yo, T1 =

_ m0(0+n)g0(c+n) + M1n Yin

Yo =
Mo(c4n) + miy, (10)
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To summarize, the NCEC /NCET assumptions lead to dpp, the
ER assumption leads to 51\; and the combined NCEC/NCET
and ER assumptions lead to 5AT. Note that all these esti-
mators are moment-based estimators and the underlying as-
sumptions for consistency only require assumptions about the
cell means, not the full distributions. In particular, the IV es-
timate does not require an assumption of homogeneous treat-
ment effects, under ER and the assumption of monotonic-
ity discussed in Section 2.1. (cf. Brookhart and Schneeweiss,
2007) The choice between the estimators rests largely on the
perceived validity of their underlying assumptions, although
the precision of the estimates may also play a secondary role.

2.3 Precision of the AT, PP, and IV Estimators under the
ER Assumption

Because the ER assumption is often plausible, we compare
biases and variances of the estimates under that assump-
tion. Under these conditions, the large-sample biases of the
ITT, ER, PP, and AT estimates for the CACE are B(&TT) =
—(1 — WE)CACE, B(S[V) =0, B(épp) = Tp (71'” + 71'0)71 Ay —
To(ma + 7)) Ay, and B(bar) = m, (1 — ), +7m,)
7o (Qm +7Ta)71 Ay, where Ay = (o — pon) and Ay = (u1,
— H1q). Thus IV is unbiased, ITT is attenuated even when
NCEC and NCET hold, and the bias of PP and AT depend
on the relative sizes of Ay and A;.

Large sample variances of the estimates are obtained by
expressing them in the form ¢(§i(c+a), 1n > Yo(c+n)» Yoas Tn s Ta ),
where (Yi(c+a), Yin > Joc4n), You) are asymptotically indepen-
dent, and applying the delta method. Because the resulting
expressions are complex and not very insightful, we examine
variance and root MSE in more detail for the case when 7, =
0, that is, there are no always-takers, as in our example. As-
suming a constant within-cell variance o2, we obtain

o+ m.(1— TrC)(aA% + (1 — a)(CACE + AU)Z)

Var(&ITT) = ma(l — a) s
(11)
¢ 1 2 2
Var(dry) = ol —a)n? (o® +m(1-m)AY), (12)
A 1

Var((spp) = m ((CWTC =+ 1-— 04)02 + 0671'2(1 — W()A(Q)),
(13)

NN | o? o2 (l—a)m (1 —m)A}

Var(dur) = m (1 — am, + am, * 1 - am)*

X (1 —2am, + aﬂf) (14)

It is easy to show that Var(cglv) > Var(gpp) > Var((?AT) when
Ay = 0. When Ay > 0, Var(&v) > Var(Spp) and Var(SIV) >
Var(SAT) when ame < 0.5; it is theoretically possible for
Var(dar) to exceed Var(dy)or Var(dpp) for large Ay, but we
expect it to be smaller in most realistic settings. Details are
provided in a Web Appendix.

IV is markedly less efficient than PP and AT for small
values of 7.. For example, when po, = p1, = 0, po. = 1,
pie = 2, 0% = 1, a = 0.5, the asymptotic relative efficiencies
Var(dpp)/Var(dry) and Var(dxr)/Var(dry) are about 0.8 when
m. = 0.9, but only about 0.4 when 7, = 0.6. Figures 1 and 2
plot the MSE (MSE = B2(8) 4+ Var(é)) of IV, PP, and AT in
units of ¢ against the compliance rate 7, for o = 0.52, two
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Figure 1. MSE of IV, PP, and AT estimates plotted against compliance rate with o = 0.522, sample size m = 50, and effect

size A = Ay/o = 0, 1, 2, respectively.

sample sizes, and various choices of A = Ay/o. In Figure 1,
where the sample size is small (m = 50), AT has lower or
comparable RMSE to IV unless A is high (A = 2). In Figure 2,
where the sample size is large (m = 250), IV tends to have
superior RMSE unless the compliance rate is low or A is small
or zero. The implication is that the IV estimate becomes an
increasingly attractive alternative to the PP and AT estimates
as the sample size increases.

If one of either NCEC or ER is assumed true, the other
assumption can be tested empirically by comparing 10 — 9o+
with zero; because IV and AT both assume ER, one might
increase the efficiency of the CACE estimate by choosing AT
over IV if this test is not rejected, or the difference 319 — 7o, is
“small.” This approach has most appeal when the compliance
rate is low, because in this case oy has substantially higher
variance and the power of the test may be reasonable; when
compliance is high the utility of the test is compromised by
low power. An indirect approach to checking the ER assump-
tion using covariates is discussed in Section 3.

What fraction a of cases should be assigned to the treat-
ment group for optimal efficiency? Differentiating equation
(12) with respect to a, the variance of dyy is minimized when

a = 0.5, that is, an equal allocation of treated and control
cases. This is contrary to the intuition that given noncompli-
ance, more cases should be assigned to the treatment group.
On the other hand, the PP variance (13) is minimized when
a=(1+ \/7r0(1 + A’ (1 —m.)))~". This equals 1/(1 + \/7,)
when A = 0, which does assign more cases to the treatment
group when there is noncompliance.

2.4 Model-Based Estimators of the CACE

The high variance of the IV estimator when the compliance
rate is low motivates a search for more efficient estimators.
Technically all the estimators considered so far can be viewed
as method-of-moment estimators under the various assump-
tions. Another approach to inference is maximum likelihood
(ML) estimation based on a model for the joint distribution
of Y, R, and C. For example,

(yi ‘7”1' =nc = j)NixldN(Mr_7702)§ (Cf \7“1' = T)NindMNOM(W)7

where N(p,;, 0?) denotes a normal distribution with mean
wr; and variance o2, and MNOM (m) denotes a multino-
mial distribution with probabilities = = (7,, 7., m,) for
never-takers, compliers, and always-takers, respectively. The
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Figure 2. MSE of IV, PP, and AT estimates plotted against compliance rate with o = 0.522, sample size m = 250, and effect

size A = Ay/o = 0, 1, 2, respectively.

parameters of this model are identified by restrictions on the
means. Specifically, it is easily shown that Spp is ML for this
model under the NCEC,, and NCET, assumptions (3), and
dar is ML under the NCEC,,, NCET
9).

The ML estimate under the ER,, restriction (7) (ML-ER,
denoted as SMLER) differs from 51\;; it does not have an ex-
plicit form, but can be computed using the expectation—
maximization algorithm, treating partially observed values of
C'as missing data (AIR). The estimate &\ILER is more efficient
than oy (Imbens and Rubin, 1997a), but makes stronger dis-
tributional assumptions, and is potentially sensitive to vio-
lations of assumptions like constant o (Imbens and Rubin,
1997a, 1997b; Abadie, 2002). For binary outcomes Y with a
Bernoulli distribution, Sw is the ML estimate of the CACE,
providing the resulting means in Table 1B, which are esti-
mated probabilities for a binary Y, all lie between zero and
one (Baker and Lindeman, 1994).

«,and ER, assumptions

3. CACE Estimation of Treatment Efficacy
with Covariates

We discuss in this section the choice and role of covariates
in improving the AT, PP, and IV estimators. We show that

covariates can reduce bias in the AT and PP estimators, but
do not reduce bias in the IV estimator, although they can
increase precision. We also propose two compliance propensi-
ties, and discuss their role in dimension reduction when the
set of covariates is extensive.

The AT and PP estimates with no covariates are the esti-
mated coefficients of T in a regression of Y on 7, computed
using all the cases for AT and cases that take their assigned
treatment for PP. Covariates X can be incorporated as covari-
ates in these regressions, and as with covariate adjustments in
observational settings, can reduce bias and increase precision.
Concerning bias, a correctly specified regression adjustment
with covariates X weakens NCEC and NCET in equation (4)
to

NCECX : [Y AC|C=norc,R=0,X],

NCETX: [YAC|C=aorc,R=1,X], (15)
that is, to an assumption of no compliance effects within
strata defined by X. Covariates that are predictive of the out-
come also increase precision by reducing the residual variance
of the regression of Y on X and 7. Effect modification can be
modeled by including interactions between X and T.
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In observational studies, a popular strategy for robust mod-
eling when there are a number of covariates is to stratify on
the propensity to take the treatment given covariates X. In
randomized studies with full compliance this strategy is not
needed, because the assignment propensity is unrelated to X
because assignment is randomized. With noncompliance, ran-
domization is compromised, and propensity methods again
have a role. We propose here the use of compliance propensi-
ties in adjusting the AT, PP, and IV estimators. Specifically,
to limit bias, a function is sought such that if equation (15)
is true, then it remains valid with X replaced by coarsened
functions of X. By Rosenbaum and Rubin’s (1983) theory of
propensity scores, NCECX and NCETX imply

NCECP: [Y AC|C =norc,R=0,p,(X)],

NCETP: [YAC|C=aorc,R=1,p,(X)], (16)
respectively, where p,(X) = p(C = n|C = n or ¢, X) and
pa(X) = p(C = a|C = a or ¢, X) are propensities to be
never-takers or always-takers. These compliance propensi-
ties are the coarsest functions of X for which equation (16)
holds. These propensities can be estimated by computing
(a) pi(X) =p(C =a|X) from a logistic regression of the bi-
nary indicator for always-takers among controls, (b) pi (X) =
p(C =n|X) from a logistic regression of the binary indica-
tor for never-takers among those with R = 1; and (c) esti-
mating p, (X) by . (X) = p;, (X)/ (1 — p; (X)) and p,(X) by
Do (X) =p5(X)/ (1 —p:(X)). A propensity adjustment then
stratifies on both p,(X) and p,(X). Note that the same
propensity scores apply for both AT and PP, because the
NCEC and NCET assumptions are shared by both methods.
AT also requires the ER assumption, but that is not weakened
by the propensity adjustment, as we shall see below.

Covariates do not play a role in bias reduction for the IV
method. To see this, suppose the ER assumption (6) is as-
sumed conditional on X, that is

ER(X):[Y AR|X,C=n], [Y AR|X,C=ad]. (17)

Then in terms of densities, for never-takers:
p(Y|R=1,C = n)

:/p(Y\X7R:17C:n)p(X|R:1,C:n)dX

:/p(Y\X,R:o,O:n)p(Xm:o,C:n)dX
=p(Y|R=0,C=n),

where the first and last equalities are by definition, and the
middle is implied by ER(X) and the randomization of treat-
ments. Similarly p(Y|R =1, C =a) = p(Y|R =0, C = a).
Thus ER(X) implies ER, and bias from failure of the ER as-
sumption is not reduced by conditioning on the covariates X.

Covariates can be used to increase the precision of SIV, how-
ever. For a single categorical X with J categories, let Slvﬁk =
(G14x — Go+k )/ (1 — T, — 7ny ) be the IV estimator within the
stratum X = k. Let p; be the proportion of cases in stratum £,
estimated from the pooled sample. Then a stratified estimate
of the proportion of principal compliers in stratum k is
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K
pr(1 — 7o —ﬁ'nk)/Zpl(l — a1 — Tpp)-
=1

Weighting SIV,k: by this estimated proportion and summing
yields the following stratified IV estimator:

K K
Yivix = Zpk(guk - y0+k)/2pk(1 — Tk — Tur), (18)
b1

k=1
where the numerator is a stratified version of the ITT esti-
mator, with improved precision when X is predictive of the
outcome, and the denominator is a stratified version of the
overall compliance rate, with improved precision when X is
predictive of compliance. We conjecture that the former of
these two components has the greater potential for variance
reduction. A natural generalization of v|x for a set of cate-
gorical and/or continuous X’s is

SIV\X = Z(gli QOi)/Zﬁh

i

(19)

where the summation is over all individuals ¢ in the sample;
Ur; is the predicted outcome for unit i if randomized to treat-
ment r, computed from a regression of Y on X and R; and
7; is the predicted true compliance for unit i, computed from
a regression of C'on X estimated from the cases assigned to
treatment. The latter should be of a form appropriate for a bi-
nary outcome, for example logistic or probit regression. Com-
parisons of equation (18) or (19) with the structural equations
approach of Nagelkerke et al. (2000) would be of interest.

An alternative to equation (18) or (19) is to compute ML
or Bayes’ estimates of the CACE given covariates X, using
a full model for the distribution of ¥ and C, given R and
X, and treating the unknown principal compliance indicators
as missing data (Imbens and Rubin, 1997a; Little and Yau,
1998). For example, one might assume

(yi|zi,ri = 71,0 = j,0v ,0%) ~ina N(p(wi, 73,50y ),0°);

(¢i|ri =7r,0c) ~wa MNOM(m(z;,00)), (20)

where the compliance model for C given R and X is a multi-
nomial logistic model with parameters 6, and the outcome
model for Y given C, R, and X is a linear regression model
with regression parameters 0y and variance o?. In equation
(20), m (x;, O¢) excludes effects involving r;, because treat-
ment assignment is randomized. If the ER (17) is assumed to
hold within all subpopulations defined by the covariates, the
mean p (z;, i, ¢;; 0y ) is subject to restrictions u (z;, i, ¢;
=j;0y) = p (z;, ¢; = j; 0y) when j = a or n. The CACE
in the subpopulation defined by z; in this model is

H(xz'ﬂ"i =1,¢ =¢ 9Y) *,Lb(l"z',?"i =0,¢ = ¢ 9Y)- (21)

Interactions between C, R, and baseline covariates can be
included in the mean function, but then the CACE (21) is
no longer unique but varies according to the value of z;.
See also Bond, White, and Walker (2007). The modeling
approach yields gains of efficiency over equation (19), but
is more vulnerable to model misspecification (Imbens and
Rubin, 1997a, 1997b; Abadie, 2002). More simulations com-
paring these methods, and extensions of equation (20) that al-
low the variance o? to vary across the principal strata, would
be of interest.
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Table 2
WTP study: (A) sample means (sample sizes) for outcome 6-minute walk in control and group treatment subgroups, and (B)
observed and predicted means under PP, IV, and AT models

Compliance C

A N C
Randomized treatment R 0 ? ? 748.90 (122)

1 694.12(16) 866.01 (105) 843.28 (121)
B

v PP AT
Compliance Compliance Compliance

Treatment R N C N C N C ITT
0 694.12 757.25 748.90 748.90 742.55 742.55 748.90
1 694.12 866.01 694.12 866.01 742.55 866.01 843.28
CACE 108.76 117.11 123.45 94.38
(SE) (65.53) (58.97) (57.37) (57.08)

Wenoted in Section 2 that the data do not provide direct
evidence of the validity of ER or NCEC/NCET. The same
comment applies within strata defined by the covariates X.
However, if the covariates are good predictors of never-takers
in the treatment group, the relationship between propensity
to be a never-taker and outcome can be assessed in the control
group, and lack of evidence of a relationship might be con-
strued as indirect evidence in favor of the NCEC assumption,
subject to the caveat that this analysis misses effects of un-
measured confounders. Specifically, transform the covariates
X into the propensity score p,, (X) and covariates Z orthogonal
to B, (X), and regress Y on p, (X) and Zin the control group.
If the coefficient of p, (X)) in this regression is small, this pro-
vides some justification for the NCEC assumption, suggesting
that PP or AT analysis may be reasonable options. On the
other hand if the regression coefficient of p, (X) is large, esti-
mates like 51\/ or &\Imn that do not require the NCEC assump-
tion may be preferable. A similar analysis can be applied to
the NCET assumption for compliers and always-takers.

4. Application to the Women Take Pride Study

We illustrate the various efficacy estimates with data from
the WTP study. As discussed in Section 1, we restrict atten-
tion to randomized subjects, and compare women assigned
to the group behavioral intervention (R = 1), where interven-
tion classes are taken in a group, with the control “usual care”
treatment (R = 0). In this example, individuals assigned to
control do not have access to the group treatment, so there
are no always-takers, and C'reduces to a two-category variable
consisting of compliers and never-takers.

Table 2A shows the observed counts and means for the out-
come “6-minute walk” taken at month 12, measuring the dis-
tance in feet an individual can walk in 6 minutes. We exclude
69 of the 190 subjects in the intervention group and 62 of
184 subjects in the control group who drop out before month
12. We assume that drop out is random within each treat-
ment group, after conditioning on any covariates included in
the analysis. In the treatment group #. = 105/121 = 86%
complied with treatment, where compliance is defined here as

completion of at least one of the treatment modules. We com-
pare the IV, PP, and AT estimators of intervention efficacy
without and with covariates.

As discussed in Section 2, the IV estimator requires the
ER assumption, while the PP analysis requires the NCEC as-
sumption and the AT analysis requires the ER + NCEC as-
sumption. In pharmaceutical clinical trials, where treatments
are blinded and the efficacy is based on the properties of
the drugs, the ER assumption often seems more reasonable
than NCEC, so the IV methods are attractive. For behavioral
intervention trials, such as the WTP study, it is not clear
that ER is superior to NCEC, particularly if outcomes are
thought to be affected by the psychological effects of failing
to comply with an assigned treatment, because these effects
are in play when an individual is assigned to the treatment
but not when an individual is assigned to the control. Faced
with uncertainty about which assumption is appropriate, one
strategy is to compute both PP and IV estimators and as-
sess whether treatment effects are robust to these alternative
assumptions.

We first present analyses without covariates. Table 2B
shows the estimated cell means from the IV, PP, AT, and
ITT methods, and associated standard errors (SEs); the esti-
mated means in italics are those implied by the assumptions
of each method. Note that the ITT estimate is smaller than
the others because it is attenuated, and it has the smallest SE.
The estimates of the CACE from the other three methods dif-
fer somewhat, although not in relation to the SEs, and the PP
and AT estimates are statistically significant at the 0.05 al-
pha level. The SEs order as described in Section 2.3, with rel-
atively small differences because the compliance rate is quite
high in this application. The #test for the combined NCEC
+ ER assumptions compares the mean for controls (748.90)
with the mean for treatment noncompliers (694.12), not sta-
tistically significant even though the difference in means is
quite substantial. This illustrates the low power of the test
when the compliance rate is high.

We next include the following covariates in our analysis
of the WTP data: age, employment, and symptom impact



648

Table 3
WTP study: ML estimates of regression coefficients of models
for the outcome 6-minute walk and compliance with covariates

Parameter Estimate (B) SE(B) P-value
Outcome model (1)
Intercept 707.97 278.89  <0.001
Age —6.763 3.404 0.032
Baseline 6-minute walk 0.707 0.048 <0.001
Employment 28.71 55.18 0.59
Treatment compliance —29.72 84.87 0.83
Compliance X treatment 97.20 43.73 0.043
Compliance model (2)
Intercept 2.259 0.497 <0.001
Employment —0.464 0.792 0.526
Baseline SIP physical —0.040 0.041 0.282
Table 4

WTP study: IV, ML-ER, PP, AT, and ITT estimates for the
outcome 6-minute walk, with and without covariate adjustment

Covariates IV ML-ER PP AT ITT
Unadjusted Estimate 108.76 109.78 117.11 123.45 94.38
SE 65.53 61.28 58.97 57.37 57.08
Adjusted  Estimate 100.05* 97.20 95.58 90.13 86.39
SE 44.25*  43.73  40.30 38.74 38.39

2The IV estimate with covariate adjustments is obtained using (19),
with baseline variables including employment status and SIP physical
scores used to estimate propensity scores 7; for each subject. Its SE
is computed using the bootstrap.

profile (SIP) physical score, which measures a subject’s phys-
ical functioning (Janevic et al., 2003). The ML estimate of
the CACE for the data without adjusting for covariates is
5MLER = 109.78, closeto the IV estimate of &V = 108.76 in
Table 2. It has a slightly lower SE (61.28 versus 65.53). Table 3
shows the results of fitting a model of form (20) to the data
from the WTP study. Block (1) shows the coefficients for
the outcome model, with the CACE being the compliance
X treatment interaction. Block (2) shows coefficients from
the compliance model. The covariate-adjusted ML estimate
of the CACE from this model is 97.20 with a reduced SE,
namely 43.73, indicating some improvement in precision from
adjusting for the covariates. In addition, women with higher
baseline measure tend to have higher 6-minute walk measure
at month 12, and older women tend to have lower 6-minute
walk measure at month 12.

Table 4 summarizes the IV, ML-ER, PP, AT, and ITT esti-
mates both with and without covariate adjustments. ITT, PP,
and AT estimates with covariate adjustments are obtained
using linear regression adjusting for age, baseline 6-minute
walk measurement, and employment status. The IV estimate
with covariate adjustments is obtained using equation (19),
and baseline variables including employment status and SIP
physical scores are used to estimate propensity scores 7; for
each subject. Table 4 shows that covariate adjustment gen-
erally improves precision and reduces differences between the
methods, except ITT which remains attenuated. The large
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gain in efficiency may be due to the significant effects of age
and baseline measurements on the outcome of interest. We
note in particular that covariate adjustment of IV based on
equation (18) results in 50% reduction in estimated SE, and
a significant treatment effect. The results suggest that com-
pliers performed better under treatment rather than under
control for this outcome.

5. Discussion

We have compared a variety of methods for estimating effi-
cacy in randomized trials for a control and active treatment,
when there is all-or-nothing noncompliance. In practice, the
choice of methods depends on various factors, effect sizes rel-
ative to between-subject variability of the outcome measure,
sample size, and differences in characteristics of compliers and
noncompliers. The choice also depends on the plausibility of
the different modeling assumptions and the trade-off between
efficiency and robustness. If NCEC/NCET or NCEC/NCET
+ ER given a set of covariates can be believed, and regressions
on the covariates are correctly specified, then AT can be dra-
matically more efficient than IV. On the other hand, the IV
estimate of the CACE under ER is robust against misspecifi-
cation of our regression model or false belief in NCEC. Thus,
it may be wise to compute and compare all the estimates to
assess sensitivity of answers to the choice of method.

Many generalizations and extensions of these methods are
possible. Extensions that require more restrictions to identify
the parameters include the case where partial compliance is
modeled (Goetghebeur and Molenberghs, 1996), or there are
more than two treatments, such as two active treatments and
a control treatment that are assumed to apply to noncom-
pliers. CACE estimation in trials involving a control group
and more than one treatment groups is more complicated,
with more principal compliance categories and more compli-
cated identifiability assumptions. Results on this case will be
reported elsewhere. Another extension is to joint models for
noncompliance and missing data—for simplicity we confined
our analyses of 12-month WTP data to completers. For some
approaches to this issue see Frangakis and Rubin (1999) and
Peng, Little, and Raghunathan (2004).

6. Supplementary Materials

The Web Appendix referenced in Section 2.3 is available un-
der the Paper Information link at the Biometrics website
http://wuw.biometrics.tibs.org.
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