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A Comparison of Methods for Multiclass
Support Vector Machines

Chih-Wei Hsu and Chih-Jen Lin

Abstract—Support vector machines (SVMs) were originally Note that it was pointed out in [11] that the primal forms
designed for binary classification. How to effectively extend it for proposed in [25], [27] are also equivalent to those in [3], [11].
multiclass classification is still an ongoing research issue. Several Besides methods mentioned above, there are other implemen-

methods have been proposed where typically we construct a,__. .
multiclass classifier by combining several binary classifiers. Some tations for multiclass SVM. For example, [14], [19]. However,

authors also proposed methods that consider all classes at once. Adlue to the limit of space here we do not conduct experiments
it is computationally more expensive to solve multiclass problems, on them. An earlier comparison between one-against-one and
comparisons of these methods using large-scale problems haVGbne-against-aII methods is in [5].

not been seriously conducted. Especially for methods solving In Section II, we review one-against-all, one-against-one, and

multiclass SVM in one step, a much larger optimization problem . . .
is required so up to now experiments are limited to small data sets. directed acyclic graph SVM (DAGSVM) methods which are

In this paper we give decomposition imp|ementations for two such based on SOIVing SeVeral binary C|aSSificati0nS. In SeCtion “l,
“all-together” methods. We then compare their performance with  we give a brief introduction to the method in [25], [27] which
three methods based on binary classifications: “one-against-all,” considers all classes at once and show that the decomposition
“one-against-one,” and directed acyclic graph SVM (DAGSVM).  mathod proposed in [12] can be applied. Another method which

Our experiments indicate that the “one-against-one” and DAG . . . .
methods are more suitable for practical use than the other also considers all variables together is by Crammer and Singer

methods. Results also show that for large problems methods by [7], which will be discussed in Section IV. Numerical experi-
considering all data at once in general need fewer support vectors. ments are in Section V where we show that “one-against-one”

Index Terms—Decomposition methods, multiclass classification, and DAG methods are more suitable for practical use than the
support vector machines (SVMs). other methods. Results also show that for large problems the
method proposed in [25], [27] by considering all variables at
once generally needs fewer support vectors. Finally, we have
some discussions and conclusions in Section VI.

UPPORT vector machines (SVMs) [6] were originally de-

igned for binary classification. How to effectively extend Il. ONE-AGAINST-ALL, ONE-AGAINST-ONE,

it for multiclass classification is still an ongoing research issue. AND DAGSVM METHODS
Currently there are two types of approaches for multiclass SVM.1g garliest used implementation for SVM multiclass clas-
One is by constructing and combining several binary classifiel§i-4tion is probably the one-against-all method (for example,
while the other is by directly considering all data in one optim)‘ It constructsk SVM models wheré: is the number of
mization formulation. Up to now there are still no comparisongasses. Theth SVM is trained with all of the examples in
which cover most of these methods. the ith class with positive labels, and all other examples with

The formulation to solve multiclass SVM problems in ONQ egative labels. Thus givérraining datdzs,y1), - -, (x1, 40),
step has variables proportional to the number of classes. The(gz a.,.. cR'.i=1 landy; € {1 kYis the class of
T S - P JT S A B

fore, for multiclass SVM methods, either several binary cla,}—‘ theith SVM solves the following problem:
sifiers have to be constructed or a larger optimization problem’

I. INTRODUCTION

is needed. Hence in general it is computationally more expen- . 1, o d i

sive to solve a multiclass problem than a binary problem with /3% 5(“’ ) w' + OZ &(w')"

the same number of data. Up to now experiments are limited =l )

to small data sets. In this paper we will give a decomposition (W) pla) +0" > 1-&, ify =i
implementation for two such “all-together” methods: [25], [27] (wHT ;) +b° < 1+ 5;1, if y; #1d

and [7]. We then compare their performance with three methods ¢>0, j=1,....1 (1)
based on binary classification: “one-against-all,” “one-against- T Y

one,” and DAGSVM [23]. where the training data; are mapped to a higher dimensional

space by the function andC is the penalty parameter.
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After solving (1), there aré decision functions [ll. A METHOD BY CONSIDERINGALL DATA AT ONCE
AND A DECOMPOSITIONIMPLEMENTATION
(w')T () + '

In [25], [27], an approach for multiclass problems by solving
. one single optimization problem was proposed. The idea is sim-
(W) p(x) + b*. ilar to the one-against-all approach. It constructivo-class
rules where thenth functionw? ¢(z) + b separates training
We sayz is in the class which has the largest value of the de‘?/ectors of the class: from the other vectors. Hence there &re

sion function decision functions but all are obtained by solving one problem.

class ofr = arg max ((w') p(z) + ). (2) The formulation is as foIIows,'
Practically, we solve the dual problem of (1) whose numbeg,in Z w? awy, + CZ Z £Mw T(/) ()

of variables is the same as the number of data in (1). Héncew-*:¢

[-variable quadratic progrgmming problems are solved. F by, > wE (i) + b + 2 — €7
Another major method is called the one-against-one method. m ,

It was introduced in [15], and the first use of this strategy on >0, i=1,....1, me{l,....k\y;. (4)

SVM was in [9], [16]. This method construcksk — 1)/2 clas- Then the decision function is

sifiers where each one is trained on data from two classes. For

training data from théth and thejth classes, we solve the fol- argrax \w (wrd(x) + )

lowing binary classification problem: N

m=1 =1 m=#y;

1 which is the same as (2) of the one-against-all method. Like bi-
‘min ( T CZ 571 ) nary SVM, it is easier to solve the dual problem here. Following
wiT,biIL [27], the dual formulation of (4) is
(W) pzy) +07 > 1-¢7, iy =i
.. .. . : m Jz
W) + 09 < -1 +€F, dfp=y TR [ Aidi =D el
53

& =0 @
There are different methods for doing the future testing after + 5 Z a; m) =2y o Z a;
all k(k — 1)/2 classifiers are constructed. After some tests, we im
decide to use the following voting strategy suggested in [9]: if
sign((w* )T ¢p(x)+b) sayse is in theith class, then the vote for = Z 'di, m=1,...k (5a)
theith class is added by one. Otherwise, jlieis increased by 2 ,
one. Then we predict is in the class with the largest vote. The 0< Oém <C, «af' =0 (5b)
voting approach described above is also called the “Max Wins” 1 ify =y,

. . . — ? J
strategy. In case that two classes have identical votes, thought it Ai= Z o' {0 if y; # vy,
may not be a good strategy, nhow we simply select the one with ) m=1 ’ 7
the smaller index. i=1...1 =1,k (50)

Practically we solve the dual of (3) whose number of vanableg@hereKZ = x)T ¢(x;). Then
is the same as the number of data in two classes. Hence if in .
average each class higd: data points, we have to solvgk — w. — Z (e A —
1)/2 quadratic programming problems where each of them has m —
about2!/k variables. B
The third algorithm discussed here is the directed acycf?d the decision function is

graph SVM (DAGSVM) proposed in [23]. Its training phase is t
) K(zi, %) + b

a;") ¢(zi), m=1,....k (6)

the same as the one-against-one method by sokihg- 1)/2 atg max . > (¢ Ai—a
binary SVMs. However, in the testing phase, it uses a rooted bi- T N=L
nary directed acyclic graph which hag: —1)/2 internalnodes ~ Next we explain that (4) is equivalent to two formulations
andk leaves. Each node is a binary SVMitt and;jth classes. where one is from [11]

Given a test sample, starting at the root node, the binary deci-

. o . . . 1
sion function is evaluated. Then it moves to either left or right min > Z [|wi — wo ||

depending on the output value. Therefore, we go through a path “*** o<m

before reaching a leaf node which indicates the predicted class. !
An advantage of using a DAG is that [23] some analysis of + CZ Z &M w, ¢(x;) + by,

generalization can be established. There are still no similar the- i=1 mzy;

oretical results for one-against-all and one-against-one methods > wl ola;) + by +2 - & (7a)

yet. In addition, its testing time is less than the one-against-one

method. Z Wy = 0 (7b)
We have implemented all three methods by modifying our m=1

SVM softwareLIBSVM [4]. >0, i=1,...,0, me{l,... kN
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and the other is from [3] Therefore, instead of working on (4), we consider the fol-
lowing problem by addin@k b2 to the objective function:

1 k k i m=1"m
min§ Z || wpm — w,||* + sz,;wm—i-CZ Z &n L
o<m m=1 i=1 mzy; : - T Wi
e mn g w|)]

m=1

with the same constraints of (4).

{
For the optimal solution of (4), from (6) and (5c), we have m P(;)
p (4), from (6) and (5c) +OY Y e lul byi]{ 1}
k k l =1 m#y;
m = ;nAz - gn [ .
2= 2 2 (ot 2, o] P |2
{ k .
:Z<A‘— Z“"") o) 0. g0, i=1,...,0, me{l,... . kF\u (9
=1 m=1

Then in the dual problera linear constraints are removed
Hence, adding (7b) to (4) does not affect the optimal solution

i i 1, .
set. Then (7b) implies k minz <§c§7 AA; — Z Oégnoé;l]{z
. 7] m
Z ||wo - wrn||2 =k Z wrz;lwrn 1
o<m m=1 + 5 Z Oé;nOé;n> (Ki,j + 1) -2 Z Oégn
so (4) and (7) have the same optimal solution set. Similar argu- m » m
ments can prove the relation between (4) and (8) as well. The 0<ai"<C, o =0
equivalence of these formulations was first discussed in [11]. k v 1 ify =y
Note that (5) has:! variables wherd of them are always A = Z @, Gl = {0 PO
) . — if y; # Yj,
zero. Hence we can also say it hi@s— 1)! variables. Unfor- ) m=l1
tunately (5) was considered as an impractical formula due to i=1...0, m=1.._.k (10)
this huge amount of variables. Hence in [27] only small proh- - .
. : . The decision function becomes
lems are tested. In the rest of this section we discuss a possible
implementation for solving larger problems. ¢
Remember that when solving binary SVM, a main difficulty flz) = arginai Z (" Ai — o) (K (i, 2) +1) | .
M=Lesl \ j=1

is on the density of the kernel matrix as in genekal; is not

zero. Thus currently the decomposition method is the majphe idea of using bounded formulations for binary classifica-
method_ to SQ|V9 b!nary support vector mach|r!es [2.1], [13]'_[22t}on was first proposed in [10], [18]. For two-class problems, a
[24]. Itis an iterative process where in each iteration the' iNd@tailed numerical study showing that the bounded formulation
set of variables are separated to two $gtand .V, whereB is  can achieve similar accuracy as the standard SVM is in [12],
the working set. Then in that iteration variables correspondifighere the softwar8SVM was proposed. Without linear con-

to NV are fixed while a subproblem on variables corresponding &raints, we hope that the problem of selecting the working set
B is minimized. The size of and the selection of its contentsiy the decomposition method becomes easier. Of course itis not
are bothimportantissues on designing a decomposition methgd 4, yet if the accuracy will be affected as névs? terms are

For example, the sequential minimal optimization (SMO) byqged to the objective function. We will see the results in the
Platt [22] considers only two variables in each iteration. Thegyperiment section.

in each iteration of the decomposition method the sub-problemgqr (10), the same decomposition method as in [12] can be

on two variables can be analytically solved. Hence no optimizgppjied. We rewrite (10) as the following general form:
tion software is needed.

However, such working set selections in the binary case may min f(e) _ laTQa — 9
notwork here for the dual problem (5). Instead of only one linear o 2
constraint in the dual of (1), now in (5a) we hakédinear con- 0<a"<C, ol =0
straints. Thus we can think (5a) as a systerlofiear equations i=1,...,1, m=1,...,k (11)

with k[ variables. Note that the size of the working set is the

number of variables we would like to change in one iteratiomherec is akl by one vector and) is akl by kI matrix. Then
If it is less thank, then (5a) may be an over-determined linedn each iteration, the subproblem is as follows:

system with more equations than variables so the solution of the 1 -
decomposition algorithm cannot be moved. Therefore, in gen-  min —akQppap — (ZeB — QBNaﬁ,) ap

eral we have to select more tharariables in the working set of o 2 L

each iteration. However, this is still not an easy task as bounded O<(ap)i<C =14 (12)
constraints (5b) have to be considered as well and we would like Qrs QOnn
to have a systematic way which ensures that the selection leierel Qns QNN
to the decrease of the objective function. Unfortunately, so farthe size of the working set. Note that@$ = 0, V¢ are fixed
we have not found out effective ways of doing it. variables, we do not select them into the working set.

| is a permutation of the matri¢ andgq
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Assume thatv is the solution of the current iteration ands 1 ! ‘ L
. . . . _ = rnA‘ _am d)(xz)
the size of the working set. We use the following working set =3 E E (" Ai —af") | T
selection 0BSVM: m=1 \i=1

1) Letr be the number of free variablesat&and calculate

min (VF()7,0)  if e =0 =t
vt =< —|Vf(a)7| fo<a»<C
—max (Vf(a)™,0) if a™=C. for any nonzero vector € R* x R*
2) Select indexes of the largestin(g/2, ) elements inv, k l k T
wherea™ is free (i.e.0 < o™ < C) into B. v Qu = Z <Z <c;" ng — U;ﬂ) [d)(xi)D
Select thd ¢ — min(g/2,r)) smallest elements ininto B. m=1 \i=1 o=1 1
The main idea of this working set selection is from ! k
Zoutendijk’s feasible-direction method [28] > Z <c§" Z v — v}") [‘7)(;])} > 0.
j=1 o=1

min Vil)'d —-1<d<1
dr>0, if am=0, d"<0, ifa"=C. (13) Hence,Q is positive semidefinite an_d (10) ?s a convex optimizg-
tion problem. Here (14a) to (14b) is by direct calculation. It is

easy to see how the first and third termscoin (14a) are ob-

If d'is an optimal solution of (13), the#{" must be+1 or —1.  tained from (14b). For the second term, we have
The vectorv defined above actually hag® = V f(a)d™.

Thus selecting the smallest elementsnis like selecting

components with the best steepest descent direction. This has DAY =) A
been used in some early implementations of the decomposition i J i

methods (e.g., [13]). However, it was pointed out in [12] that = ZZ af"ad.
such a selection of the working set may lead to very slow i m

convergence on some difficult problems. With some theoretical

and experimental analyzes, in [12] the authors proposed tO\ey; we discuss the explicit form 6. In particular, we will
mr?llude some_of the Iarg:st elementgofhose _cor_respongllng show what a column of) is. We consider the vectar as the
o are free (l.e.0 < of" < C). Therefore, ifg is the Size {4 1ing form [al, ..., a,...,ak, ..., k|7, In addition, for
of the working set, we piclkg/2 indexes from the smallest o, ..o, we assume that if; < y;, o™ is in a position
elements ofv and the other;/2 from the largest o> whose potoreqm '

correspondingy;” are free. o _In(10), the quadratic terms compose of three groups. First we
The major difficulty for the implementation lies in calculating, ., o

elements of? which are mainly accessed @5 andQ g in

(12). As@ in (5) has a very complicated form, it is essential to N N _

avoid some possible computational overheads. Y AAL = (Em:1 a?l) (Ern:l a}") if yi =y
More importantly, the form in (10) is not symmetric to in- "’ B 0 if v # ;.

dexes: andj. That is

Clearly this part forms a symmetric matrix as follows:

1 s 1
m m

[Kw,w Ky,
1. v, 1 ) .. ’
# <—ciyj AjA =) ool + = oc,’»"oc?’) K. _ : _
2 zn: ’ 2 zn: ’ K. x) K, )
This increases the difficulty of writing down the explicit form of f((l) W
. As any quadratic formulation can be written as a symmetric ’
form, we must reformulate (10). This will be explained in (15). -
Note that as L Ky, x) i
1 5 1, _— whereK,,,y () includes all element&’; ; = K; ;+1withy, =
R Qo= Z <_CJ' Aidy =) ala y; = m. This implies that for thé(s — 1)l + j)th column, row
%,] m

indexes corresponding tgf, ,,7 = 1,...,k will have Ky
1 . . 7 . T T
+ = m m) (K +1) (14a) contributed by this part. We usef,  to represenfal |y; =

yj} andf((yj)yj for {f(z | Yi = yj}
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For the third term,>_ afr o' d(xi)  ¢(x;), clearly it will also give a decomposition implementation here. Basically

©,J,m

forms the following symmetric matrix: [7] solves the following primal problem:
K min wmwm +C Wy x;)e
K min Zl Z& 5 ¥
7l —wl (xi)zc?’—&, i=1,....1 (16)
wheree =1 — 6, ,, and
Similarly we say that atth@(s_— 1_)l+j)th column, row indexes (1 ify=m
corresponding tev}, . .., o] willinclude K ;,..., K ;. bys,m = 0 if y; #m.

The most complicated one is the second part

—23, ;oY K, ; as itis not a symmetric form. To make Then the decision function is

it symmetric We use the property that any quadratic term arg max wl ¢(x).
ry = (1/2)zy + (1/2)ye mad
The main difference from (4) is that (16) uses ohlglack
m JZ variablest;,i = 1,..., 1. Thatis, instead of usingf* as the gap
2 Z i between each two decision planes, here the maximukrsath

1,3,

numbers is considered
= 3 (ol Kyl oK)

igm & = (Hg}x (wi (i) + ) — wT (a:z)>+

_ m_ Yi Yj m .. .
Z o' K j + Z o K (19) where(-); = max(-,0). In addition, (16) does not contain
bgm b coefficientsh;,« = 1,...,l. Note that here we do not have to

explicitly write down constraintg; > 0 as wheny; = m,
Hence for the (s — 1)I + j)th column, elements corresponding;” = 0 so (16) becomes
oag,,r=1....k ande’,i = 1,...,1 will have =K, ;

o . 0>0-¢
and—K, ;< = 1,...,1, respectively.
In summary, thé(s — 1)1+ j)th column of@) can be obtained which is exactly¢; > 0.
as follows: The dual problem of (16) is
1) Obtain the column vectds; ;,i = 1,...,[. Initialize the 1A
((s — 1)I + j)th column as the &! by one zero vector. min - fla) =5 S 3 K, afa;
2) For elements corresponding teys,...,«f, add i=1 j—l
Ky j,..., K ; (from the third part)
3) Forj elemen;s corresponding 0%, ...,«;”, minus +Za Ci Z o i=1,...,1 (17q)
Kij,..., K, (from the second part) . m=1
4) For elements corresponding to eachgf ... af, |, a:‘n S 0, 'T i #m
addK(,,) ; (from the first part) o <C, ify=m
5) For elements corresponding to eacha%f),...,aé“s), i=1,....,0, m=1,...,k (17b)
minus K, (from the second part) . T
Thus @ in (52))J is a dense but not a fully dense matrix. Its yhereks; = ¢(w.)” ¢le)
number of nonzero elements is ab@({?k). For practical im- a; = [%17 . _7a§]T7 and & = [@37 . _7@§]T_

plementations, we compute and cadhig; instead of elements

in Q. The reduction of the cached matrix frok# to [ further 1N€N

improve the training time of this algorithm.
There are different implementations of the above procedure. W = Y o P(xi).

As the situation may vary for different computational environ- =

ment, here we do not get into further details. If we wite « = [a},...,a}, al,. .. ofT and
We have implemented this method as an extension of = (o1 = ck .,et,....eMT, then the dual objective

BSVM and LIBSVM which will be used for the experi- fynction can be wntten as
ments in Section V. In addition, the software is available at 1
http://www.csie.ntu.edu.tw/~cjlin/bsvm. §aT(K @ Da+efa

where! is ank by k identity matrix and® is the Kronecker
product. Sincek is positive semidefiniteK © I, the Hessian
of the dual objective function is also positive semidefinite. This

In [7], Crammer and Singer proposed an approach for mu$- another way to explain that (17) is a convex optimization
ticlass problems by solving a single optimization problem. Waroblem.

IV. METHOD BY CRAMMER AND SINGER
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The decision function is Next we discuss the selection of the working set and the stop-
i ping condition of the decomposition method. The KKT condi-
arg max Za?’K(aZi,x)- tion requires that there afg, ..., b and\} > 0,...,A\F >0
m=L,...k i suchthatforali =1,...,I,m=1,...,k,

The main difference between linear constraints (5a) and (17a) is ~
that (5a) has: equations while (17a) hdslt is interesting that Z Kijo' + e —bi==X" and A" (C)' —a") =0.
they come from the Karush—Kuhn—Tucker (KKT) condition oni=t
different primal variables. (5a) is due to the unconstrained Vaﬁihey are equivalent to thatforall=1,..., 0L, m = 1,....k
ablesby, ..., b in (4) while (17a) is from the unconstrained
variable<y, . .., &;. In addition, (17a) is much simpler than (5a)
as each of its equations involves exadtlyariables. In a sense
we can say that (17a) containsndependent equations. Be- ) _
cause of this advantage, unlike (5a) where we have to remove <0 if ot =G
linear constraints and use (9), here itis easier to directly condw& can rewrite this as
working set selections for the decomposition method.

In [7] the authors proposed to choos&ariables associated

{
N Kot +e —bi=0 ifa <Oy

i=L

l

with the samer; in the working set. That s}, ..., af are  Wax ZK@J’O‘T + et
elements of the working set where the selection of the index” ~ ** \J=!
will be discussed in (20). Then the subproblem is l
< b; < min K, ;o +e™|. (19
Sn §=j S+ | (19)

k
1
min QA&ZTdi +BY@ ) ot =0
m=1 Then during iterations, we select the next working set
ai" <O, m=1,....k (18) {4l ... ok} with i from

where {
_ _ argmax | max Ko +¢e"
A= Kiﬂ‘ and B=g¢; + Zsziaj % <O Jz—:l B ¢
J#i .
In addition,C?*,m = 1,...,k is ak by one vector with all — min Y Ki;of' +¢" | | (20)
elements zero except that tfwg )th component i”. A<y \j=1

The main reason of this setting is that (18) is a very simplﬁ other words, among thiek-component groups of variables

problem. In [7], anO(k log k) algorithm was proposed for (18) . L :
N ' . . select the one with the largest violation of the KKT condi-
while in [8], a simple iterative approach was used. Here we uygn. For binary SVM, choosing indexes which most violate the

the first method. In addition, it is easier to systematically calc KT condition has been mmon strat A7) thouah
late A and B so many complicated derivations in the previouR co on has been a common strategy (e.g., [4]) thoug .
ere instead we choose a whole group at once. Then for vari-

section are avoided.

; I L ables{a},...,a¥} which are selected, they do not satisfy the
Note that the gradient of the dual objective function is KKT condition of the subproblem (18) so solving (18) will guar-
i Ei’:l Kljja} +et] antee the strict decrease on the objective function of the dual
. problem.

Zl' 1 Kl-jo/?‘ L Following (19) the stopping criterion can be
= A

l§ 1 1 !
i K2 SO+ e
i Kejog e | max | max E K; joi" + ¢
. @ am<Cm
: i ="y; j=1
i k k
Ej:l KQJ'Oéj +62 ¢
: — min |} Kijal' e | | <e (20)
L : i R '<Cy7' j=1

ThenB, ak by one vector, can be calculated as follows by the . .
. . ; wheree is the stopping tolerance.
information of the gradient

The convergence of the above decomposition method has

B - of(e) o been proved in [17]. In addition, [17] shows that the limit of
m 8042" 2,005 l
_ If(e) Aa™, m=1,... k. max [ max Z K; joi" + et
8agn % apr <y =

Therefore, during iterations it is essential to always keep the l
gradient updated. This is done after ney . . ., o are obtained — min Z Ko + et
by (18) andO(k!) operations are needed. alt<Cy \ iz

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on December 1, 2009 at 08:14 from IEEE Xplore. Restrictions apply.



HSU AND LIN: A COMPARISON OF METHODS FOR MULTICLASS SUPPORT VECTOR MACHINES 421

TABLE |
PROBLEM STATISTICS

Problem | #training data | F#testing data | #class | #attributes | statlog rate
iris 150 0 3 4
wine 178 0 3 13
glass 214 0 6 13
vowel 528 0 11 10
vehicle 846 0 4 18
segment 2310 0 7 19
dna 2000 1186 3 180 95.9
satimage 4435 2000 6 36 90.6
letter 15000 5000 26 16 93.6
shuttle 43500 14500 7 9 99.99

goes to zero as the number of iterations goes to infinity. Henissue does not arise for two all-together methods as each model

in a finite number of iterations, the decomposition method stopsrresponds to only one optimization problem.

as (21) is satisfied. The implementation is now parB&vM We use similar stopping criteria for all methods. For each

2.0 which is also publicly available to users. problem we stop the optimization algorithm if the KKT viola-
tion is less thari0—2. To be more precise, each dual problem

of the one-against-one and one-against-all approaches has the
V. NUMERICAL EXPERIMENTS following general form:

A. Data and Implementation min Fl)yFa=0, 0<a<C

In this section we present experimental results on several *

problems from the Statlog collection [20] and the UCI Reposvherey; = +1. Using a similar derivation of the stopping cri-

itory of machine learning databases [1]. From UCI Repositotgrion (21) of the method by Crammer and Singer, we have

we choose the following dataseiss, wine, glass, andvowel.

Those problems had already been tested in [27]. From Statlqg, < max —Vf(a), max Vf(a)i)

collection we choose all multiclass datasgtshicle, segment, a;<Cy;=1 a;>0,y;=—1

dna, satimage, letter, andshuttle. Note that except problem . . . _

dna we scale all training data to be ir[L, 1]. Thentestdataare = ™" <ai<gﬂf=_1 Ve, w0 =1 _vf(a)i) +107°.

adjusted tof1,1] accordingly. For the probledna, we do not (22)

scale its binary attributes. We give problem statistics in Table I.

For some of these problems test sets are available. Note that (10) of the all-together approach, (22) becomes even simpler

for problemsglass andsatimage, there is one missing class.as there are no vectar. Unfortunately though these stopping

That s, in the original application there is one more class but@niteria are nearly the same, they are not fully comparable due

the data set no examples are with this class. In the last colutordifferent size of dual problems in these approaches. We will

we also give the best test rate listed in statlog homepage. Netaborate more on this issue in Section VI. Note that for prob-

that these best rates were obtained by four different learnilegnsletter andshuttle, a relaxed tolerance 0.1 is used for the

methods. method by Crammer and Singer as otherwise it takes too much
The most important criterion for evaluating the performandeaining time. More information on the stopping criteria of the

of these methods is their accuracy rate. However, it is unfalecomposition method can be found in [17].

to use only one parameter set and then compare these fivdhe computational experiments for this section were done

methods. Practically for any method people find the best pan a Pentium 111-500 with 384 MB RAM using thgcc com-

rameters by performing the model selection. This is conductpiller. For each optimization problem (either binary SVMs or the

on the training data where the test data are assumed unknoalhtogether approaches), we allocate 256 MB memory as the

Then the best parameter set is used for constructing the mockathe for storing recently used kernel elements. Each element

for future testing. Note that details of how we conduct the modef );; stored in the cache is in double precision. For the same

selection will be discussed later in this section. To reduce tbze of the cache, if the single precision is used, the number of

search space of parameter sets, here we train all datasets efdynents which can be stored in the cache is doubled. We have

with the RBF kernel K (z;,z,) = e~7I===I”_In addition, both implementations but here only the double-precision one is

for methods solving several binary SVMs (one-against-ongsed.

one-against-all, and DAG), for each model we consider thatWhile implementing these approaches using the decompo-

C and~ of all binary problems are the same. Note that thisition method, we can use a shrinking technique for reducing
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TABLE I
A COMPARISON USING THE RBF KERNEL (BEST RATES BOLD-FACED)

One-against-one DAG One-against-all (25), [27) C&S
Problem| (C,7) rat (C,v) rate (C v) ratd  (C,¥) rat (C,v) rate
iris (212,27°%) 97.333)(2!1%,27%)  96.667 (2° 96.667(2'%,27%) 97.333(2'°,277) 97.333

wine  [(27,271%) 99.438 (2¢,27°%)  98.876| (27 98.876 (2°,27%)  98.876 (2!,27%)  08.876
glass  |(2',272 71.495((2*2,27%) 73.832(2“ 272 71.963 (2°,27%)  71.028 (2%,2Y) 71963
vowel ( 20)  99.053 (2%,2%) 98.674 (2% 2! 98.485 (2%,2°)  98.485 (2',2%) 98.674
vehicle | (2° ) 86.998 (2°,2~ 86.761

97.316
95.784 (2*,27%)  95.616 (2',2 95.869

4

)

dna (23 95.447 (2%,27%)  95.447 (22,2 -9
91.7 (2%,2% 91.25 (2%,2%) 92.35

2%)

)

satimage| ( 91.3 (2%,2% 91.25 (2%,2!
97.98/ (2%2%)  97.98 (22 22
99.024 (2',2°)  99.924 (2°

0

97.68
99.938

97.88 (2',2%) 97.76 (2°
99.910 (2°,2%)  99.91 (212,2

letter (2*
shuttle (2‘1 23

%)
)
) )
2°) 2°)
~3)  86.643(2!%,275) 86.052(2“ 27%)  87.470/(2'°,27*
segment ( 0) 97.403(2',27%)  97.359 (27,2°) 97.539 (2%,2°) 7.576 (2°,2°
) )
2°) 2°)
2%) )
) 2%)

the training time. To be more precise, if most variables are fast column of Table 1), the accuracy obtained by SVM is com-
nally at bounds, the shrinking technique reduces the size pititive or even better. For example, among the four problems
the working problem by considering only free variables. Wena to shuttle, the one-against-one approach obtains better ac-
have implemented the shrinking technique on all five methodsuracy orsatimage andletter. For the other two problems, the
For the three methods based on binary classifiers, details ara@turacy is also close to that in Table |.
([4], Section 4). For two all-together methods, the implementa- We also report the training time, testing time, and the number
tion is more sophisticated. This is a disadvantage of all-togettedrunique support vectors in Table Ill. Note that they are re-
methods. Though they consider only one optimization problesylts when solving the optimal model. For small problems there
this problem is more complicated for practical implementationare no testing time as we conduct cross validation. Here we
say “unique” support vectors because a training data may corre-
spond to different nonzero dual variables. For example, for the
one-against-one and one-against-all approaches, one training
For each problem, we estimate the generalized accuratyta may be a support vector in different binary classifiers. For
using different kernel parameterg and cost parametersthe all-together methods, there @revariables so one data may
Civy=[2%,2%2% ... 2719 andC = [2'2,2" 210 .. 272]. associate with different nonzero dual variables. Here we report
Therefore, for each problem we tiyp x 15 = 225 combina- only the number of training data which corresponds to at least
tions. We use two criteria to estimate the generalized accuragyie nonzero dual variable. We will explain later that this is the
For datasetsina, satimage, letter, and shuttle where both main factor which affects the testing time. Note that the number
training and testing sets are available, for each pa{tdfy), of support vectors of the first six problems are not integers. This
the validation performance is measured by training 70% @fbecause they are the average of the ten-fold cross-validation.
the training set and testing the other 30% of the training set.For the training time, one-against-one and DAG methods are
Then we train the whole training set using the pair(6f~) the best. In fact the two methods have the same training proce-
that achieves the best validation rate and predict the test gkire. Though we have to train as many:és— 1)/2 classifiers,
The resulting accuracy is presented in the “rate” column ak each problem is smaller (only data from two classes), the total
Table Il. Note that if severa]C, v) have the same accuracy intraining time is still less. Note that in Table Ill the training time
the validation stage, we apply all of them to the test data anflone-against-one and DAG methods may be quite different for
report the highest rate. For the other six smaller datasets whitfe same problem (e.geehicle). This is due to the difference
test data may not be available, we simply conduct a ten-fabth the optimal parameter sets.
cross-validation on the whole training data and report the bestAlthough we improve the method from [25], [27] with ef-
cross-validation rate. forts in Section lll, its training speed remains slow. The conver-
Table Il presents the result of comparing five methods. Wgence speed of the method by Crammer and Singer is also not
present the optimal parameté€s, ) and the corresponding ac-good. Especially for some problenigg, vehicle, andshuttle)
curacy rates. Note that the “C&S” column means the methdts training time is huge. For these problems we note that the
by Crammer and Singer. It can be seen that optimal parametepsimal parameter of” is quite large. The experience in [12]
(C,~) are in various ranges for different problems so it is esseshows that if the working set selection is not good, the conver-
tial to test so many parameter sets. We also observe that theirgence of the decomposition method may be slow when using a
curacy is very similar. That is, no one is statistically better thdargeC. Thus the difficulty might be on the working set selec-
the others. Comparing to earlier results listed in Statlog (see tien. As in each iteration only one of tie@qualities is involved,

B. Results and Discussions
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TABLE Il
TRAINING TIME, TESTING TIME, AND NUMBER OF SUPPORT VECTORS (TIME IN SECONDS
BEST TRAINING AND TEST TIME BOLD-FACED; LEAST NUMBER OF SVS ITALICIZED)

One-against-one DAG One-against-all [25], [27] C&S
Problem| training #SVs | training #SVs | training #SVs | training #SVs | training #SVs
testing testing testing testing testing
iris 0.04 16.9 0.04 15.6 0.10 16.0 0.15 16.2 16.84 27.8

wine 0.12 56.3 0.13 56.5 0.20 29.2 0.28 54.5 0.39 41.6

glass 2.42 112.5 | 2.85 114.2 | 10.00 129.0 | 7.94 124.1 | 7.60 143.3
vowel 2.63 345.3 | 3.98 365.1 | 9.28 392.6 | 14.05 279.4 | 20.54 391.0
vehicle | 19.73 3024 | 35.18 293.1 | 142.50 343.0 | 88.61 264.2 | 1141.76 264.9
segment| 17.10 4424 | 23.25 266.8 | 68.85 446.3 | 66.43 358.2 | 192.47  970.3

dna 10.60 967 10.74 967 23.47 1152 13.5 951 16.27 945
6.91 6.30 8.43 6.91 6.39

satimage| 24.85 1611 25.1 1611 136.42 2170 48.21 1426 | 89.58 2670
13.23 12.67 19.22 11.89 23.61

letter 298.08 8931 208.62 8931 1831.80 10129 | 8786.20 7627 1227.12% 6374
126.10 92.8 146.43 142.75 110.39

shuttle | 170.45 301 168.87 301 202.96 330 237.80 202 2205.78* 198
6.99 5.09 5.99 4.64 4.26

*: stopping tolerance ¢ = 0.1 is used.

TABLE IV
A COMPARISON USING THE LINEAR KERNEL (BEST RATES BOLD-FACED)

One-against-one DAG One-against-all [25], [27] C&S
Problem| C rate C rate C rate C rate C rate
iris 24 97.333 | 2® 97.333 | 22 96.000 | 2° 97.333 | 2° 87.333
wine 272 99.438 | 277 98.315 | 2° 98.876 | 271 98.876 | 27!  99.438
glass 28 66.355 | 2*  63.551 | 2° 58.879 | 2° 65421 | 2° 62.617
vowel 28 82.954 | 2% 81.439 | 2! 50.000 | 2® 67.424 | 2° 63.068
vehicle 2% 80.615 | 2° 80.851 | 2'? 78.132 | 2! 80.142 | 2* 79.669
segment | 2'2 96.017 | 2''  95.844 | 22 93.160 | 2% 95454 | 272 92165

there may not be enough interactions among thegeups of Note that we generally observe that for the same parameter set,
variables. it needs fewer support vectors. This is consistent with the results

Regarding the testing time, though the decision function iis[27]. Here we do not really have such a comparison as the op-
more complicated than the binary case, our experimental restilbisal parameters vary for all approaches. Especially for small
indicate that in general the testing time is still dominated by thoblems their optimal parameters are very different. However,
kernel evaluations. Note that to save testing time, we alwafgg large problems their optimal parameters are similar so in
calculate and store alt (x;, z) first, wherez; is any “unique” Table Il the “#SVs” column of the method from [25], [27] re-
support vector and is the test data. Then this(x;, ) may be ally shows smaller numbers. Therefore, if the testing time is very
used in several places of the decision function. We observe thaportant, this method can be an option. On the other hand, we
if & is small(<10), kernel evaluations take more than 90% ofannot draw any conclusions about the method by Crammer and
the testing time. Therefore, we can say that in general the testBigger. Sometimes it needs very few support vectors but some-
time is proportional to the number of “unique” support vectorsimes the number is huge.

We also observe that between the one-against-one and DAGVe would like to note that for the probledna, several pa-
methods, DAG is really a little faster on the testing time. rameters get the best result during the validation stage. Then

We then discuss the number of support vectors. We can segen applying them to the test data, some of them have the same
that for larger problems, the method from [25], [27] returnaccuracy again. In Table Il we present only the result which has
fewer support vectors than all three binary-based approachbe smallest number of support vectors.
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Overall, except the training time, other factors are very sim- TABLE V
ilar for these approaches. Thus we suggest that one-against-ondUMBER OF ITERATIONS: A COMPARISON ONSOLVING (17) AND (24)
and DAG approaches are more suitable for practical use.

To _have more complete analysis, we test these methods Problem | Eq (17) Eq. (24)
by using the linear kernek (z;,z;) = x%z;. Results are in

e dna 8653 15475
Table IV. Due to the limit of computanonal time, we report .

satimage 13109 27751
only small problems. Now the only parameter s so we

letter 16341 26424

test 15 differentC’s and report the best rate. Comparing to
Table Il, the difference on the best rates is apparent. The shuttle 163394 286734
one-against-all method returns the worst accuracy for some
problems. Overall one-against-one and DAG still perform well.

The comparison on linear and nonlinear kernels also revegigen again the same difficulty on the working set selection for
the necessity of using nonlinear kernels in some situations) happens again so we may have to &ti(2) Ek b2 to

The observation that overall the RBF kernel produces betigie objective function of (23). The dual problem ﬁleﬁCgB
accuracy is important as otherwise we do not even need to

study the decomposition methods which is specially designed. 1
for the nonlinear case. There are already effective methods 16" F(e) 2 Z Z it ha
solve very large problems with the linear kernel. ==t

Finally we would like to draw some remarks about the im- " ZO‘ G, Z ol
plementation of these methods. The training time of the one- ¢

m=1

against-all method can be further improved as now for each pa- m < 0 m e
X X o' <0, ify,#m, o' <C, fy,=m
rameter setk binary problems are treated independently. That ]
is, kernel elements used when solving one binary problem are =1L m=1,....k (24)
not stored and passed to other binary problems though they h@fich can be solved by the same decomposition method de-
the same kernel matrix. Hence the same kernel element m@yined in Section IV. Then
be calculated several times. However, we expect that even with .
such improvements it still cannot compete with one-against-one [wm} _ Z m |:¢(377‘,):|
and DAG on the training time. For all other approaches, caches b ! 1
have been implemented so that all problems involved in one
model can share them. On the other hand, for all approach®® the decision function is
now different models (i.e., different parameter sets) are fully !
independent. There are no caches for passing kernel elementgrginax W p(x) + b= algmaxz o' (K (zi,x) + 1).
from one model to another. b=t
We modify the code for (24) and by using the optimal pa-
rameters listed in the last column of Table Ill, a comparison
on the number of iterations between solving (17) and (24) is
VI. DISCUSSION ANDCONCLUSION in Table V. We provide only results of the four large problems.
It can be clearly seen that after adding the bias term, the per-
We note that a difference between all-together methodsfigmance is not better. It is not clear yet why the number of
that the method by Crammer and Singer does not include bitggations is nearly doubled but this is not surprising as in [12]
termsby, . . ., b,,. We are wondering whether this may affect th#ve have demonstrated that for binary SVM, with or withatit
training time. Here we give a brief discussion on this issue. ili the objective function, the performance of the same decom-
b1,...,by are added, (16) becomes position method can be quite different. Overall we realize that
the working set selection (20) may not be very good to have fast
convergence for (16).

=1

min 1 Z W W The second issue which will be discussed here is about the
252 stopping criteria. Though we use stopping criteria from the same
derivation, they are affected by the problem size. That is, the
+ CZ é} wy, dlzs) + byz) smaller the dual problem is, fewer variables are involved in the
calculation of Vf(«); of (22). Therefore, in some sense ap-
- (Uﬁ(ﬁ(aﬁi) +bm) > e =&, i=1,...,1 (23) proaches like one-against-one which use smaller dual problems

take advantages (or say they stop earlier). A possible remedy
Then from the KKT condition the dual has some additiona$ to divide the left-hand-side of (22) by the size of the dual
equalities problem. More investigation are needed for this issue. How-
ever, even with such differences, our conclusion that all-together
. methods take more training time should remain as from Table IlI
Z at=0m=1,...,k we can see for both approaches on some problems their training
— time is much longer. For example, the method by Crammer and
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Singer solve &l-variable problem and for problentetter and
shuttle, we relax the stopping tolerance to 0.1. This is like that
we divide the left-hand-side of (21) by 100 which is grater then

k, the number of classes. However, its training time still cannofy g
compete with that of the one-against-all approach which solves
dual problems with variables.

In conclusion, we have discussed decomposition im—[17
plementations for two alltogether methods and compared
them with three methods based on several binary classifiers:
one-against-one, one-against-all and DAG. Experiments oHél
large problems show that one-against-one method and DAG
may be more suitable for practical use. A future work is to testig)
data with a very large number of classes. Especially people
have suspected that there may have more differences amo
these methods if the data set has few points in many classes
[26]. [21]
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