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Abstract Streamflow time series are commonly derived from stage-discharge rating curves, but the

uncertainty of the rating curve and resulting streamflow series are poorly understood. While different

methods to quantify uncertainty in the stage-discharge relationship exist, there is limited understanding of

how uncertainty estimates differ between methods due to different assumptions and methodological

choices. We compared uncertainty estimates and stage-discharge rating curves from seven methods at three

river locations of varying hydraulic complexity. Comparison of the estimated uncertainties revealed a wide

range of estimates, particularly for high and low flows. At the simplest site on the Isère River (France), full

width 95% uncertainties for the different methods ranged from 3 to 17% for median flows. In contrast,

uncertainties were much higher and ranged from 41 to 200% for high flows in an extrapolated section of the

rating curve at the Mahurangi River (New Zealand) and 28 to 101% for low flows at the Taf River (United

Kingdom), where the hydraulic control is unstable at low flows. Differences between methods result from

differences in the sources of uncertainty considered, differences in the handling of the time-varying nature of

rating curves, differences in the extent of hydraulic knowledge assumed, and differences in assumptions

when extrapolating rating curves above or below the observed gaugings. Ultimately, the selection of an

uncertainty method requires a match between user requirements and the assumptions made by the

uncertainty method. Given the significant differences in uncertainty estimates betweenmethods, we suggest

that a clear statement of uncertainty assumptions be presented alongside streamflow uncertainty estimates.

Plain Language Summary Knowledge of the uncertainty in streamflow discharge measured at

gauging stations is important for water management applications and scientific analysis. This paper shows

that uncertainty estimates vary widely (typically up to a factor of 4) when comparing seven recently

introduced estimation methods. A clear understanding of the assumptions underpinning different

uncertainty estimation methods and the sources of uncertainty included in their calculations is needed when

selecting a method and using and presenting its uncertainty estimates.

1. Introduction

Streamflow time series data are fundamental to hydrological science and water management applications.

Uncertainty in streamflow data directly translate into uncertainty in hydrologic models (e.g., Liu et al.,

2009; McMillan et al., 2010), into research conclusions and management decisions (Wilby et al., 2017), and

may result in significant economic costs (McMillan et al., 2017). Understanding the causes and characteristics

of streamflow uncertainty, as well as how it can best be estimated, is therefore an important research task.

Streamflow time series for river gauging stations are most often computed through the use of a stage-

discharge rating curve that relates measured river stage to streamflow discharge. The rating curve is usually

developed using discrete, concurrent measurements of stage and discharge as calibration data. Rating curves

are used because discharge is difficult to measure continuously, while methods to continuously monitor

stage height are readily available. The rating curve function is typically selected to be consistent with the
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physics of open channel flow for the river cross section and controlling reach in question and often combines

multiple segments to represent the riffles, weirs, channel bank controls, backwater effects, and overbank

flows that occur. This indirect calculation of streamflow data from stage, in addition to uncertainties in stage

height and channel definition, generates discharge uncertainties that are not always apparent or reported to

users of streamflow data.

Multiple sources of uncertainty impact the formulation of rating curves and hence streamflow estimation;

McMillan et al. (2012) provide an in-depth review of these. There are three major components.

(1) Measurement errors in the underlying stage-discharge gaugings, which are usually approximated as

random errors (Coxon et al., 2015; Pelletier, 1988). (2) Imperfect approximation of the true stage-discharge

relation by the rating curve model, including extrapolation of rating equations to higher and lower

discharges beyond the range of the stage-discharge gaugings. (3) Ignored additional drivers that may create

instability in the stage-discharge relation, for example, factors including unsteady flow, variable backwater

effects, or changes to the channel cross section due to sediment transport, vegetation growth, or

ice formation.

The combined effects of these uncertainty sources result in significant uncertainty in streamflow values.

Typical total uncertainties (95% uncertainty intervals) have been estimated at ±50–100% for low flows,

±10–20% for medium to high flows, and ± 40% for out of bank flows (McMillan et al., 2012). Alternative

methods exist that estimate streamflow and its associated uncertainty without the use of a stage-discharge

rating curve. Index velocity methods measure local velocity directly and then apply a conversion to average

cross-section velocity (Levesque & Oberg, 2012). For flood flows, noncontact techniques such as Particle

Image Velocimetry can estimate velocity from observations of the flow surface (Muste et al., 2011). In many

regions of the world, rivers are inaccessible or gauging technology is not easily available, and therefore,

remote sensing techniques for streamflow and uncertainty estimation are desired (e.g., Bjerklie et al.,

2005). However, in this paper we focus only on stage-discharge rating curve methods, as they are the most

widely used.

Many different methods have been suggested to estimate uncertainty in stage-discharge rating curves. The

traditional method for stage-discharge rating curve uncertainty estimation is the linear regression method

(Herschy, 1999) proposed in International Organization for Standardization (ISO) international standards

(ISO 1100-2:2010, ISO/PWI 18320) and World Meteorological Organization (WMO) technical regulations

(World Meteorological Organization (WMO), 2006), though we are not aware of any agency having applied

it routinely. This method has been extended to include additional error sources and effects of time averaging

(Clarke, 1999; Dymond & Christian, 1982; Venetis, 1970); however, the research community has recently devel-

opedmultiplemethods for different gauging stations and types of stage-discharge relationships. Thesemeth-

ods use a variety of different approaches for rating curve uncertainty estimation, including assessing gauging

deviations (Tomkins, 2014), fuzzy methods (Shrestha et al., 2007; Westerberg et al., 2011), locally weighted

regression (LOWESS) regression (Coxon et al., 2015; Mason et al., 2016), Generalised Likelihood Uncertainty

Estimation (Guerrero et al., 2012), Bayesian informal (McMillan & Westerberg, 2015), Bayesian formal (Juston

et al., 2014; Le Coz et al., 2014; Moyeed & Clarke, 2005; Reitan & Petersen-Overleir, 2008; Sikorska et al.,

2013), dynamic rating curve analysis (Jalbert et al., 2011; Morlot et al., 2014; Reitan & Petersen-Overleir,

2011), and perturbations introduced into a hydraulic model (Di Baldassarre & Claps, 2011 Di Baldassarre &

Montanari, 2009; Domeneghetti et al., 2012).

We argue that there is no single optimal method for streamflow uncertainty estimation because each

method makes different assumptions about the sources and types of uncertainty and thus how the rating

model is calculated. Different perceptual understandings of the dominant uncertainty sources drive the for-

mulation of the different methods (Westerberg et al., 2017). Methods have been designed for different pur-

poses and may range from locally specific to generalized in their application, be more suitable for smaller or

larger rivers, and have lower or higher requirements for the availability of gaugings and metadata. Therefore,

different methods will be preferable in different circumstances. Methods differ in how the estimated dis-

charge uncertainty is normally presented, for example, as upper/lower bounds (Westerberg et al., 2011), dis-

tributions of discharge for each stage value (Coxon et al., 2015), or full distributions of rating curve samples

(Le Coz et al., 2014; McMillan & Westerberg, 2015). These differences in output may restrict the ways in which

uncertainty can be propagated to other analyses such as hydrological model calibration and hydrological sig-

nature uncertainty calculation.
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Table 1 illustrates some of the necessary decisions when designing an uncertainty estimation method.

Typically, these questions do not have correct answers, because we lack full information on error sources

and characteristics. This lack of an optimal method has been referred to as uncertainty about uncertainty or

uncertainty2 (Juston et al., 2014).

Given the large number of estimation methods available, it is important to understand how uncertainty esti-

mates differ between methods and how these differences depend on the assumptions and methodological

choices made in each method. To date, there has been little coordination between the diverse research

groups developing discharge uncertainty estimation methods. Limited previous studies have compared

some pairs of methods (Mason et al. 2016; Ocio et al., 2017; Storz, 2016), but we know of no

broader comparisons.

In this paper we present a first attempt to bring together and compare several streamflow uncertainty esti-

mation methods. Intercomparison experiments have an important place in hydrology as a way to compare

and benchmark competing methods. For example, the Model Parameter Estimation Experiment compared

a priori methods for hydrologic/land surface parameter estimation (Duan et al., 2006); and the

Hydrological Ensemble Prediction Experiment facilitated comparisons of ensemble forecasting (Schaake

et al., 2007). Comparison experiments are today aided by new tools such as Virtual Science Laboratories that

provide a central location for researchers to share data, metadata, models, and protocols, helping to address

the issue of ensuring reproducibility of hydrologic experiments (Ceola et al., 2015; Hutton et al., 2016). We dis-

cuss our experimental design and protocols in section 2.

This paper summarizes and reviews seven methods for estimating uncertainty in rating curves (section 2),

with diverse assumptions and methodological choices (Tables 2 and 3), that are actively maintained and in

current use by their respective research groups. Although not exhaustive, we believe that the methods

included provide a representative sample of potential differences in uncertainty estimation techniques.

Because streamflow uncertainty is highly dependent on hydraulic characteristics of the gauging site, hydro-

logic regime, and streamflow gauging practices, we compared uncertainty estimation results from all of the

methods at three gauging locations with diverse rating characteristics. We chose two sites in Europe and one

in New Zealand, with stage-discharge relations that range from simple and stable to complex and time vary-

ing. The paper aims to illustrate the importance of understanding the assumptions involved in stage-

discharge rating curve uncertainty estimation, to describe what characteristics these existing models have

in common, and how their differences affect the resultant uncertainty estimates. It also aims to provide gui-

dance on the suitability of each method for a variety of typical river gauging stations, and finally, we suggest

critical next steps to improve our treatment of streamflow uncertainties in light of this paper’s findings.

2. Experimental Design

This section describes the experimental design that we used to compare river discharge uncertainty esti-

mates between methods. We present the rationale for the comparison experiment and the scope of our

design, describe the stream gauges where we conduct the comparison, summarize the uncertainty estima-

tion methods and their assumptions, and describe the uncertainty components that they treat.

2.1. Method Comparison Experiment

We designed the method comparison experiment during two workshops that brought together research

groups who had developed their own methods. Our discussions highlighted a lack of knowledge on how

Table 1

Examples of Design Questions That Must Be Answered During Development of a Discharge Uncertainty Estimation Method

Model specification ▪ Which types of rating curve models should be considered (e.g., piecewise power functions)?

▪ How much user knowledge of the model, parameters, and gauging station characteristics should be required?

▪ When utilized, how should priors be assigned, using hydraulic data or otherwise?

Changes over time ▪ How do rating curves change over time, how can changes be detected, and how can this be incorporated in the method?

Extrapolation ▪ Can the rating curve be safely extrapolated beyond current gaugings to lower or higher flows?

▪ How can hydraulic knowledge be used to constrain out of bank extrapolations?

Data ▪ How many gaugings are required for discharge uncertainty estimates and how should they be distributed across the flow range?

▪ How should outliers and questionable (or more or less certain) data be handled?
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different assumptions and methodological decisions impact discharge uncertainty esti-

mates at different stream gauges with different characteristics and data availability.

We therefore decided to undertake a thorough comparison of the participating dis-

charge uncertainty estimation methods. Three stream gauges were selected, represent-

ing low, medium, and high perceived rating curve complexity (section 2.2). For each

gauge, we compiled a data set including

1. a stage time series (either 15-min or hourly data),

2. stage-discharge gauging points (including gauging time, gauging method, and

uncertainty of the measured discharge if this information was available),

3. official (operationally used) rating curves, and

4. gauging site characteristics (e.g., photographs, cross-section information, and catch-

ment descriptors).

Each research group applied their own uncertainty method to each stream gauge data

set. Results were returned as follows: estimated rating curve and uncertainty quantiles

for specified stage values, discharge series, and associated uncertainty quantiles. These

results were then compiled and compared centrally.

2.2. Stream Gauge Descriptions

Three stream gauges with sufficient minimum information to run all the models were

selected to compare the discharge uncertainty estimation methods: (1) the Isère at

Grenoble Campus (France), (2) the Mahurangi at College (New Zealand), and (3) the Taf

at Clog-y-Fran (United Kingdom, see Figure 1). These stream gauges were chosen first

to cover a range of conditions impacting uncertainties in the stage-discharge relation-

ship ranging from simple to more complex cases and second as all three gauges had

the necessary data available so that the different methods could be easily compared.

These stream gauges have been well studied, for example, Bayesian approaches (Thyer

et al., 2011) and the Voting Point Method (VPM) method (McMillan & Westerberg,

2015) have been used to estimate discharge uncertainty at Mahurangi, while the

Bristol method (Coxon et al., 2015) and the VPM method (Westerberg et al., 2016) have

been applied to the Taf using a different data period than that used here. However, dis-

charge uncertainty estimates from multiple methods, within a consistent set of experi-

mental protocols, have not been compared at these gauging stations.

2.2.1. The Isère River at Grenoble Campus, France

The Isère River at Grenoble Campus, in the French Alps, was chosen as the simplest case

to apply the discharge uncertainty methods as it has a single, stable channel control over

the entire range of stages. The Isère is the largest of the three rivers (mean discharge

179 m3/s) with large seasonal fluctuations in flow due to rain and snow melt. It is highly

regulated due to many dams and water diversions. Although there is a cableway to mea-

sure high flows at the gauge, it is very difficult to obtain accurate measurements due to

fast velocities and floating debris. At the station, the Isère flows in a wide, fairly uniform

alluvial channel with overbank flows strictly limited by dikes (out of bank height is

approximately 6.5 m). Both operational and academic operators produce frequent gau-

gings over the full range of observed stages (168 gaugings between January 1998 and

August 2015). The rating curve has changed at this station due to the occurrence of a

major flood (16 October 2000) and in-channel gravel mining downstream of the station

(2 February 2013). In this study, only gaugings after the October 2000 flood and before

the February 2013 modifications were used to allow a comparison of the methods for

a single stable period. For each gauging, the expected discharge gauging uncertainty

(±5% or ± 7%) was provided based on the measurement method (either an acoustic

Doppler current profiler or a mechanical current meter, respectively).

2.2.2. The Mahurangi River at College, New Zealand

The Mahurangi River at College allows the comparison of different discharge uncertainty

estimates for a multisegment stage–discharge relationship, which has extrapolation of

T
a
b
le

2

Su
m
m
a
ry

o
f
U
n
ce
rt
a
in
ty

Es
ti
m
a
ti
o
n
M
et
h
o
d
s

M
e
th
o
d
s

M
a
in

p
ri
n
ci
p
le
s

R
a
ti
n
g
e
q
u
a
ti
o
n
(m

a
in

m
o
d
e
l)

T
yp

e
o
f
u
n
ce
rt
a
in
ty

re
su
lt
s

U
se
rs

M
a
in

re
fe
re
n
ce
s

B
a
R
a
ti
n

B
a
ye
si
a
n
,M

C
M
C
sa
m
p
lin

g
,m

a
tr
ix
o
f
co
n
tr
o
ls
u
se
r

d
e
fi
n
e
d
fr
o
m

p
re
lim

in
a
ry

h
yd

ra
u
lic

a
n
a
ly
si
s

P
ie
ce
w
is
e
/a
d
d
e
d
p
o
w
e
r
fu
n
ct
io
n
s

S
a
m
p
le
d
d
is
tr
ib
u
ti
o
n

R
e
se
ar
ch

+
o
p
e
ra
ti
o
n
a
l

(S
C
H
A
P
I,
C
N
R
)

Le
C
o
z
e
t
a
l.
(2
0
1
4
)

B
ri
st
o
l

N
o
n
p
a
ra
m
e
tr
ic
LO

W
E
S
S
re
g
re
ss
io
n
a
n
d

m
u
lt
is
e
ct
io
n
ra
ti
n
g
cu
rv
e
s

P
ie
ce
w
is
e
lin

e
a
r

S
a
m
p
le
d
d
is
tr
ib
u
ti
o
n

R
e
se
ar
ch

C
o
xo
n
e
t
a
l.
(2
0
1
5
)

G
e
sD

yn
G
a
u
g
in
g
se
g
m
e
n
ta
ti
o
n
,t
im

e
v
a
ri
o
g
ra
p
h
ic
a
n
al
ys
is
,M

C

sa
m
p
lin

g
,a
n
d
o
n
e
ra
ti
n
g
e
st
im

a
te
d
fo
r
e
a
ch

g
a
u
g
in
g

P
ie
ce
w
is
e
p
o
w
e
r
fu
n
ct
io
n
s

S
a
m
p
le
d
d
is
tr
ib
u
ti
o
n

R
e
se
ar
ch

+
o
p
e
ra
ti
o
n
a
l
(E
D
F
)

M
o
rl
o
t
e
t
a
l.
(2
0
1
4
)

IS
O
/W

M
O

A
n
a
ly
si
s
o
f
lin

e
a
r
re
g
re
ss
io
n
re
si
d
u
a
ls

P
ie
ce
w
is
e
p
o
w
e
r
fu
n
ct
io
n
s

S
ta
n
d
a
rd

d
e
v
ia
ti
o
n
s

N
o
t
kn

o
w
n

IS
O
1
8
3
2
0
,W

M
O
(2
0
0
6
)

N
V
E
/

H
yd

ra
S
u
b

B
a
ye
si
a
n
,M

C
M
C
sa
m
p
lin

g
,a
n
d
o
b
je
ct
iv
e
se
g
m
e
n
ta
ti
o
n

P
ie
ce
w
is
e
p
o
w
e
r
fu
n
ct
io
n
s

S
a
m
p
le
d
d
is
tr
ib
u
ti
o
n

R
e
se
ar
ch

+
o
p
e
ra
ti
o
n
a
l
(N
V
E
)

R
e
it
a
n
a
n
d

P
e
te
rs
e
n
-O
v
e
rl
e
ir
(2
0
0
8
)

B
a
yB

i
B
a
ye
si
a
n
,M

C
M
C
sa
m
p
lin

g
,a
n
d
b
ia
s
co
rr
e
ct
io
n

P
ie
ce
w
is
e
p
o
w
e
r
fu
n
ct
io
n
s

S
a
m
p
le
d
d
is
tr
ib
u
ti
o
n

R
e
se
ar
ch

S
ik
o
rs
ka

e
t
a
l.
(2
0
1
3
)

V
P
M

M
C
M
C
sa
m
p
lin

g
,l
ik
e
lih

o
o
d
fu
n
ct
io
n
th
a
t
a
cc
o
u
n
ts
fo
r

ra
n
d
o
m

m
e
a
su
re
m
e
n
t
e
rr
o
rs
,
a
n
d
e
p
is
te
m
ic
e
rr
o
rs

P
ie
ce
w
is
e
p
o
w
e
r
fu
n
ct
io
n
s

S
a
m
p
le
d
d
is
tr
ib
u
ti
o
n

R
e
se
ar
ch

M
cM

ill
a
n
a
n
d

W
e
st
e
rb
e
rg

(2
0
1
5
)

N
o
te
.
S
C
H
A
P
I=

F
ra
n
ce
’s
n
a
ti
o
n
a
l
h
yd

ro
lo
g
ic
se
rv
ic
e
;
C
N
R
=
C
o
m
p
a
g
n
ie

n
a
ti
o
n
a
le

d
u
R
h
o
n
e
,
F
re
n
ch

h
yd

ro
p
o
w
e
r
co
m
p
a
n
y;
E
D
F
=
E
le
ct
ri
ci
té

d
e
F
ra
n
ce
;
N
V
E
=
N
o
rw

e
g
ia
n
W
a
te
r
R
e
so
u
rc
e
s
a
n
d

E
n
e
rg
y
D
ir
e
ct
o
ra
te
;L
O
W
E
S
S
=
lo
ca
lly

w
e
ig
h
te
d
re
g
re
ss
io
n
;I
S
O
=
In
te
rn
at
io
n
a
lO

rg
a
n
iz
a
ti
o
n
fo
r
S
ta
n
d
a
rd
iz
a
ti
o
n
;W

M
O
=
W
o
rl
d
M
e
te
o
ro
lo
g
ic
a
lO

rg
a
n
iz
a
ti
o
n
;M

C
M
C
=
M
a
rk
o
v
C
h
ai
n
M
o
n
te

C
a
rl
o
.

10.1029/2018WR022708Water Resources Research

KIANG ET AL. 7152



the rating curve to the highest flows. It is the smallest of the three rivers (mean dis-

charge 1.1 m3/s) and has a fast rainfall–runoff response with few peak flows that typi-

cally last a few hours, which makes it challenging to gauge the whole flow range. It is

a low-land stream with a mild-slope channel that meanders between narrow,

wooded floodplains (about 20 m wide in total). Out of bank flows occurs at approxi-

mately 4–4.3 m on the right flood bank.

The station is equipped with a 90°, 600 mm-high V-notch weir nested within a wider

triangular weir with a wing slope of 1:10. The official rating curve follows a three-

segment model. Four successive ratings were defined due to weir break and repair

(April–May 1995) and top end change due to excavator work in the channel (since

7 May 2010), however, these minor perturbations were ignored in this study and a

single rating period was considered. Seventy-eight gaugings have been produced

from 1985 to 2013 over a wide range of stages, but the highest flows require signifi-

cant extrapolation from the highest gauging of 2.7 m to the highest recorded stage

of 4.2 m. One outlying gauging was discarded after indication of adverse measuring

conditions by the station manager. The gauging authority also classifies two of the

high flow gaugings as poor quality because of large (12–22 cm) stage changes dur-

ing gauging, which potentially reflects stage–discharge hysteresis. These two high-

flow gaugings were included in the discharge uncertainty estimates as an interesting

case of epistemic uncertainty. For each gauging, the expected gauging uncertainty

(±5% or ± 7%) was provided based on the measurement method (acoustic

Doppler current profiler or current meter, respectively).

2.2.3. The Taf River at Clog-y-Fran, Wales, United Kingdom

The Taf River at Clog-y-Fran gauging station was chosen as a challenging case for

rating-curve uncertainty estimation as it has a gauged out-of-bank section (it over-

flows on the right flood bank at approximately 3.2–3.4 m) and multiple changes in

the rating curve at low flows due to deposition of silt. The river has a mean annual

discharge of 7.6 m3/s. It is a predominantly lowland natural catchment and is under-

lain by low permeability bedrock resulting in a fast rainfall-runoff response. River

flows from this site are used in the calibration of regional flood forecasting models

and as an indicator for the onset of potential drought conditions in the UK, thus mak-

ing it an important site for which to consider flow data quality and uncertainty. At the

gauging station, there is a natural alluvial bed and discharge is measured using the

velocity-area method with a cableway to allow high flow gauging. The official rating

curve is a multisegment rating curve that has changed 13 times over 51 years of

operation. In this study, we chose to focus on the period from 1990 to 2012 as the

stage and discharge time series included a great deal of missing data before this

point. This time period included six changes to the official rating curve and a total

of 442 gaugings. There was no information available on the method and instrument

used to take the gaugings or the likely gauging uncertainty. Consequently, each

group specified their own gauging uncertainties for this site as described below.

2.3. Discharge Uncertainty Components and Intervals

Rating curve uncertainty arises from numerous sources (as described in section 1),

and one of the challenges in this study was that each model treats the

uncertainty components differently, making it difficult to directly compare discharge

uncertainty results and attribute reasons for differences across methods.

Consequently, for the purposes of this study, we divide the uncertainty sources into

three components:

1. Parametric uncertainty: uncertainty arising from model parameter identification

(usually, the parameters of the power law function). Estimated parameters are

uncertain because of limited calibration sample size and errors affecting calibra-

tion data.T
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2. Structural uncertainty: uncertainty arising because the model is imperfect and does not include all ele-

ments required to model the channel hydraulics and the potentially time variable stage-discharge

relationship.

3. Measurement uncertainty: uncertainty arising from imperfect measurements of stage and discharge when

these measurements are used to evaluate the rating curve.

The discharge predicted with the rating curve model aims at estimating the unknown true discharge—as

opposed to the discharge that can be measured only imperfectly. The preferred uncertainty intervals would

therefore include parametric and structural uncertainty but not the measurement uncertainty. While we

attempted to utilize outputs from each method to do so, not every method is able to provide outputs that

include just these two components of uncertainty. There are two key differences among uncertainty intervals

shown for each method that relate to (1) which uncertainty components are included in the estimation and

(2) the assumptions about their interactions. Table 4 shows the components included by each method in the

uncertainty intervals used in this paper.

As described further below, the formal Bayesian methods (Bayesian Bias correction [BayBi], Bayesian

Rating curve [BaRatin], and Norwegian Water Resources and Energy Directorate [NVE]) use an explicit

error model to separate the different uncertainty components and can thereby produce uncertainty inter-

vals with any components. In producing prediction bounds for true discharge, measurement uncertainty

is removed (i.e., the bounds consist only of parametric and structural uncertainty). The Bristol and VPM

methods are based on the assumption that the three different components cannot be separated and

include all three components jointly in the estimation and the uncertainty bounds. For the ISO

Figure 1. Stage-discharge relationships for the full flow range (left column) and for low flows (middle column). In the left

column, the gray triangle denotes the maximum measured stage. Gauging station characteristics and photos of the three

gauging stations are shown in the right column.
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method, uncertainty intervals are constructed by using the residual mean square errors. These residual

errors reflect all three components of uncertainty. The GesDyn method includes parametric uncertainty

and measurement uncertainty only.

We compared our methods using the uncertainty intervals computed by each method and present both 95%

and 68% intervals. These percentage intervals were chosen as they correspond to one standard deviation and

two standard deviations of a Gaussian distribution, and 95% is recommended by the Hydrometric

Uncertainty Guidance, ISO/TS 25377:2007. It is important to note that discharge errors are typically highly

autocorrelated and vary systematically with stage (i.e., not randomly within the uncertainty intervals).

2.4. Uncertainty Estimation Methods

This section summarizes the seven uncertainty estimation methods. Longer descriptions of each method

from the contributing research groups are provided in Appendix A. Here we explain the main principles, simi-

larities, and differences of the methods focusing on their basic principles, the data needed to run the meth-

ods, which key sources of uncertainty are included, and how discharge uncertainty results are provided.

Table 2 introduces the name, uncertainty estimation principles, rating equation type, result format, and

expected end users for each method and key reference. Table 3 summarizes the key similarities and differ-

ences between the methods.

2.4.1. Basic Principles, Similarities, and Salient Differences

All seven methods are fundamentally based on the regression of piecewise (segmented) power functions

(except Bristol, see Table 2) using stage-discharge gauging data and accounting for data uncertainties

(except ISO). The methods used in this paper can be very broadly classified into four categories.

Two of the methods, ISO and Bristol, could be considered to be based on a least squares regression frame-

work. They mainly differ from each other in their stage-discharge models, where the Bristol method’s local

nonparametric regression method is more flexible than the ISO method. Being driven by stage-discharge

gaugings, these methods can not only be applied within the gauged range but also require only minimal

information to provide discharge uncertainty estimates.

Three methods, BaRatin, BayBi, and NVE, use a formal Bayesian framework and accept prior information from

the user to inform the model development. These three formal Bayesian methods are very similar in their

basic principles but differ in their implementation. Most importantly, BaRatin requires more user information

to constrain the rating curve model and parameters than BayBi, and BayBi more than NVE. In terms of mod-

eling philosophy, NVE uses an objective segmentation and estimation of the rating curve, whereas BaRatin

builds on the subjective expertise of the field hydrologist, expressed in formal terms. As a consequence,

extrapolation above the highest gauging (or below the lowest gauging) is expected to be less uncertain with

BaRatin, provided that the assumed structure of the controls is correct. Another technical difference is the

way structural errors are accounted for (see Appendix A). In BayBi, the standard deviation of the structural

error is assumed to be constant with a rather small prior value (1% of the average recorded discharge).

BaRatin offers several structural error models, the default being a linear model in which the standard devia-

tion of the structural error is the sum of a constant term and of a term that is proportional to discharge. There

is no structural error term in NVE, instead the structural error may be captured through the sampling of rating

curve models with different numbers of segments.

Table 4

Components of Uncertainty Included in Uncertainty Intervals for Each Method

Methods Uncertainty components included in uncertainty intervals in this paper

ISO/WMO Parametric, structural, and measurement

Bristol Parametric, structural, and measurement(all components taken into account jointly)

BaRatin Parametric and structural

BayBi Parametric and structural

NVE Parametric, structural, and measurement

VPM Parametric, structural, and measurement(all components taken into account jointly)

GesDyn Parametric and measurement

Note. ISO = International Organization for Standardization; WMO = World Meteorological Organization; VPM = Voting
Point Method; NVE = Norwegian Water Resources and Energy Directorate.
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VPM and GesDyn are in their own categories because they do not assume that the underlying stage-

discharge relationship is constant over time, whereas other methods rely on the existence of stable periods

where gaugings can be grouped and assumed to derive from a constant stage-discharge relationship. VPM

considers unknown temporal variability in the stage-discharge relationship as a key source of uncertainty

and incorporates this in the estimated uncertainty intervals, whereas GesDyn tracks temporal variability by

deriving a new rating curve for each gauging and increasing its uncertainty with time up to the next gauging.

2.4.2. Data Requirements

All the methods rely on stage-discharge gaugings to produce discharge uncertainty bounds. Some of the

methods (e.g., ISO and Bristol) specify minimal numbers of gaugings (20 per segment and 20 per gauge,

respectively) to ensure robust discharge uncertainty bounds. The formal Bayesian methods BaRatin, BayBi,

and NVE also utilize knowledge on the hydraulic controls to set informative priors on the parameters of

the stage-discharge relationship (although they can be run with standard priors if no hydraulic information

is available). Informative priors based on hydraulic knowledge can also be used with the VPM method

(Ocio et al., 2017). Operational rating curves are used by some of the methods either to identify segments

in the stage-discharge relationship (VPM) or to subset gaugings (Bristol and NVE).

2.4.3. Measurement Uncertainty in Stage and Discharge Gauging Data

Measurement uncertainty in the stage and discharge gauging data are important components of uncertainty

in rating curve estimation. Most of the methods can incorporate information on the magnitude of stage and

discharge gauging uncertainties for parameter estimation, except BayBi and GesDyn that only incorporate

discharge uncertainties and ISO that cannot incorporate either stage or discharge gauging uncertainty.

While the Bristol method can incorporate stage gauging uncertainty, in this study only discharge gauging

uncertainty was included. For this study, methods did not incorporate stage uncertainty when utilizing the

gaugings for parameter estimation, except for VPM for all sites and the BaRatin method for the Mahurangi.

To enable consistent comparative analyses between techniques and because of a lack of reliable data, uncer-

tainties regarding the stage time series readings themselves were not considered by any of the models in the

generation of the discharge time series and their uncertainties.

2.4.4. Uncertainty in the Rating Curve

When the rating curve consists of multiple segments, the breakpoints between the segments relate concep-

tually to substantial changes in the governing control at different flow depths. Such changes are typically

caused by hydraulic changes (going from one section control to another section control or to channel con-

trol), geometrical alterations (one control changing shape), or significant variations in flow resistance.

Most of the methods for rating curve uncertainty estimation used in this paper represent rating curve equa-

tions as piecewise power functions and include uncertainty in the breakpoint parameters. Typically, the user

must estimate the number of rating curve segments and the values of the rating curve and breakpoint para-

meters either using official rating curves or expert knowledge. All three formal Bayesian methods and VPM

allow the user to estimate the power function parameter priors based on hydraulic principles and information

on the stream gauge location. BayBi, BaRatin, and VPM expect the user to define the number of segments,

whereas NVE infers the number of segments (up to a given maximum) like other parameters of the rating

curve model. All three formal Bayesian methods and VPM can be run with default, noninformative parameter

priors. However, BayBi typically expects prior information on segment limits (breakpoints and zero-flow

stage), while BaRatin provides practical guidance to the user to compute parameter priors from common

knowledge of the field sites.

The Bristol method is different in that it uses numerous piecewise linear segments that are not related to

cross-section shape. Local regression methods do not have a physical basis for their rating curve model

and are therefore not able to extrapolate outside the gauged stage range. For themethods using power func-

tions, the rating curve can be extrapolated above/below the highest/lowest gauging. This assumes that there

is no substantial change in channel control within the extrapolated stages, such as due to overbank flow.

Uncertainty is typically higher in the extrapolated part(s) and for segments with few or no gaugings; in this

case, the parameter priors play an important role in constraining the estimated uncertainty.

Gauging uncertainties are often provided as upper and lower discharge bounds, which the methods incorpo-

rate as probability intervals for an assumed distribution (e.g., uniform or Gaussian). These distributions are

then incorporated in different ways. Some methods use the gauging error distributions as one of the
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terms in a likelihood function that defines the likelihood of the actual gau-

ging measurements given candidate rating curve parameters (e.g., VPM,

BaRatin, and BayBi). Other methods create synthetic gaugings by sampling

directly from the discharge gauging errors (GesDyn) or from the stage and

discharge gauging errors (Bristol) and then fit a rating curve to the

synthetic gaugings.

All methods apart from the Bristol and ISO methods use Monte Carlo esti-

mation of rating curve samples (Table 4). In this paper, to calculate dis-

charge time series uncertainties the Monte Carlo approaches use rating

curve samples from which multiple feasible discharge time series realiza-

tions are calculated (e.g., Westerberg et al., 2016), whereas the Bristol

method provides prediction intervals derived from a Gaussian mixture

model of the rated discharge for any given stage (although time series

samples can be derived using an appropriate error model, for example,

Lloyd et al., 2016). Such sets of time series samples can then be used to

propagate discharge uncertainty to assess impact on any subsequent ana-

lysis by performing that analysis repeatedly for each time series sample

(e.g., calculation of total annual discharge as in Juston et al., 2014).

2.4.5. Time Variable Rating Curves

As discussed in section 1, rating curves commonly vary due to changes in

the river cross section and hydraulic conditions caused by, for example,

sediment movement, vegetation, hysteresis, or ice. Consequently, a key

characteristic of the methods is how they handle rating curve variation

over time.

The most common approach, suitable for all the methods here, is to apply the uncertainty estimation sepa-

rately to subsets of gauging data often corresponding to time periods defined by changes in official rating

curves. The GesDyn method automatically batches the data into suitable subsets and the Bristol method

pools gaugings together based on similarity of official rating curves. Apart from VPM and GesDyn, the rating

curve is then assumed to be stationary within each subset (usually a contiguous time period). Residual time

variation within each subset is handled differently between methods. VPM was specifically designed to cap-

ture uncertainty related to such temporal variability of the stage-discharge relation, via the design of its like-

lihood function. BayBi and BaRatin separate the residual error model into its component uncertainties, with a

remnant error component that encompasses the effect of ignored time variability. GesDyn is the only

method that explicitly models time variation. It updates the rating curve after each new gauging and uses

variographic analysis to represent changes in uncertainty caused by down weighting of previous rating

curves with time.

While extensions to NVE, BayBi, and BaRatin methods have been developed to provide alternative solutions

for handling the time-varying nature of rating curves, these extensions have not been used for the compar-

isons in this paper.

3. Results

Each of the seven rating curve and uncertainty estimation methods were applied to the three sites described

earlier. Note that the rating curves produced by each method are an estimate of the true stage-discharge

relationship, which is unknown.

3.1. Isère River at Grenoble Campus

The stage-discharge relationship at the Isère River stream gauge is the least complex of our three sites and

can be reasonably modeled as a single segment curve. Figure 2 shows the rating curves produced by each

method and the gaugings used to develop the rating curves. Although GesDyn produces a new rating curve

for each gauging, a single mean rating curve is shown in Figure 2, as well as for Mahurangi and Taf. Similarly,

VPM and Bristol are not intended to produce a single optimal rating curve, but a median curve is shown for

Figure 2. Stage-discharge rating curves for all methods for the Isère

gauging station. ISO = International Organization for Standardization;

VPM = Voting Point Method; NVE = Norwegian Water Resources and Energy

Directorate.
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the purpose of this paper. The rating curves are quite similar for midrange flows, where the bulk of individual

gaugings has been made. The chief differences in the modeled ratings are at the high and low end.

Figure 3 shows the rating curve and uncertainty intervals for each method individually. The estimated uncer-

tainty intervals differ substantially between methods, even for the midrange flows. At a stage of 2 m, near

mean flow conditions where there are many gaugings, the smallest estimated uncertainties as quantified

by 95% uncertainty intervals (Figure 4 and Table 5) are in the 3–4% range (NVE, BayBi, and GesDyn), while

the largest are up to 17% (ISO and VPM). The differences in estimated uncertainty are more pronounced near

the highest and lowest measured flows. Uncertainty intervals for GesDyn show a pronounced difference in

uncertainty between the mean range of flows where there are many gaugings available and the high and

low ends of the rating curve, where fewer gaugings are available.

For ISO, Bristol, and VPM, the uncertainty intervals represent the total uncertainty (parametric, structural, and

measurement) and tend to be wider than for the other methods for this station. The VPM uncertainty inter-

vals, in fact, cover all gaugings apart from one. This likely relates to its assumption of time variability, that is,

that the gaugings may belong to different stage-discharge relations.

The differences in uncertainty betweenmethods aremost clearly seen in Figure 4, which plots the percentage

uncertainty estimated by each method versus river stage. These percentage uncertainties can differ between

methods by more than a factor of 2 throughout the range of flows and are especially pronounced at the

higher and lower ends of the rating curve. Note that the percentage uncertainties are calculated against

the rating curve produced by each method, and that these are different between the methods (Figure 2).

Figure 5 shows the 68% and 95% uncertainty intervals as applied to the hydrograph for 2 days in April 2012.

3.2. Mahurangi River at College

Mahurangi was chosen as our midcomplexity site and requires a rating curve with multiple segments, in com-

parison to the single segment at the Isère. Figure 6 shows the stage-discharge ratings computed by each

method for a period in September 2012. For methods using individual segments, fitting the rating curve

typically required at least three segments, corresponding to the three major changes to the control.

A particular challenge at Mahurangi is to develop the rating curve for high flows, because the highest gau-

ging is 2.6 m (69 m3/s on the official rating), but the highest recorded stage is nearly 4.2 m (nearly 200 m3/s

on the official rating). There is significant scatter in the high-flow gaugings potentially as a result of stage-

discharge hysteresis, leading to added uncertainty in the extrapolation. Although most methods produce

similar rating curves in the middle section, the difficulty at high flows is reflected in larger intermodel

differences. For example, at a stage of 4 m, best estimates of discharge from the models range from approxi-

mately 110 to 190 m3/s.

Figure 7 shows the rating curve and the 68% and 95% uncertainty intervals for each method applied to

the Mahurangi, and these intervals are shown as percentage uncertainty versus stage in Figure 8. The

estimated uncertainties for the Mahurangi tended to be larger than for Isère, with larger differences

between methods in the ungauged range but not the gauged range (apart from BayBi). Note that the

parametric uncertainty is expected to be larger for this site because rating models are more complex

for the Mahurangi. For example, the BaRatin model has 5 segments and hence required 15 parameters

to be estimated for Mahurangi versus 3 parameters for the single segment model used for Isère. A miti-

gating factor is that for methods that could incorporate it, prior information on the low-flow and mid-flow

controls (weirs) was more precise.

The differences in estimated uncertainty among the methods were most pronounced at the extremes and in

the extrapolated section but remained relatively large even for midrange flows. Some of the reasons for differ-

ences in estimated uncertainty can be traced back to the method assumptions. For example, where methods

utilize prior information to define the rating based on hydraulic principles (BaRatin, for example), this informa-

tion can be used to constrain the uncertainty in the extrapolated stage range. While the NVEmethod also uses

hydraulic principles, different assumptions about uncertainty in the extrapolated area (see section 2.4.1)

results in a large increase in uncertainty for stages above the highest gaugings. Incorporation of prior informa-

tion based on hydraulic principles is not possible for methods such as ISO or Bristol. The ISOmethod truncates

the higher end of the rating because insufficient gaugings are available to fit the rating curve.
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Figure 3. Rating curves and uncertainty intervals for all methods for Isère. The 68% and 95% uncertainty intervals are shown for all models. ISO = International

Organization for Standardization; VPM = Voting Point Method; NVE = Norwegian Water Resources and Energy Directorate.
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The VPMmethod has wider uncertainty bounds for high/low extremes where there is spread in the gaugings,

because this model assumes that the rating may fluctuate throughout the range suggested by the gaugings

(i.e., it accounts for epistemic uncertainty related to the spread in the gaugings, which at this site may be

caused by hysteresis, see section 2.2.2). Other methods assume that only some of the gaugings are relevant

for a specific time, typically because changes in the channel are assumed to have caused a persistent shift in

the rating.

3.3. Taf River at Clog-y-Fran

The Taf River stream gauge was selected because it has an unstable channel and a gauged out-of-bank sec-

tion, presenting other challenges for modeling the stage-discharge rating curve and its uncertainty.

Figure 1 shows the different gaugings used for different official rating curves over time. BaRatin, Bristol, ISO,

VPM, and BayBi all utilize subperiods based on the subdivisions used in the official rating curves to develop

ratings and uncertainty bounds. Had the subdivisions used by the official rating not been available, each

modeler may have chosen different subperiods to divide their analyses. Whereas the official rating had six

subperiods, GesDyn identified four homogeneous periods using the Hubert et al. (1989) segmentation pro-

cedure. The results for GesDyn shown in this paper are based on the mean rating curve computed from

the set of gaugings in the fourth period (April 2008 to June 2012), with a few additional high flow gaugings

retained from the earlier periods.

Figure 4. The 95% (top panel) and 68% (bottom panel) uncertainty intervals for the Isère River stream gauge, as computed

by each model. The shaded gray areas are river stages for which gaugings are unavailable; for the period of record used, no

stages were observed in the darker gray area. Note that the relative uncertainties are calculated against the estimated

rating curve for each method, and that these are different. ISO = International Organization for Standardization;

VPM = Voting Point Method; NVE = Norwegian Water Resources and Energy Directorate.

10.1029/2018WR022708Water Resources Research

KIANG ET AL. 7160



Figure 9 shows the resulting rating curves for the Taf. For all methods except GesDyn (see above), the rating

curve shown is for the period with gaugings from 29 August 2003 to 20 June 2012. The gaugings utilized by

the methods are shown as black circles in Figure 9; the remaining gaugings from earlier periods are shown as

gray circles. Divergences between the rating curves are mainly seen at the extrapolated low end of the curve

and at high flows. The GesDyn rating stands out from the other curves, but it is fit to a reduced set of points.

In Figure 10, the individual ratings are plotted with their 95% and 68% uncertainty intervals. Figure 11 shows

the uncertainty as a percentage of the rated flow estimated by each method. At this site, the percentage

uncertainties are particularly high for lower flows. At the high end of the rating, there is a distinct break in

the slope of the measured gaugings where the river goes out of bank. NVE and BaRatin show a smaller

change in the rating curve and uncertainty shape in the over-bank section compared to VPM, BayBi,

Bristol, and GesDyn. The ISO method is truncated early, because of insufficient data in the highest segment.

At this site, gauging measurement uncertainties were not provided with the data set, so each group was

required to set their own uncertainties and these choices varied. For example, on the simple end of the spec-

trum, the uncertainty for all gaugings was set to ±5% (GesDyn). For BayBi, a gauging distribution with a zero

mean and a standard deviation equal to 1% of the mean observed discharge over the analyzed period was

assumed for a discharge gauging error, but the posterior distribution was estimated from the data used in

the analysis for each rating curve period independently. For VPM and Bristol, a logistic discharge gauging

error that was previously estimated for the UK was used for this site (McMillan & Westerberg, 2015); it is more

heavy tailed than a Gaussian distribution and varies with flow range (95% bounds on relative errors of ±13%

for high flow to ±25% for low flow).

4. Discussion

Seven rating curve uncertainty-estimation methods were compared and applied to three stream gauges with

increasing complexity in the stage-discharge relationship: a single segment rating (the Isère at Grenoble

Table 5

Summary of Estimated Rating Curves and Estimated Uncertainty for All Methods

Stage (m)

Range in discharge

from rating curves

of all methods

(min, max; m
3
/s)

CV of rated

discharge

Across all methods,

the minimum and

maximum estimated

uncertainty intervals

(min, max;
a
m
3
/s)

Range in full width 95%

uncertainty intervals,

as computed for each

method
a
(min, max)

ISERE

Minimum stage

(of gaugings)

0.79 (51.3, 55.0) 2.6% (42.1, 66.2) (11%, 22%)

Median stage

(of time series)

1.75 (147, 150) 0.8% (133, 168) (2.8%, 17%)

Maximum stage

(of gaugings)

6.26 (854, 940) 3.7% (744, 1120) (7.0%, 25%)

MAHURANGI

Minimum stage

(of gaugings)

0.23 (0.029, 0.035) 6.8% (0.0, 0.57) (26%, 2000%)

Median stage

(of time series)

0.65 (0.47, 0.56) 5.5% (0.02, 1.59) (18%, 312%)

Maximum stage (of gaugings) 2.6 (57.4, 67.1)
b

5.7%
b

(42.4, 75.9)
b

(27%, 52%)
b

Stage in extrapolated range 4.08 (126, 195)
c

16%
c

(49, 412)
c

(41%, 202%)
c

TAF

Minimum stage (of gaugings) 0.88 (0.74, 0.88)
d

7.5%
d

(0.37, 1.76)
d

(28% 101%)
d

Median stage (of time series) 1.15 (4.2, 4.7) 3.5% (3.4, 6.2) (12.9%, 55%)

Maximum stage (of gaugings) 3.27 (55.7, 69.7)
e

7.8%
e

(47.6, 79.4)
e

(18%, 34%)
e

Note. ISO = International Organization for Standardization.
a
Note that the uncertainties estimated by each method are relative to the rating curve estimated by that method.

b
ISO results were unavailable for the stage of

2.6 m and are not included in these results.
c
Extrapolated rating curves were not available near the maximum observed stage for the ISO or Bristol methods, and

these methods are not included for these entries. A stage of 4.08 m was chosen because it was the highest stage consistently reported by all other methods.
d
GesDyn results were not available for a stage of 0.88 m.

e
ISO results were not available for a stage of 3.27 m.
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Campus, France), a multiple segment rating with a substantial extrapolated range (Mahurangi at College,

New Zealand), and a time-varying multiple segment rating with a distinct out-of-bank section (Taf at Clog-

y-Fran, United Kingdom).

As summarized in Table 5, the comparisons at the three sites showed different uncertainty intervals for the

different methods, even when the estimated rating curves were similar. Because not all methods produce

symmetrical uncertainty intervals, the total width of the uncertainty interval was used as the summary statis-

tic (note that these are calculated against the discharge from the optimal curve for each method and that

these are different). At the Isère, estimated rating curves were fairly similar, as seen in Figure 2. The

Figure 5. Uncertainty intervals for a 2-day period at the Isère gauging station. This period’s discharge is within a range

with many available gaugings. The 68% and 95% uncertainty intervals are shown for all methods. ISO = International

Organization for Standardization; VPM = Voting point Method; NVE = Norwegian Water Resources and Energy

Directorate.
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coefficient of variation of rated discharge between the methods was

between 0.8% and 3.7% for the selected river stages in Table 5. The range

of the 95% uncertainty intervals estimated by themethods was often nota-

bly higher. For example, the 95% uncertainty interval widths ranged from

7% to 25% at the maximum stage. The 95% uncertainty intervals for all

flow levels were notably larger for the Mahurangi and Taf sites, where

additional complexities of segmented rating curves and a mobile channel

bed and out-of-bank section made estimation more challenging. This is

particularly evident for very low flows.

Discharge uncertainty results from the different methods diverged most

strongly for extrapolated sections of the rating curve, that is, stages

below or above the set of gaugings. These sections are shown in shaded

gray in Figures 4, 8, and 11, representing stages that have been recorded

(and hence the rating curve has been used within these bounds), but

were not gauged. Extrapolation was most apparent at Mahurangi, where

the maximum gauged stage is 2.7 m while the maximum recorded stage

is 4.2 m. Though less pronounced, extrapolation was also seen for low

stages at Isère and high stages at Taf. Differences in the estimated rating

curve from each method diverge most strongly for the out of bank con-

ditions at Taf.

4.1. How Do Method Assumptions Influence Width of

Uncertainty Intervals?

As part of this experiment, we paid careful attention to the assumptions used by each uncertainty method.

Some assumptions that we expected to be influential were not so; for example, methods that included more

components of the uncertainty did not consistently produce wider uncertainty intervals (Table 4). Neither

was there a large degree of consistency in which method tended to produce the largest or smallest uncer-

tainty intervals. For example, while VPM and BayBi tended to have wide uncertainty intervals, this was not

true for all sites or all ranges of flows.

4.1.1. Time Variation in Rating Curves

One of the most important differences between methods is the handling of time-varying rating curves.

Whereas the three Bayesian methods (BaRatin, BayBi, and NVE) assume that the underlying stage-discharge

relationship is constant through time, VPM and GesDyn assume that all the gaugings do not come from the

same underlying stage-discharge relationship. VPM incorporates the uncertainty related to time variability

into the uncertainty estimate, leading to uncertainty intervals that were among the largest of the methods

we tested. In contrast, GesDyn explicitly models the temporal variability and removes gauging points belong-

ing to other time windows from the estimation. This subsampling of gaugings leads to GesDyn uncertainty

intervals being among the smallest in the middle stage range (as fewer gauging points occur) but the largest

in the tails where fewer gauging points lead to a greater proportion of the stage range being treated as extra-

polation. However, GesDyn users can decide to add high flow gaugings from other time windows, as was the

case for the Taf site here.

4.1.2. Expert Knowledge on Hydraulic Controls

In the extrapolated section of the rating curve, the amount of expert knowledge on hydraulic controls used

within the method has a strong influence on the width of the uncertainty intervals. Within the gauged range

of stages (nonshaded areas), uncertainty estimates tended to be more consistent between the methods. For

example, for Mahurangi, only BayBi was very dissimilar to the other methods within this region. This is

because despite differences in assumptions, results in this region are strongly constrained by the gauged

data. However, outside the gauged range of stages (shaded area), uncertainty estimates are markedly differ-

ent between the methods. In the absence of gauging data in this region, the width of the uncertainty bounds

are controlled by differences in the underlying principles of the methods and the choice of parameter priors

and in particular the extent to which prior or inferred hydraulic information is used to constrain the uncer-

tainty. Even within the gauged range of stages, the prior affected BayBi results. A uniform prior was used

for results shown in this paper.

Figure 6. Mahurangi ratings curve for each method. ISO = International

Organization for Standardization; VPM = Voting point Method;

NVE = Norwegian Water Resources and Energy Directorate.
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Figure 7. Mahurangi rating curve and uncertainty intervals for each method. ISO = International Organization for

Standardization; VPM = Voting point Method; NVE = Norwegian Water Resources and Energy Directorate.
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The Bristol and ISO method produces no rating curve for the extrapolated region because they are solely

gauging-data based. The other methods capitalize on known hydraulic characteristics of the channel, allow-

ing extrapolation beyond the observed gaugings. A clear example occurs for Taf, where the VPM uncertainty

bounds increase rapidly in the extrapolated region. This occurs because VPM assumes a change in channel

hydraulic control at the start of overbank flow (i.e., the top part is modeled as a separate section, following

the official rating curve) and because there are few gaugings in this out-of-bank section. The uncertainty in

the extrapolated part of this out-of-bank section therefore becomes dependent on the parameter priors.

Because no hydraulic analysis was used to support the setting of the VPM parameter priors for this station, lit-

tle can be assumed about the stage-discharge relationship in the extrapolated part, leading to rapidly increas-

ing uncertainty bounds. The NVE had an even larger increase in uncertainty in the over-bank section than VPM

(Figure 10). GesDyn shows a similar increase of uncertainty in the over-bank section but with lower uncer-

tainty magnitude. For BaRatin, the hydraulic controls are user specified and therefore supply more informa-

tion and lower uncertainty even in this ungauged region. However, a degree of caution here is needed for

most stream gauging stations. The Taf has an over-bank gaugings, which is relatively rare, and the gaugings

therefore show a resultant sharp change in the stage-discharge behavior. However, where no such data exists

to define out-of-bank extrapolated relationships, such rating curve estimates may have significant biases at

Figure 8. The 95% (top panel) and 68% (bottom panel) uncertainty intervals for the Mahurangi River stream gauge, as

computed by each method. The shaded gray areas are river stages for which gaugings are unavailable; for the period of

record used, no stages were observed in the darker gray area. For the Mahurangi, the highest observed stage during

the period 1982 to 2015 was 4.2 m, while the highest stage during a gauging was 2.6 m, resulting in a large range where

the rating model required extrapolation. Note that the relative uncertainties are calculated against the estimated rating

curve for each method, and that these are different. ISO = International Organization for Standardization; VPM = Voting

point Method; NVE = Norwegian Water Resources and Energy Directorate.
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high flows. As shown in the results, this change in behavior even while

observed resulted in the largest difference between methods for the final

set of rating curves (see Figure 9).

In general, larger differences betweenmethods should be expected where

extrapolation is greater and there are fewer data in the higher stage range.

The user should be aware of such differences and decide for themselves

whether reliable and sufficiently precise parameter priors can be set with-

out a hydraulic analysis or whether such an analysis is necessary. Very wide

uncertainty bounds in extrapolated areas are implicitly showing that very

little information is available, and flow estimates are uncertain. On the

other hand, hydraulic analyses to support extrapolation require more

information about the river cross section and more time and effort.

Hydrometric stations often require a rating curve across the full range of

recorded stages, and rating curves will continue to be used outside the

gauged stage range. It is therefore important that the uncertainty of com-

puted flow in the extrapolated range and the extrapolating assumptions

are made explicit so they can be defended and reviewed.

4.2. Limitations in Comparing Uncertainties

The design of our study led to some limitations in the treatment of uncer-

tainties for the three gauging stations. We provided a standard set of infor-

mation about each station and asked research teams not to investigate

further information sources. This decision helped us to ensure that the

results were comparable between teams, but did preclude site visits, con-

tact with gauging station staff, or other methods that could be used to eli-

cit more information about potential error sources. Our standardization

also meant that the capabilities of some of the uncertainty methods were

not fully exploited. For example, we did not include propagation of uncertainties in the continuously mea-

sured stage series. Nevertheless, it is still difficult to compare uncertainty estimates across methods, as each

method’s uncertainty applies to the rating curve generated by that method.

In our study the rating equations and priors used by the different methods were different, which makes it

hard to isolate differences that are due to other methodological aspects. Ocio et al. (2017) compared

BaRatin and VPM using the same prior width for both methods (standard and hydraulic model-based priors).

They found similar uncertainty ranges at one station and wider uncertainty for VPM than BaRatin at another

station for the standard, but not the hydraulic model priors. This indicates that differences between methods

will partly depend on data set characteristics. As mentioned earlier, substantial differences between BayBi

results for the Mahurangi site were seen for different priors.

Some limitations are common across all the methods, such as the treatment of gauging errors as mutually

independent between gaugings, whereas there may in practice be systematic components to these errors.

Future development of the uncertainty assessment methods may enable such complexities to be included.

However, inclusion of ever more detailed error descriptions implies increased information requirements,

which may not be suitable for application across large numbers of sites or remote sites. While we chose three

gauging sites with different characteristics of the rating curve uncertainty, future comparison experiments

including larger numbers of sites would help to further tease out differences in uncertainty estimates.

4.3. Recommendations for Rating Curve Uncertainty Estimation

The findings from this study have a number of important implications for researchers and operational users

who estimate discharge uncertainties for environmental data and modeling analyses, water resources plan-

ning, and environmental management. Operational users such as hydrometric agencies (who may provide

discharge and associated uncertainty data to multiple clients) and commercial users such as hydropower

industry or irrigation authorities are typically interested in ensuring that decisions relying on discharge data

are robust in the light of potential uncertainty. Research users not only study the impact of discharge

Figure 9. Rating curves for each model for the Taf River. Measurements

shown in black are those made between 29 August 2003 and 20 June

2012. Earlier measurements, dating from October 1989, are shown in light

blue. Note that the results from GesDyn use only gaugings from April 2008

to June 2012 and a few additional high flow gaugings, as shown in

Figure 10. ISO = International Organization for Standardization;

VPM = Voting Point Method; NVE = Norwegian Water Resources and

Energy Directorate.
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Figure 10. Rating curves and uncertainty intervals for Taf. Only the measurements shown in black were used in fitting the rating curves and estimating rating curve

uncertainty. Earlier measurements, not used to fit the rating for this time period, are shown in light blue. Note that the set of measurements used for GesDyn is

different than the set used for all other methods. ISO = International Organization for Standardization; VPM = Voting Point Method; NVE = Norwegian Water

Resources and Energy Directorate.
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uncertainty on hydrologic inference and model building but will also want to ensure that their modeling and

data results are robust and are not unreasonably affected by discharge uncertainties.

In light of these needs, it is evident that wherever possible discharge uncertainty estimates should be

derived and assessed. From the experimental design in this study, we suggest that the minimum rating

curve station characteristics and data needed for discharge uncertainty estimation include (1) information

on channel and controls (stable section, natural weir, etc.) and (2) gaugings with dates. Additional

information such as official rating curves, photos of the gauging station, the methods used for individual

gaugings, and associated uncertainty of gaugings were also useful in constraining the discharge uncer-

tainty estimates. We suggest that when streamflow data are reported by researchers, monitoring stations,

or environmental regulators, all of this additional information be included to enable improved estimation

of discharge uncertainty.

Once this data are available, the end user must choose which method to use to estimate discharge uncertain-

ties. The main deciding criteria are the need for online software, time variability in the rating, whether the

user needs to specify stage and discharge measurement uncertainties, whether extrapolation of the rating

curve is needed or indeed warranted under different hydraulic controls, and whether rating curve samples

are needed for error propagation to subsequent analyses. Figure 12 provides a flow chart for the user to

determine which methods are most suitable for their application.

Figure 11. The 95% (top panel) and 68% (bottom panel) uncertainty intervals for the Taf at Clog y Fran stream gauge, as

computed by each method. The shaded gray areas are river stages for which gaugings are unavailable; for the period of

record used, no stages were observed in the darker gray area. Note that the relative uncertainties are calculated against

the estimated rating curve for each method, and that these are different. ISO = International Organization for

Standardization; VPM = Voting Point Method; NVE = Norwegian Water Resources and Energy Directorate.
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4.4. Recommendations for Future Research

4.4.1. Ensemble Methods and Software

Currently, the choice of method is driven by user and application requirements. Some of the methods have

additional capabilities in development (e.g., dynamic treatment of time variability in BaRatin, NVE, and BayBi),

so that they will become more widely applicable. Others (Bristol and ISO) are very general and have limited

input data requirements and so can be more easily applied to national gauging networks (e.g., Coxon et al.,

2015). In these circumstances, users will have multiple methods open to them, and therefore an ensemble

approach that combines the strengths of the different methods would be a valuable future development.

An ensemble approach would explicitly include uncertainty due to assumptions made within each method,

incorporating the large differences that we found between uncertainty estimates from different methods.

This would require significant development as the methods would need to be coded in compatible software,

this task in itself would provide additional benefits to users if a single software package allowed easy choice

and implementation of multiple methods. The ensemble approach could use the technique of Bayesian

Model Averaging (e.g., Duan et al., 2007), where methods are differentially weighted at each time step

according to their calculated fit to the data (i.e., a likelihood measure) or a codified appraisal of

their suitability.

4.4.2. Validation of Uncertainty Intervals

Our results demonstrated unexpectedly large differences in the uncertainty intervals estimated by differ-

ent methods. A significant future research direction for our group is to investigate possible methods for

validation of uncertainty intervals. A large collection of validation experiments would provide a basis to

determine which gauging station characteristics indicate suitability of which methods. The design of

validation methods is a challenging task because uncertainty intervals represent a combination of multi-

ple unknown and time-varying uncertainty components. While a split sample analysis could determine

what percentage of new gaugings lay within the derived uncertainty intervals, the question of what

percentage should lie within the intervals is determined by the various assumptions (e.g., separation

of uncertainties in gauging measurements and parametric/structural rating curve errors, and the

Figure 12. Flow chart to guide selection of uncertainty estimation method. Methods shown in brackets have new capabilities in time variation in development or

completed but were not included in this study. ISO = International Organization for Standardization; VPM = Voting Point Method; NVE = NorwegianWater Resources

and Energy Directorate.
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nature and treatment of time variation in the rating curve). These are the same differences in assump-

tions that cause the differences in uncertainty intervals between methods that we would be

trying to test.

Methods could additionally be tested against synthetic data created using multiple different error assump-

tions, to determine the flexibility of each method. Another alternative is to work at locations where an alter-

native reference discharge is available, such as where dam releases are separately measured in the dam

conduits. Dam conduit flows are typically more accurate than gauging data, with uncertainties of 2–3% (Le

Coz et al., 2016). An additional benefit of this approach is that it would allow comparing discharges averaged

over specific time steps (hourly, daily, andmonthly), which are the basic data used in many applications. Such

comparison cannot be performed using gaugings as validation data, because the latter represents sporadic

measurement of instantaneous discharge. However, this type of approach would also require the develop-

ment of new tools to compare two uncertain flow records, both containing a mixture of systematic and non-

systematic errors. Horner et al. (2018) include discussion of this issue.

4.4.3. Downstream Impacts on Model and Data Analysis

While many environmental modeling analyses have incorporated discharge uncertainties for rainfall-runoff

model calibration (Coxon et al., 2014; Krueger et al., 2010; Liu et al., 2009; McMillan et al., 2010; Sikorska &

Renard, 2017), flood forecasting (Ocio et al., 2017), flood frequency analysis (Osorio & Reis, 2016), sensitivity

analyses of a flood inundation model (Savage et al., 2016), design flood estimation (Steinbakk et al., 2016),

hydrological change detection (e.g., Juston et al., 2014; Lang et al., 2010), deriving hydrological signatures

(Westerberg et al., 2016), and calculating nutrient flux estimates (Lloyd et al., 2016), these studies often incor-

porate a single methodology to derive discharge uncertainty estimates. Given the large differences in

discharge uncertainty estimates between methods, an important future step to the work in this study is to

assess the impact these different discharge uncertainty estimates have on hydrological model and

data analyses.

Appendix A: Additional Description of Rating Curve Uncertainty
Estimation Methods

A1. ISO/WMO

The current standardized method for rating curve uncertainty analysis is described in Herschy (1999) and in

ISO and WMO documents (ISO 1100–2:2010; ISO/PWI 18320, 2015; WMO, 2006). This ISO/WMO method

appears to be simple to apply to a set of stations and statistically sound, as it is based on traditional linear

regression analysis. However, we are not aware of examples of its inclusion in operational software, use in

research works, or routine application by hydrological services.

The ISO/WMO method requires a number of assumptions that actually brings important limitations and

drawbacks. A fundamental assumption is stated as “The stage-discharge relationship, being a line of best

fit, should be more accurate than any of the individual gaugings” (ISO/PWI 18320, 2015). This is actually ques-

tionable, and in practice both the structural errors of the rating curve model and the measurement errors of

the gaugings will be mixed up in the residuals. Then, gauging uncertainties will be estimated from their

deviations to the fitted rating curve. Gaugings errors are assumed to be mutually independent, and the cor-

responding uncertainties to be equal, in percentage of the flow. The linear regression analysis is conducted

with discharge and flow depth in the log space, and approximations are required to get uncertainties back to

the natural space. The uncertainty analysis is applied to each segment of the rating, previously fitted as a

power function: Q = a(h � b)c. A minimal number of N = 20 gaugings per segment is necessary, which prac-

tically makes the uncertainty computation impossible for many extrapolated or not densely

gauged segments.

Uncertainty results are expressed as standard errors in oldest documents and as standard uncertainties in the

most recent ISO/PWI 18320 working document, in compliance with recent uncertainty guidance and stan-

dards such as the Guide to the expression of uncertainty in measurement (JCGM, 2008) and the

Hydrometric Uncertainty Guidance (ISO/TS 25377, 2007). The standard deviation of the residuals (or residual

uncertainty) is computed from the differences between the gauged discharges Qi and the discharges

Qc(hi) = a(hi � b)c computed at gauged stages hi with the rating curve equation:
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S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
N

i¼1
lnQi � lnQc hið Þ½ �2

N � p

v

u

u

u

t

with p= the number of rating curve parameters estimated from the N gaugings. We considered that p = 2

for each segment because in manual calibration methods, the offsets b are usually preliminary estimated

by the user and not included as a free parameter in the regression.

The standard uncertainty of the calculated value of lnQc(h) at any stage h of the rating curve segment is

u lnQc hð Þ½ � ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
þ

ln h� bð Þ � μ½ �2

∑
N

i¼1
ln hi � bð Þ � μ½ �2

v

u

u

u

t

with μ ¼ 1=N ∑
N

i¼1
ln hi � bð Þ.

If u[lnQc(h)] is small enough to allow the linear approximation, it can be used to compute the relative

discharge uncertainty:

Qc hð Þe±u lnQc hð Þ½ �
≈Qc hð Þ 1±u lnQc hð Þ½ �½ �

The expanded uncertainty U[lnQc(h)] = k u[lnQc(h)] is computed with a coverage factor k relative to the

desired level of probability. Assuming the underlying probability distribution is Gaussian, we took k= 1.96,

1.645, and 0.9945 for 95%, 90%, and 68% uncertainty intervals. This yields the confidence interval, which

includes parametric uncertainty only.

The standard uncertainty of the predicted value of discharge lnQp(h) at stage h is

u lnQp hð Þ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 u ln h� bð Þ½ �2þ S2þ u lnQc hð Þ½ �2
p

The uncertainty of the flow depth measurement, u[ln(h � b)], is neglected in this work because propagation

of stage uncertainties is not considered in the comparison of methods. The same procedure as for u[lnQc(h)]

can be applied to u[lnQp(h)] to approximate the expanded uncertainty of the predicted discharge. This yields

the prediction interval, which combines the parametric uncertainty and the residual uncertainty. Both struc-

tural and measurement uncertainties are included in the residual uncertainty.

A2. Bristol

The discharge uncertainty estimation method developed at the University of Bristol (Coxon et al., 2015) is a

generalized framework designed to estimate place-specific discharge uncertainties for a wide range of differ-

ent and complex stage-discharge relationships. The framework is able to account for uncertainty in the stage-

discharge gaugings, multisection rating curves, changes in discharge uncertainty over time, and change in

the uncertainty in the stage-discharge relationship across the flow range. The discharge uncertainty esti-

mates aim to represent both aleatory and epistemic sources of discharge uncertainty.

Discharge uncertainties are derived using a nonparametric LOWESS and require stage-discharge gaugings

and the historical rating-curve equations. Subsets of the stage-discharge data contained within a moving

window are used to calculate the mean and variance at every stage point, which then define the LOWESS

fitted rating curve and discharge uncertainty, respectively. Weights (wi) are dependent upon the differences

in stage and are given by the tricube weight function:

wi ¼ 1�
x � xið Þ

max x � xið Þ

�

�

�

�

�

�

�

�

3
 !3

where x is the central stage-discharge measurement point and xi is the other stage-discharge measurements

in the set of data points defined by the span. As the method is data based, the rating curve and its uncertainty

interval cannot be computed above the highest gauging and below the lowest gauging. Stage and discharge

gauging uncertainties are incorporated into the framework by randomly sampling from estimated
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measurement error distributions to fit multiple LOWESS curves and then combining the multiple fitted

LOWESS curves and variances in a Gaussian Mixture Model. Time-varying discharge uncertainties are not

modeled explicitly, but an automatic procedure uses differences in historical rating curves to separate the

stage-discharge rating data into subsets for which discharge uncertainty is estimated separately.

The process is easily applicable to any gauging station with at least 20 stage-discharge gaugings and is set up

to be fully automated requiring minimal user input to operate for hundreds of gauging stations.

A3. BaRatin

BaRatin allows the construction of stage-discharge rating curves with uncertainty estimation, combining

prior knowledge on the hydraulic controls and the information content of the uncertain gaugings (Le Coz

et al., 2014). Uncertainties on both the discharge and stage measurements of the gaugings are considered

as Gaussian distributions with mean zero. Typical discharge uncertainties were assumed depending on the

gauging procedure, and stage uncertainties due to varying flow were computed (cf. Le Coz et al., 2012).

The rating curve equation is derived from the combination of power functions relating discharge Q to stage h

for each of the assumed or known Ncontrol controls at the site:

Q hð Þ ¼ ∑

Nsegment

r¼1
1 κr�1 ;κr½ � hð Þ� ∑

Ncontrol

j¼1
M r; jð Þ�aj h� bj

� �cj

� 	

In the above equation,M(r, j) is thematrix of controls, and the notation 1I(h) denotes a function equal to 1 if h is

included in the interval I, and 0 otherwise. The number of segments Nsegment in the rating curve is fixed by the

user while the segment limits (breakpoints) κr are inferred, along with the coefficients aj and the exponents cj

of the controls. The control offsets bj are deducted from the continuity of the stage-discharge rating curve.

The user also defines the prior distributions of the physical parameters κr, aj, and cj of that stage-discharge

equation, priormeaning estimates made without utilizing the gaugings. The priors and the information con-

tents of the gaugings are further combined to simulate a large set of possible parameters and rating curves.

Such Bayesian simulation is based on Markov Chain Monte Carlo (MCMC) sampling of the posterior distribu-

tion of the rating curve parameters inferred from the Bayes theorem. Any physical conflicts between the

results and the assumed priors should be checked and lead to question the rating curve model and the esti-

mated uncertainties of the gaugings.

A statistical postprocessing of this bunch of rating curves, or spaghetti, yields the uncertainty bounds of the

rating curve and of the propagated discharge time series at any level of probability. The total uncertainty

combines the parametric uncertainty, derived from the spaghetti samples, and the remnant uncertainty

accounting for the structural errors of the rating curve model. The remnant uncertainty may be modeled

as a linear function of discharge (recommended option) or as a constant. Wide uniform distributions are used

as reasonably noninformative priors for remnant uncertainty parameters that will be estimated to account for

themismatch between the observations (gaugings) and themodel (rating curve) that cannot be explained by

the uncertainties of the gaugings. In the comparison, uncertainty interval is computed with the total uncer-

tainty and does not include the measurement uncertainty. The maximum a posteriori rating curve is com-

puted using the set of parameters with the highest joint probability.

BaRatin and its graphical environment BaRatinAGE have been released in French and English with a free, indi-

vidual license. While not used for this study, the propagation of rating curve uncertainties and stage series

uncertainties to flow series uncertainties (Horner et al., 2018) is embedded in the latest release.

A4. BayBi

The BayBi method, developed at the University of Zurich following assumptions of Sikorska et al. (2013, 2015),

is designed to estimate rating curves with associated uncertainty. Three different uncertainty sources in rat-

ing curves are considered: parametric, measurement error of discharge (random), and the structural error

(bias) due to the chosen rating curve form. In addition, the measurement uncertainty in stages can also be

incorporated into the method but was not considered in this work.

The BayBi is based on the stage-discharge relationships in the form of power equations, where multiple seg-

ments are allowed but the number of segments must be explicitly defined by the user. A switch between
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different segments is controlled by breaking points that are included into the parameter inference. The infer-

ence relies on the Bayes’ theorem (Gelman et al., 2013), for which the prior and the likelihood have to be

determined. For rating curve parameters, we use a noninformative uniform distribution, while priors on

breakpoints and the stage equal to zero discharge should be defined based on hydraulic data (e.g., cross-

section profiles) or experts’ knowledge. Also, prior information on the rating curve error and the discharge

gauging error needs to be specified, for which either site-specific information can be incorporated or stan-

dard errors based onmeasurement practice can be assumed. As for the rating curve error, an error with a zero

mean and an unknown standard deviation is assumed a priori. This standard deviation was assumed to be

site specific and a priori as equal to 5% of the mean discharge observed over the analyzed time period at

each station.

As a result, the joint posterior distribution on all parameter is derived during the Bayesian inference. By simply

sampling from this posterior, rating curve simulations can be derived and different uncertainty intervals can

be given. Due to the consideration of three different uncertainty components, the parametric, systematic

structural, and random measurement error (total uncertainty) can all be calculated. For predictions based

on the estimated rating curve, the measurement error is not of interest, and thus, the uncertainty intervals

used in this paper do not include this measurement uncertainty.

The estimation of the posterior is performed using a MCMC approach, while uncertainty intervals are approxi-

mated by Monte Carlo sampling from the estimated posterior.

A5. NVE

The NVE method for fitting static rating curves rests on a Bayesian analysis of a multisegment power law

model, see Reitan and Petersen-Øverleir (2009). Unlike other Bayesian methods like BayBi or BaRatin, the

number of segments is also subject to statistical inference (Petersen-Overleir & Reitan, 2005). MCMC samples

are fetched for all segmentation model, as characterized by the number of segments, up to a given upper

limit. A posterior probability for the number of segments is calculated, so that the credibility intervals for

the curve includes both the uncertainty in the curve parameters and the number of segments. The user

can fine tune the prior distribution both for parameters and number of segments, in case hydraulic expertise

exists. If not, a default prior is used.

The measurement model is log(Qi) = as(i) + bs(i) log (hi � h0, s(i)) + σεi log (hi � h0, s(i)) + σεi, where Qi and

hi are the discharge and stage of measurement i, respectively, σ is the standard deviation of the measure-

ment noise on log scale, s(i) is the segment which measurement i belongs to (which is determined by

how the stage relates to yet another parameter set namely the segmentation limits, hs, k where k ∈ {1,

…, numseg}) with numseg as the number of segments and εi is independent standard normal noise.

The parameter as(i) is sacrificed for all except the lowest segment, in order to ensure continuity in the

stage-discharge relationship. Because this is an additive model on the log scale, it is a multiplicative

model on the original scale, which means that discharge gaugings are assumed to be positive and the

larger the discharge the larger the measurement noise. Both credibility intervals for the curve itself and

credibility intervals for curve and measurement noise can be given, though the program has a focus

on curve uncertainty. The possibility of structural errors is not examined, but segmented power laws

can be viewed as a global approximator for a positive stage-discharge relationship starting at a given

stage when the number of segments increase.

The segmentation intensity in the data set (and the uncertainty of that) is taken into account when extrapo-

lating beyond the limits of the data. The intensity distribution gives a probability distribution for new seg-

ments, where the distributions of the curve parameters revert to the prior. These can give quite wide

uncertainties when the stage goes far beyond the limits of the data set. It is however also possible to insert

prior uncertainty bands within the extrapolated area for given stage values, if extra hydraulic

knowledge exists.

A6. VPM

The VPM for discharge uncertainty estimation accounts for both random and epistemic errors in the rating

curve, with epistemic error sources that can include weed growth, gravel scour/deposition, or unconfined

high flows (McMillan & Westerberg, 2015). It allows the rating curve to fit a subset of gaugings only, to
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account for the typical epistemic error consequence that more than one rating curve shape is consistent with

the gauged data.

The VPM is based on MCMC sampling of piecewise power law rating curves, using a likelihood function that

accounts for random measurement errors and epistemic errors. The random error for each gauging point is

represented using a logistic or normal distribution (for discharge), and a uniform distribution (for stage). The

VPM likelihood is based on the number of gaugings intersected by the proposed rating curve (these points

are voting for the curve), weighted by the measurement error distributions and the proportion of the stage

and discharge range that is spanned by the voting points. Multisegment ratings use the product of the like-

lihoods of each section.

The VPM does not explicitly account for time-varying errors, because it is assumed that the user may not

know how, why, or exactly when the rating curve error might change over time. Instead, the method enables

generation of multiple possible rating curve samples that represent the total uncertainty, thus implicitly

accounting for epistemic uncertainty about temporal change. These samples can be used for subsequent dis-

charge analysis that needs total uncertainty estimation, for example, regionalization studies or calculation of

hydrological signatures. The method was primarily designed for estimation of discharge uncertainty and not

for estimation of a best-estimate/optimal rating curve, even if such a curve can be extracted using themedian

or optimum likelihood realization from the MCMC. Because of the formulation of the likelihood, the optimal

likelihood realization curve is not necessarily optimal for the whole flow range. For this comparison study, we

used the median rating curve from the posterior distribution.

To use VPM, the user provides the gauging points and a rating curve in equation form (typically, the offi-

cial rating curve, where available) that are used to set the initial parameter values and the number of rat-

ing curve sections in the MCMC algorithm. Prior behavioral ranges for the power law parameters are

given a default value but should be checked and modified if necessary by the user. The prior bounds

can be set based on hydraulic model analyses for high flows (Ocio et al., 2017), where such information

is available.

A7. GesDyn

GesDyn uses, as many other methods, the fit of piecewise power functions to historical gaugings (Morlot

et al., 2014). It is a dynamic method, with a rating curve and its uncertainty model adjusted for each gauging.

The GesDyn’s uncertainty model takes into account three components: the stage measurement uncertainty

(which is not considered in the present study), the fitting uncertainty (taking into account gauging uncer-

tainty), and the uncertainty due to temporal variability, based on a temporal variographic analysis (Jalbert

et al., 2011) so as it increases along the time. The GesDyn method is currently used as official fitting method

at Electricité de France (EDF) for operational management of 260 gauging stations.

The first step is the automatic identification of chronological homogeneous gauging samples so that each

sample describes a homogenous mean state of the hydraulic control. A mean rating curve is then fitted, with

piecewise power functions (using the least squares method), on each homogeneous sample. This step is also

used to define and adjust some hydraulic parameters (cease to flow stage range, breakpoint stage, extrapo-

lation assumptions). Thus, mean hydraulic controls are defined, but thin variations of hydraulic control (river

bed vertical oscillations, for instance) are not described yet.

This is the reason why GesDyn method builds a rating curve for each gauging, as the adaptation of the mean

rating curve described before, so as to take into account the thin variations in hydraulic control. A gauging

subsample is therefore selected for each gauging, assumed that it described a precise state of hydraulic con-

trol. Selected gaugings are called hydraulic analogs. Each subsample is then used to fit a piecewise power

function rating curve. Curves obtained are called dynamic rating curves to illustrate the dynamic adjustment

of the first mean rating curve.

The fitting uncertainty is then computed with a MC simulation. For each set of hydraulic analogs, N subsets

are randomly generated by performing N MC simulations based on the uncertainty gauging model. Then, N

rating curves are fitted on the N subsets. The N curves quantiles directly give the fitting uncertainty.

To finish, a temporal variographic analysis is performed with the N dynamic rating curves to model the time

variation in rating curves. It provides the idea of aging of stage-discharge relationship for each water level
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and allows uncertainty to increase as a function of time. As explained, the variographic analysis is performed

for each water level of a considered hydrometric station as it is expected that temporal variations may be dif-

ferent for low flows, mean flows, and flood flows (see Morlot et al., 2014 for more details).
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