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A theory ~MPL! to compute the NMR chemical shifts in condensed matter systems using periodic
boundary conditions was presented by F. Mauri, B. Pfrommer, and S. G. Louie@Phys. Rev. Lett.77,
5300~1996!#. The MPL method has been implemented so far within a pseudopotential formulation
in which the wave functions are expanded in plane waves. In this paper, we compare analytically the
MPL approach within the density functional theory to existing methods for the calculation of the
chemical shifts such as GIAO~gauge-including atomic orbitals!, CSGT ~continuous set of gauge
transformations!, and IGAIM ~individual gauges for atoms in molecules!. To this end we apply the
MPL approach to molecules since the latter methods are conceived only for finite systems. We show
theoretically the equivalence between a variant of the CSGT and the MPL method applied to finite
systems. Moreover, we analyze numerically the efficiency of the different methods when atomic
orbital basis sets are employed, by comparing the basis-set convergence properties. We find that the
CSGT and IGAIM approaches have the same convergence properties as GIAO, whereas their
computational time is significantly smaller. In the MPL method, the contribution of the valence
electrons to the chemical shift converges rapidly with respect to the size of the basis set, whereas the
convergence properties of the core contribution are poor. We improve the convergence by
separating the core and the valence contributions in a gauge-invariant manner, by applying the MPL
method only to the valence contribution, and by treating the core contribution with IGAIM. The
performances of the resulting approach compare favorably with those of the other methods. Finally
we find that the core contribution to the chemical shift is independent of the chemical environment,
in contrast to what is sometimes found in the literature. In conclusion, our results indicate that, to
compute the chemical shifts in both molecules and solids, using atomic orbital basis sets, one could
use the MPL method to evaluate the valence contribution and add to it a rigid core contribution as
obtained, for instance, from an atomic calculation. ©1999 American Institute of Physics.
@S0021-9606~99!30129-X#
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I. INTRODUCTION

Nuclear magnetic resonance~NMR! is one of the most
powerful and extensively used experimental methods
probe the electronic structure and the molecular geometr
materials.1 A significant part of the NMR spectral informa
tion are the chemical shifts, which describe the interact
between an external magnetic field and the magnetic mom
of an atomic nucleus. Numericalab initio calculations of the
chemical shifts have proved to be a useful tool to interp
experimental data. Indeed, in certain cases the meas

a!Present address: Department of Chemistry and Materials Institute, Pr
ton University, Princeton, NJ 08544.

b!Present address: Laboratoire de Mine´ralogie-Cristallographie de Paris
UniversitéParis VI, case 115, 4 place Jussieu, 75252 Paris, France.
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NMR spectra in combination withab initio calculations lead
to an unequivocal determination of the microscopic struct
of the system under study. Moreover, the degree of ag
ment between calculated and measured chemical shifts
benchmark of the theoretical modeling of the underlyi
electronic structure.

In quantum chemistry,ab initio calculations of the
chemical shift exist since the 70’s. In these calculations
electronic wave functions are expanded in terms of ato
orbitals.2 The use of atomic basis sets of finite size yields
dependence of the chemical shift upon the chosen gauge
gin of the vector potential that describes the external m
netic field. Many different approaches exist to deal with th
so-called gauge origin problem, such as the gauge-includ
atomic orbital~GIAO! method,3 the individual gauge for lo-
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5 © 1999 American Institute of Physics
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calized orbitals~IGLO! method,4 or the set of gauge trans
formation ~SGT! class of methods, which includes the ind
vidual gauges for atoms in molecules~IGAIM ! method5 and
the continuous set of gauge transformation~CSGT!
approaches.6,7 All these methods are restricted tofinite sys-
tems such as molecules and clusters that are isolated in
space. Recently Mauri, Pfrommer, and Louie~MPL!8 devel-
oped a method to compute the chemical shift in exten
condensed matter systems using periodic boundary co
tions. These allow us to perform calculations on trulyinfinite
systems formed by the unit cell and all its periodic replic
The MPL approach has been applied to periodic syste
such as crystals8,9 and, with a super-cell technique, to diso
dered systems such as liquids10 and amorphous materials.11

So far, the MPL method has been used only in calcu
tions based on pseudopotentials and plane waves. The u
pseudopotentials introduces errors which are negligible o
for first- and second-period elements of the periodic table8,11

A necessary condition to compute chemical shifts of hea
elements with a pseudopotential approach is that the
electron contribution to the chemical shifts be rigid, i.e.,
dependent from the chemical environment. Finally, the e
ciency of the MPL method when atomic orbital basis sets
employed still has to be verified.

In this paper, we compare analytically the MPL a
proach to the quantum chemistry methods for the calcula
of the chemical shift within the density functional theo
~DFT!. We find that the MPL approach, when applied
molecules, is equivalent to a variant of the SGT approa
Moreover, we analyze numerically the efficiency of the MP
method when atomic orbital basis sets are employed,
comparing the basis-set convergence properties of the M
method to those of the well established GIAO and IGAI
methods. Finally we separate the contributions to the che
cal shift of core and valence electrons in a gauge-invar
manner to study the validity of a frozen-core approximat
in chemical shift calculations.

The paper is divided in two parts. In the first, a sh
overview of the SGT class of methods is given, the M
approach is applied to molecular systems, and finally a
brid method for the calculation of the chemical shift is pr
sented, where we separate core and valence states g
invariantly. In the second part we discuss our numeri
results. Different methods are checked for their converge
properties with respect to the size of several basis sets,
we present an investigation of the core contribution to
chemical shift, studying its dependence on the chemical
vironment.

II. THEORY

A. Magnetic response within DFT

The chemical shift tensorsJ is defined by the linear re
sponse of a sample to an external uniform magnetic fieldBext

at the nuclear positionrN :

Bin
(1)~rN!52sJ~rN!Bext5

1

cE d3rJ (1)~r !3
rN2r

urN2r u3
, ~1!
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where Bin
(1)(rN) is the induced first-order magnetic field i

the sample andJ(1)(r ) is the induced first-order quantum
electric current.

Using the symmetric gauge for the vector potential th
describes the external magnetic field

A~r 8!5 1
2 Bext3~r 82d!, ~2!

with the gauge origind, we get within DFT:12–14

J(1)~r !52
1

c (
o,e

^co
(0)u@pur &^r u1ur &^r up#

uce
(0)&^ce

(0)u
eo2ee

3@~r2d!3p#•Bextuco
(0)&

2
1

2c
r~r !Bext3~r2d!. ~3!

Here, uc i
(0)& are the eigenfunctions of the unperturb

Hamiltonian with eigenvaluese i and the summation is ove
occupied stateso and empty statese, r(r )52(o^co

(0)ur &
3^r uco

(0)& is the electron density, and a factor 2 for the sp
is included.15 In Eq. ~3! the term containing the sum ove
occupied and empty states gives the first-order paramagn
contribution and the term containingr(r ) gives the first-
order diamagnetic contribution.

If Eq. ~3! is evaluated exactly,J(1)(r ) is independent of
the choice of the gauge origind. As a consequence we hav

05
1

c (
o,e

^co
(0)u@pur &^r u1ur &^r up#

uce
(0)&^ce

(0)u
eo2ee

3@d3p#•Bextuco
(0)&1

1

2c
r~r !Bext3d. ~4!

Sinced andBext are arbitrary, it turns out that

2dabr~r !52(
o,e

^co
(0)u@paur &^r u1ur &^r upa#

3
uce

(0)&^ce
(0)u

eo2ee
pbuco

(0)& , ~5!

where a and b are any two of the Cartesian coordinate
Equation~5! is the generalizedf-sum rule.16

In numerical calculations based on atomic orbitals, fin
Hilbert spaces are used. In this case, the generalizedf-sum
rule no longer holds. In particular, the left-hand side of E
~5! contains the electron ground-state density, which c
verges faster with respect to the basis set size than the r
hand side, which depends on transitions from occupied
empty states. HenceJ(1)(r ) computed using Eq.~3! is no
longer invariant for a variation of the gauge origind, or
equivalently for a rigid translation of the system. This co
stitutes the so-called gauge origin problem in the calculat
of sJ . The deviations of the calculated values from the co
vergedsJ results depend sensitively on the gauge origin. F
example, if the current is computed at a pointr far from the
gauge origind, both, para- and diamagnetic parts ofJ(1)(r )
become large and the sum of the two parts converges slo
with respect to the basis set.

This problem is addressed in the set of gauge trans
mations~SGT! methods by redefining the gauge origind as a
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parametric function that depends on the positionr at which
J(1)(r ) is evaluated.6 In this case the vector potential is:

A~r 8!5 1
2 Bext3~r 82d~r !!, ~6!

and the current becomes

J(1)~r !52
1

c (
o,e

^co
(0)u@pur &^r u1ur &^r up#

uce
(0)&^ce

(0)u
eo2ee

3$@r3p#•Bextuco
(0)&2puco

(0)&•@Bext3d„r …#}

2
1

2c
r~r !Bext3@r2d„r …#. ~7!

The choice of the parametric functiond„r … determines
different methods within the SGT class. A possible choice
setting d„r …5r . We call this approach the ‘‘d(r )5r ’’
method. In this case, Eq.~7! becomes

J(1)~r !52
1

c (
o,e

^co
(0)u@pur &^r u1ur &^r up#

uce
(0)&^ce

(0)u
eo2ee

3$@r3p#•Bextuco
(0)&2puco

(0)&•@Bext3r #}. ~8!

In this formulation only terms containing a sum over bo
occupied and empty states appear; each term in this do
summation, as well as the total current, is independent
rigid translation of the system and hence invariant for ga
origin transformations. Notice that Eq.~8! can also be de-
rived using the generalizedf-sum rule, by replacing
2r(r )dab in Eq. ~3! by the left-hand side of Eq.~5!. Simi-
larly the MPL method has been derived in Ref. 8 using
generalizedf-sum rule for periodic systems.

One of the main results of this paper is that the M
method, which has been developed to deal with exten
periodic systems, reduces precisely to Eq.~8! when it is ap-
plied to isolated molecules. The analytical derivation of t
result is given in the Appendix. To apply the MPL method
an isolated molecule, we consider a periodic system with
molecule per unit cell in the limit when the volume of th
cell tends to infinity. In this limit the interaction between th
molecule and its periodic replicas is removed.

Another method of the SGT class is the IGAIM method5

where the gauge origin is chosen to be the position of
nearest atomic nucleus to the pointr at which J(1)(r ) is
evaluated. Also in this case,J(1)(r ) is independent of a rigid
translation of the system and hence invariant for gauge or
transformations.

The last proposed method of the SGT class is the CS
method.7 In the regions close to the nuclei the functiond„r …
is chosen as in the IGAIM method. In the regions betwe
two nuclei a smooth interpolation replaces the step func
of IGAIM. However, the results fors obtained withGAUSS-

IAN 94 ~Ref. 17! using CSGT and IGAIM differ by less tha
1023 ppm. Therefore in the following we will just presen
IGAIM results.

Finally, notice that Eqs.~7! and ~8! cannot be used to
computeJ(1)(r ) in an extended system described by perio
boundary conditions. Indeed, in a periodic system the exp
tation values of the angular momentum^ce

(0)ur3puco
(0)& are

ill defined, sinceuc i
(0)& are Bloch wavefunctions delocalize
s
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on the whole space. In contrast, the MPL method in its g
eral formulation, Ref. 8, can be applied both to extend
systems and to isolated molecules, where it reduces
Eq. ~8!.

B. IGCV method

In this section we separatesJ into the contributions due
to core and valence electrons in a gauge-invariant man
This allows us to consider two different gauges for core a
valence electrons.

The complete set of all states$a% is given by the distinct
union of the core states$c%, the valence states$v%, and the
empty states$e%. Then we rewrite the induced first-orde
electronic currentJ(1) as a sum of its core and valence co
tributions

J(1)5Jc
(1)1Jv

(1) , ~9!

by dividing the set of occupied states$o% in Eq. ~7! into the
$c% and $v% subsets. In this way, however, neitherJc

(1) nor
Jv

(1) would be separately gauge-invariant because by do
so,the basis wave function sets would be$c% % $e% for Jc

(1)

and$v% % $e% for Jv
(1) . In a gauge-invariant separation ofJc

(1)

andJv
(1) the same complete basis set has to be used in

cases. Formally, this is achieved by redefining the sets
occupied and empty states in Eq.~7! @or in Eq. ~5!# in the
following way for Jc

(1)

$o%˜$c%, $e%˜$v% % $e%; ~10!

and forJv
(1)

$o%˜$v%, $e%˜$c% % $e%. ~11!

In other words, the correct separation is achieved by incl
ing also$c% to $v% transitions in addition to$c% to $e% transi-
tions for Jc

(1) and by including also$v% to $c% transitions in
addition to$v% to $e% transitions forJv

(1) .18 In this wayJc
(1)

andJv
(1) are described independently within the full basis

and are gauge-invariant for a complete Hilbert space. No
that our separation is independent of the method used to c
with the gauge origin problem.

We can now define the individual gauge for core a
valence states~IGCV! method in which we use two differen
gauges forJc

(1) andJv
(1) . We use IGAIM forJc

(1) as the core
is well approximated by a spherical closed shell system.
deed, in such a system the paramagnetic part vanishes w
IGAIM and the current is just given by its diamagnetic pa
which depends on the charge density and converges qui
with respect to the basis set size. For the valence elect
this argument does not apply because they describe the
region between the atoms. Therefore we used(r )5r for
Jv

(1) , since taking the gauge origin close to the point at wh
the current is evaluated avoids large para- and diamagn
contributions that do not cancel out if a finite basis set
used, as we mentioned before.
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III. NUMERICAL RESULTS

In this part we present the results for the isotropic che
cal shifts, as obtained by performing numerical calculatio
on small molecules. We use the quantum chemical c
GAUSSIAN 9417 to compute geometries and wave functions
the molecules within DFT in the local density approximati
~LDA !. Thes are calculated for various gauge origin met
ods. The GIAO and IGAIM approaches are already availa
in the code.7 With a straightforward modification of the cod
we implementd(r )5r and IGCV. We can now compar
numerically four different methods, namely GIAO, IGAIM
d(r )5r , and IGCV, by checking their convergence prop
ties with respect to the quality of the basis set. In the follo
ing sections we present results for molecules containing
C, N, O, F, Si, and P atoms. For C, N, O, and F we take
1s orbitals as core, and for Si and P we take the 1s, 2s, 2p
orbitals as core.

A. Basis sets

All our calculations ofs are done with standardized ba
sis sets constructed from the correlation consistent polar
core/valence~cc-pCVxZ! basis sets, developed in Ref. 1
These basis sets extend the ideas of the cc-pVxZ sets20 by
including extra functions designed for core–core and co
valence correlation. We label the basis sets from I to V
order of increasing completeness, with the size of the b
set increasing with increasing number. Basis sets I and II
double zeta, cc-pCVDZ and aug-cc-pCVDZ respectively,
sis sets III and IV are triple zeta, cc-pCVTZ and aug-c
pCVTZ respectively, and basis set V is the quadruple z
cc-pCVQZ basis set~see EMSL Gaussian Basis Set Ord
Form21 for more information!. For hydrogen atoms we us
the corresponding cc-pVxZ and aug-cc-pVxZ basis sets
sets I to V.

Molecular geometries are optimized with B3LYP~Ref.
22! and with the 6-3111G~2d,p! basis set.23

A good test of the quality of a basis set is given by t
generalizedf-sum rule, whose connection to the gauge
variance of magnetic properties we pointed out previou
Integrating the generalizedf-sum rule@Eq. ~5!# with respect
to r , we get the simplef-sum rule

4(
o,e

^coupa

uce&^ceu
eo2ee

pbuco&52dabNel , ~12!

whereNel is the number of electrons in the system.
For sets I to V we evaluate the left-hand side of Eq.~12!

for all the occupied states in the system, as well as for
core and the valence contributions to thef-sum rule, which
are separated as described in Eqs.~10!–~11!. The results are
shown in Table I, where we present the averaged value o
three diagonal elements of thef-sum rule with a5b
5x,y,z. The values are compared in the same table to
expected number of electrons in the considered system.
accuracy increases with respect to the basis sets and w
tice that passing from cc-pCVxZ to aug-cc-pCVxZ has
most no effect on the core contribution but increases
valence part, whereas going from double to triple zeta
i-
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well as going from triple to quadruple zeta has the oppo
effect.

B. Methods

The convergence of the GIAO, IGAIM, IGCV, an
d(r )5r methods with respect to basis sets is investigated
a large set of molecules. We use NH3, NF3 , N2 , and all
molecules listed in Table II except tetramethyl silane~TMS!.
In Fig. 1 we present the convergence ofs with respect to the
basis set sizes for all mentioned methods in the C6H6 and
SiF4 molecules. Thed(r )5r method shows a slower con
vergence than the other methods, especially fors of third-
period atoms. Nevertheless the values of thed(r )5r method
are approaching those of the others for basis sets of la
enough size.

We compare the IGCV method with GIAO and IGAIM
in more detail in Figs. 2, 3 and 4, where we present, resp
tively, the mean, mean absolute, and maximum error of C

FIG. 1. Total isotropic chemical shift of C6H6 on C nucleus and of SiF4 on
Si nucleus with respect to basis sets I to V for different gauge meth
~dotted line: GIAO, dashed line: IGAIM, dash-dotted line: IGCV and so
line: d(r )5r ).

TABLE I. Convergence of DFT-LDAf-sum rule with respect to basis se
(I –V).

I II III IV V Nel
a

C5H5N
Total 35.7 38.0 40.9 41.5 41.8 42
Core 9.7 9.9 11.7 11.8 12.0 12
Valence 26.0 28.1 29.2 29.8 29.8 30

C6H6

Total 35.8 38.1 40.9 41.5 41.8 42
Core 9.7 9.9 11.7 11.8 12.0 12
Valence 26.1 28.2 29.1 29.8 29.8 30

CO
Total 11.2 12.4 13.5 13.8 13.9 14
Core 3.2 3.2 3.9 3.9 4.0 4
Valence 8.0 9.1 9.6 9.9 9.9 10

Si2H4

Total 23.4 24.9 30.4 30.8 31.7 32
Core 13.1 13.2 18.8 18.9 19.8 20
Valence 10.3 11.7 11.6 12.0 11.8 12

SiH3F
Total 18.9 21.4 24.6 25.3 25.7 26
Core 8.2 8.2 11.4 11.4 11.9 12
Valence 10.7 13.2 13.3 13.9 13.8 14

PF3

Total 29.4 35.3 39.2 41.2 41.2 42
Core 11.5 11.6 15.3 15.3 15.9 16
Valence 17.9 23.6 23.9 25.8 25.3 26

aNel is the number of electrons.
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N, Si, P, and H chemical shifts as a function of the basis s
The errors are computed with respect to the arithmetic m
of the converged values~basis V! of GIAO, IGAIM, and
IGCV methods. In each molecule all atoms of the same
ment but with different chemical shifts are taken into cons
eration. We recall that for an infinite set of basis functions
the methods converge to the same limit. We remark t
within our basis sets the convergence behavior of GIAO
comparable to that of IGAIM. Furthermore we find that t
convergence behavior of the IGCV method is also com
rable to these methods for all atoms but C, where the IG
convergence is slightly faster and for H atoms where
IGCV method is less performant. For all atoms thes are

FIG. 2. Mean error to the converged DFT–LDA isotropic chemical shift~in
ppm! on different elements with respect to basis sets for different ga
methods~dotted line: GIAO, dashed line: IGAIM, dash-dotted line: IGCV!.

FIG. 3. Mean absolute error to the converged DFT–LDA isotropic chem
shift ~in ppm! on different elements with respect to basis sets for differ
gauge methods~dotted line: GIAO, dashed line: IGAIM, dash-dotted lin
IGCV!.
s.
n

e-
-
ll
at
s

-
V
e

found to converge to the same value at sufficiently la
basis sets~for basis set V the methods differ by less than
ppm!.

Finally we mention that the calculation time of IGCV
of the order of IGAIM, which is considerably faster tha
GIAO. For the considered molecules, the GIAO calculati
is considerably more expensive than the IGAIM calculati
if basis set V is used. In additionGAUSSIAN 94 provides par-
allel calculations for the SGT class of methods, and he
for IGAIM and IGCV, but not for GIAO, which makes the
choice of the former methods even more favorable.

C. Core contribution to the chemical shift

In this section we present only converged results~basis
V! obtained with the IGAIM method. Table II presents th
variation of the total and the cores on C, Si, and P atoms in
different molecules. While the variation ofs is highly de-
pendent on the chemical environment, the core contribu
appears to be constant. Indeed, the variation on all atom
our calculations turned out to be less then 0.6 ppm. As
basis sets are quadruple zeta on the core orbitals, we
four degrees of freedom in this region, and thus the cor
not chosen to be rigid by default. In most cases only relat
s are required. These can be computed with just the vale
contribution, since the core contribution cancels out in
differences.

Furthermore, in Table II we also present the diamagne
part of the core contribution of thes computed within the
IGAIM method. Comparing these values to the total co
contribution, we see that the core is essentially diamagn
if the gauge origin is chosen to be at the nucleus. This is
true for a different choice of the gauge origin.

Different results concerning the core contribution a
found in the quantum chemical literature.4,24 In Ref. 4 the
authors find an important variation between different m

e

l
t

FIG. 4. Maximum error to the converged DFT–LDA isotropic chemic
shift ~in ppm! on different elements with respect to basis sets for differ
gauge methods~dotted line: GIAO, dashed line: IGAIM, dash-dotted line
IGCV!.
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ecules ~up to 60 ppm! for the core contribution tos on
third-row elements such as Si, P, and S. In Ref. 24 the
thors find a relatively rigid core contribution in third-perio
atoms only if the 2p electrons are considered as valen
orbitals, contrary to what is done in the present work. W
think that these results differ from ours due to a nongau
invariant separation of core and valence electrons in b
references.

D. Valence-core transitions in chemical shift
calculations

In order to achieve a gauge-invariant separation betw
core and valence states it is necessary to follow the pro
dure discussed in Sec. II B. In Table III we report our resu
for the contribution toJv

(1) due to valence–core transition
when $o% and $e% in Eq. ~7! are chosen as specified in Se
II B. The data shows that these contributions are neglig
when the IGAIM gauge is chosen, but they are not if t
d(r )5r gauge is chosen. Interestingly, the valence to c
transitions for thed(r )5r gauge are also basically indepe
dent of the chemical environment, and they could be
glected if we only need the relatives.

The fact that the core and the valence–core contributi
to s are rigid suggests that, in principle, a computation of
relative s for third-period atoms within a pseudopotenti
approach should be possible.

IV. CONCLUSION

We have shown theoretically the equivalence betwee
version of the SGT methods and the MPL method applied
finite systems. For a set of molecules we tested the con

TABLE II. Core contribution to IGAIM isotropic absolute chemical shif
~in ppm! for different molecules calculated at the DFT–LDA level
theory.s total is the total chemical shift,score is the core contribution to the
chemical shift, andscore-dia is the diamagnetic part of the core contributio

Molecule s total score score-dia

C atom
CO 221.16 198.81 198.72
CH4 191.22 198.82 198.60
CH3F 99.66 198.87 198.68
CH3NH2 150.44 198.85 198.67
C6H12 148.34 198.85 198.70
C6H6 39.52 198.82 198.71
CF4 35.29 199.00 198.92
HCP 6.84 198.83 198.88
C5H5Na 34.14 198.82 198.71
TMS 182.08 198.82 198.65

Si atom
SiF4 409.69 831.86 830.50
SiH3F 305.45 832.01 830.03
Si2H4 202.99 832.06 830.60
SiH4 424.37 831.95 829.75
TMS 304.39 831.99 831.60

P atom
HCP 290.00 902.25 901.76
PF3 172.52 902.86 902.19
P2 2375.45 902.36 902.23
P4 826.62 902.44 902.34

aC atom on opposite position to N in the ring is presented.
u-
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gence properties of different methods with respect to
quality of Gaussian basis sets. We find that the CSGT
IGAIM approaches have the same convergence propertie
GIAO, but with a smaller computational cost. In the MP
method, the contribution of the valence electrons to
chemical shift converges rapidly with respect to the size
the basis set, whereas the convergence properties of the
contribution are poor. We improve the convergence by se
rating the core and the valence contributions in a gau
invariant manner, by applying the MPL method only to t
valence contribution and by treating the core contribut
within IGAIM. The performances of the resulting approa
compare favorably with the other methods. From our cal
lations, we find that the core contribution to the chemic
shift is independent of the chemical environment, contrary
what is sometimes found in the quantum chemical literatu

Our results indicate that the chemical shifts in soli
could be calculated by using the MPL method with atom
orbital basis sets for the valence contribution and by add
to it a rigid core contribution as obtained, for instance, fro
an atomic calculation.
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TABLE III. Contribution to DFT–LDA isotropic absolute chemical shift
~s, in ppm! due to valence to core state transitions. IGAIM andd(r )5r
gauges are presented on C, F, Si, and P nuclei for different molecules

Molecule IGAIM d(r )5r

C atom
CH4 20.23 27.02
CH3F 20.04 26.62
C6H6 20.02 26.85
HCP 20.04 26.33

F atom
CH3F 20.004 220.11
SiF4 20.21 220.04
SiH3F 20.17 220.05
PF3 20.04 219.93

Si atom
SiF4 21.83 21.93
SiH3F 20.65 22.04
Si2H4 20.28 21.95
SiH4 20.41 22.06

P atom
HCP 20.35 22.69
PF3 20.22 22.53
P2 20.14 22.68
P4 20.001 22.81
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APPENDIX MOLECULAR LIMIT OF THE EXTENDED
SYSTEM NMR CHEMICAL SHIFT THEORY

In this appendix we apply the equations of the MP
approach to an isolated molecule in free space. To obtain
molecular limit we consider a periodic lattice with a mo
ecule per unit cell and we let the volume of the unit cell te
to infinity.

Writing the electric current in Fourier space

J(1)~r !5(
G

J(1)~G!eiG–r, ~A1!

whereG are the reciprocal lattice vectors, we have:

1

c
J(1)~G!5 iG3M ~G!. ~A2!
t-

o
er

ls
he

M „G… is the magnetization, which can be expressed as

M ~G!5xJ~G,0!Bext ;G, ~A3!

where xJ(G,G8) is the magnetic susceptibility matrix. Th
current is given by

J(1)~G!5 icG3xJ~G,0!Bext ;G. ~A4!

Notice that sincexJ(G,0) is finite, we haveJ(1)(G50)50.
Substituting the MPL expression8 for xJ(G,0) in Eq.~A4!, we
get for GÞ0

J(1)~G!5 J̃(1)~G!2
1

G2
G~G• J̃(1)~G!!, ~A5!

and
t

J̃(1)~G!52
i

c

]

]qE d3r e2 iG–r(
o,e

E d3k

~2p!3H ^uk,ou@~2 i“1k!ur &^r u1ur &^r u~2 i“1k1q!#
uuk1q,e&^uk1q,eu

ek,o2ek1q,e

3@~2 i“1k!3q̂#•Bextuuk,o&1^uk,ou[( 2 i“1k)3q̂] –Bext

uuk2q,e&^uk2q,eu
ek,o2ek2q,e

3@~2 i“1k2q!ur &^r u1ur &^r u~2 i“1k!#uuk,o&J
q50

. ~A6!

Hereuuk,i& is the periodic part of the unperturbed Bloch eigenstate corresponding to eigenvalueek,i , andq̂ is an arbitrary wave
vector of unit length, perpendicular toBext. For a complete Hilbert space we haveJ(1)(G)5 J̃(1)

„G… since we can show tha
“•J(1)(r )5“• J̃(1)(r )50. This is not the case for a finite basis set, because we no longer have“• J̃(1)(r )50. However as we
computesJ using the Biot–Savart law, Eq.~1!, it is easy to see thats@J(1)#5s@ J̃(1)# and we can useJ̃(1)(G) in the following.
Using (GeiG–„r2r8…5Vd3(r2r 8), whereV is the volume of a unit cell, we can again rewrite the current inr -space

J̃(1)~r !52
i

c

]

]q (
o,e

E V
d3k

~2p!3 H ^uk,ou@~2 i“1k!ur &^r u1ur &^r u~2 i“1k1q!#
uuk1q,e&^uk1q,eu

ek,o2ek1q,e

3@~2 i“1k!3q̂#–Bextuuk,o&1^uk,ou[( 2 i“1k)3q̂] –Bext

uuk2q,e&^uk2q,eu
ek,o2ek2q,e

3@~2 i“1k2q!ur &^r u1ur &^r u~2 i“1k!#uuk,o&J
q50

1c, ~A7!
wherec is a constant due to theG50 term.
We take the molecular limit by considering a single la

tice cell, which contains one molecule and letV tend to

infinity. This implies thatJ̃(1)(r )50 outside of the volume
occupied by the molecule and hencec50 in Eq.~A7!. As the
volume of the cell increases, the coupling between neighb
ing cells becomes weaker. In this limit, the electronic disp
sion relation disappears and the energy eigenvaluesek,i lose
their k-dependence, i.e.,ek,i˜e i . Analogously, inside the
unit cell the Bloch eigenfunctionsuck,i&5eik–ruuk,i& tend to
the canonical molecular orbitalsuc i& for the isolated mol-
ecule and henceuuk,i&˜e2 ik–ruc i&.

The current, expressed in terms of molecular orbita
reads
r-
-

,

J̃(1)~r !52
i

c

]

]q (
o,e

E V
d3k

~2p!3
e2 iq–r

3H ^cou@~2 i“ !ur &^r u1ur &^r u~2 i“ !#

3
uce&^ceu
eo2ee

eiq–r~2 i“3q̂!•Bextuco&

1^cou~2 i“3q̂!•Bexte
iq–r

uce&^ceu
eo2ee

3@~2 i“ !ur &^r u1ur &^r u~2 i“ !#uco&J
q50

, ~A8!



-
e-

em

tt.

r a
nsity

ere-

e
ear

the
rba-

P.
A.
G.
A.
W.
ox,
, C.
75

and
K.

.
put.
m.

1822 J. Chem. Phys., Vol. 111, No. 5, 1 August 1999 Gregor, Mauri, and Car
where we used the commutation relation@2 i“,e6 ik–r#
56ke6 ik–r. Notice that the integrand isk-independent and
*Vd3k/(2p)351.

Deriving with respect toq we obtain

J̃(1)~r !5
2

c (
o,e

H ^cou@pur &^r u1ur &^r up#
uce&^ceu
eo2ee

3@ q̂–r #@~p3q̂!–Bext#uco&

2^cou@~ q̂–r !pur &^r u1ur &^r u~ q̂–r !p#

3
uce&^ceu
eo2ee

„p3q̂…–Bextuco&J . ~A9!

We eliminateq̂ by recalling that it is a vector perpen
dicular to Bext, but otherwise completely arbitrary. Ther
fore, taking two mutually perpendicular vectorsq̂1 and q̂2 ,
both perpendicular toBext, as in Ref. 8, and calculating

J̄(1)~r !5 1
2 @ J̃(1)~r ,q̂1!1 J̃(1)~r ,q̂2!#, ~A10!

we get an expression independent ofq̂, which is identical to
Eq. ~8!.
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