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Abstract 

        Results of neuroimaging datasets aggregated from multiple sites may be biased by site-

specific profiles in participants’ demographic and clinical characteristics, as well as MRI 

acquisition protocols and scanning platforms. We compared the impact of four different 

harmonization methods on results obtained from analyses of cortical thickness data: (1) linear 

mixed-effects model (LME) that models site-specific random intercepts (LMEINT), (2) LME that 

models both site-specific random intercepts and age-related random slopes (LMEINT+SLP), (3) 

ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for 

comparing harmonization methods was cortical thickness data aggregated from 29 sites, which 

included 1,343 cases with posttraumatic stress disorder (PTSD) (6.2-81.8 years old) and 2,067 

trauma-exposed controls without PTSD (6.3-85.2 years old). We found that, compared to the 

other data harmonization methods, data processed with ComBat-GAM were more sensitive to 

the detection of significant case-control differences in regional cortical thickness (Χ2(3) = 34.339, 

p < 0.001), and case-control differences in age-related cortical thinning (Χ2(3) = 15.128, p = 

0.002). Specifically, ComBat-GAM led to larger effect size estimates of cortical thickness 

reductions (corrected p-values < 0.001), smaller age-appropriate declines (corrected p-values < 

0.001), and lower female to male contrast (corrected p-values < 0.001) in cases compared to 

controls relative to other harmonization methods. Harmonization with ComBat-GAM also led to 

greater estimates of age-related declines in cortical thickness (corrected p-values < 0.001) in 

both cases and controls compared to other harmonization methods. Our results support the use 

of ComBat-GAM for harmonizing cortical thickness data aggregated from multiple sites and 

scanners to minimize confounds and increase statistical power.  

 

Keywords: Data Harmonization; Scanner Effects, Site Effects, Cortical Thickness; ComBat; 

ComBat-GAM; Linear Mixed Effects; General Additive Model; PTSD.  
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Introduction 

        Large consortia, such as Enhancing Neuro Imaging Genetics through Meta-Analysis 

(ENIGMA) (Thompson et al., 2020), Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) (Hofer et al., 2020), and others have aggregated neuroimaging data 

acquired on many different scanners and recruited subjects at many different sites to conduct 

meta- and mega-analyses. By applying standardized analysis pipelines to extremely large 

datasets of thousands or tens of thousands of samples, consortia improve reliability, enhance 

reproducibility of results, amass sufficient statistical power to detect relatively small effect sizes, 

and support the ability to divide samples while retaining the power to delineate subsample (e.g., 

male vs female or young vs old) and interaction effects. The diverse ethnic, racial, geographic, 

and clinical demography of consortium data has provided results that are more representative of 

the wider population while also permitting exploration of clinical and neurobiological subtypes of 

neuropsychiatric disorders (Dennis et al., 2020; Thompson et al., 2020). Neuroimaging results 

generated by consortia are more robust and reproducible than studies that are generated by a 

single laboratory (Koshiyama et al., 2020), provided that consortia apply uniform methods to 

data originating from multiple sites and scanners.   

However, several challenges are posed by the analysis of consortium data. A major 

concern of consortium-generated results is bias introduced by site-specific acquisition protocols 

and MRI scanners that may interact with site-specific demographic and clinical profiles (Radua 

et al., 2020).The challenge of post hoc combination of datasets stems partly from a lack of a 

priori harmonization of MRI acquisition sequences. Prospective data collection by consortia 

such as NCANDA (Brown et al., 2015), ABCD (Volkow et al., 2018), TRACK-TBI (Hicks et al., 

2013), and others have prescribed harmonized acquisition parameters at study outset with the 

expectation of superior performance and obviating the need for post-acquisition harmonization. 

However, even prospective standardization and prescription of acquisition parameters results in 
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significant variance attributed to sites for relatively short scan duration (e.g., 5 min) that can be 

reduced significantly by increasing scan duration (e.g., 25 min) (Noble et al., 2017). It remains 

unclear whether further post hoc harmonization of these datasets may improve sensitivity and 

power of analyses.  

Various methods to harmonize neuroimaging data across sites are gaining acceptance 

and will become commonplace. However, there is little empirical evidence to support the use of 

a single method due to the lack of formal comparisons of available methods. In this study, we 

compared four harmonization methods. First, we tested linear mixed-effects modeling (LME), 

also known as the mixed-effects mega-analysis (ME-Mega) (Radua et al., 2020), with site as a 

random intercept (LMEINT) to model the intercept location effects of site on brain measures. 

Second, we tested LME with both random intercept and age-related random slope for the site 

covariate (LMEINT+SLP, see Fig. 1). Third, we used ComBat, a method originally developed to 

minimize batch effects present in data originating from multiple gene arrays (Johnson et al., 

2007), and later adapted for neuroimaging data. ComBat is designed to remove site-associated 

differences while preserving variation due to biologically relevant variables such as age, sex, 

and diagnosis (Fortin et al., 2018). ComBat has been widely used to harmonize neuroimaging 

data including cortical thickness (Fortin et al., 2018), surface area, subcortical volumes (Radua 

et al., 2020), diffusion tensor imaging (Fortin et al., 2017; Hatton et al., 2020), and resting-state 

functional connectivity (Yu et al., 2018). Radua et al. (2020) reported that ComBat and LMEINT 

produced similar results when harmonizing cortical thickness, surface area, and subcortical 

volumes, while ComBat harmonization led to slightly higher statistical significance when 

performing between-group comparisons, in a multisite imaging study of schizophrenia. The 

fourth method, by Pomponio et al. (2020), improves on ComBat by modeling non-linear effects 

of age with a generalized additive model (GAM). ComBat-GAM allows for varied distributions of 

scale (multiplicative, or variance) and location (additive, or mean) effects, respectively.  
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ComBat-GAM was designed to capture age-related non-linearities across the lifespan by 

fitting a GAM with a penalized nonlinear term. Pomponio et al. (2020) examined cortical and 

subcortical gray matter volumes without harmonization, harmonized by ComBat, and 

harmonized by ComBat-GAM in a large sample of 10,477 healthy subjects aggregated from 18 

sites who ranged in age from 3-96 years. They reported that gray matter volumes harmonized 

by ComBat-GAM achieved the best performance in an age prediction task that minimized the 

difference between actual age and predicted age. They also found that ComBat-GAM, 

compared to other approaches, consistently led to improved prediction accuracy for each 

dataset in a leave-site-out validation experiment. However, Pomponio et al. (2020) only 

investigated data from healthy participants, which did not involve case-control comparisons, nor 

formal comparisons to LME methods.  

Consequently, the goals of the present study were to investigate (1) the performance of 

ComBat-GAM for comparing clinical cases to controls, (2) how performance is influenced by 

age, and (3) how well performance characteristics compare to LMEINT, LMEINT+SLP, and ComBat. 

Although the random-effects meta-analysis (RE-Meta) has been widely used by ENIGMA 

projects (Zugman et al., 2020), we did not include RE-Meta in this study because several 

studies showed that LME and ComBat produce results with greater statistical power than RE-

Meta (Boedhoe et al., 2017; Favre et al., 2019; Radua et al., 2020; van Rooij et al., 2018). The 

increase in power is based on the premise that the site effect being removed represents random 

noise, and its removal leads to larger effect sizes and greater efficiency requiring fewer subjects 

to reject the null hypothesis at a pre-specified power. 

Data aggregated from 29 sites served as our test case for comparing harmonization 

methods. Subjects’ data was grouped into cases with PTSD (N=1,343) and trauma-exposed 

controls without PTSD (N=2,067). PTSD is associated with anatomical and functional alterations 

in widely distributed regions of the brain (Dennis et al., 2020; Logue et al., 2018; Wang et al., 
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2020). Military service members with PTSD and comorbid mild traumatic brain injury (mTBI) 

experience faster age-associated decline in cortical thickness than controls (Santhanam et al., 

2019; Savjani et al., 2017). We hypothesized significant case-control differences in cortical 

thickness and age-related cortical thinning would be detectable in more brain regions by utilizing 

ComBat-GAM relative to LMEINT, LMEINT+SLP, and ComBat. We recognize that neither the 

method with the greatest number of regions reaching significance nor the method that 

maximizes the magnitude of regression coefficients reflects the true underlying cortical 

thickness - the so-called ground truth - which can only be measured definitively in post-mortem 

brains.   
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Methods 

Participants 

Data were obtained for secondary analysis from the ENIGMA-PGC PTSD Working 

Group. The dataset originated from 29 sites located on five continents (PTSD/Control N = 

1,343/2,067). Demographic information is summarized in Table 1. Clinical measures and 

assessment of PTSD are explained in the Supplementary Materials. All study sites obtained 

approval from local institutional review boards or ethics committees. All participants provided 

written informed consent. Data is available upon request from the corresponding author.  

Imaging Data Preprocessing 

Anatomical brain images were preprocessed at Duke University through a standardized 

neuroimaging and QC pipeline developed by the ENIGMA Consortium 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/) (Logue et al., 2018). Cortical thickness 

measurements were generated using the FreeSurfer software 

(https://surfer.nmr.mgh.harvard.edu) based on the Destrieux atlas (Destrieux et al., 2010) that 

contains 74 regions per hemisphere. Briefly, white matter surfaces were deformed toward the 

gray matter boundary at each surface vertex. Cortical thickness was calculated based on the 

average distance between the parcellated portions of white and pial surfaces within each region 

per participant. In each region, the cortical thickness of any participant more than 1.5 

interquartile ranges (IQRs) below the first quartile or above the third quartile of the cortical 

thickness from all participants was defined as an outlier and was replaced by the mean cortical 

thickness averaged across participants of this region. 

ComBat Harmonization  
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ComBat removes the effects of site while preserving inherent biological variance in the 

data (Fortin et al., 2018). In the present study, PTSD diagnosis, age, and sex were designated 

as biological variables. The ComBat approach was implemented using R scripts 

(https://github.com/Jfortin1/ComBatHarmonization) running on RStudio (ver. 1.3.1073) and R 

(ver. 4.0.2). Unlike implementations of LME models that merge data harmonization and 

statistical analyses, ComBat and ComBat-GAM perform only harmonization and make 

harmonized data available to the user.  

ComBat-GAM Harmonization 

PTSD diagnosis, age, and sex were designated as biological variables, and age was 

specified as a non-linear term in the model. The ComBat-GAM approach was implemented 

using Python (ver. 3.7.6) scripts (https://github.com/rpomponio/neuroHarmonize). 

Distribution of non-Harmonized, ComBat Harmonized, and ComBat-GAM Harmonized Data 

The site-specific distribution of data harmonized by ComBat and ComBat-GAM was 

compared to non-harmonized data (data prior to harmonization). Using the R package 

emmeans, site-specific residuals (i.e., the absolute differences between the site-specific mean 

values and the mean value averaged across sites) and site-specific standard deviations for 

cortical thickness were compared across non-harmonized, ComBat harmonized, and ComBat-

GAM harmonized data. The p-values were adjusted using the Tukey method for three pairwise 

comparisons (i.e., ComBat vs. non-harmonized, ComBat-GAM vs. non-harmonized, ComBat-

GAM vs. ComBat). 

Statistical Models 

In all models, we included sex, age, and PTSD diagnosis as fixed factors to estimate 

their effects on regional cortical thickness, and as covariates for testing interaction effects of 

interest. Either age by diagnosis interaction or sex by diagnosis interaction was included in the 
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models as a fixed factor when the corresponding interaction was of interest. Linear modeling 

was used to analyze data harmonized by ComBat and data harmonized by ComBat-GAM. 

Cortical thickness data without harmonization was entered into the LME models. The LMEINT 

models employed study site as a random factor to model random intercepts. The LMEINT+SLP 

modeled both the site-specific random intercepts and age-related random slopes to reflect 

different age-related slopes in cortical thickness across sites (Fig. 1). The Bonferroni method 

was employed to correct for multiple testing of 148 cortical regions with a corrected α = 0.0003 

(0.05/148). The R packages lme4, and lmerTest were used to calculate regression coefficients 

and statistical significance for the random effects models.  

The number of regions with significant findings and the magnitude of effect size was 

compared separately between the 4 harmonization methods. A chi-squared test was used to 

compare the number of cortical regions showing significant effects. The region-specific 

regression coefficients were compared using repeated-measures ANOVA from the R package 

afex. If the omnibus ANOVA results were statistically significant, then post-hoc pairwise 

comparisons of the 4 harmonization methods were conducted using the R package emmeans. 

The p-values were adjusted using the Tukey method for the 6 pairwise comparisons made with 

the outputs of the 4 harmonization methods. 

 

Results 

Distribution of non-Harmonized, ComBat Harmonized, and ComBat-GAM Harmonized Data 

Residuals represent the absolute value of the difference between the mean cortical 

thickness value of subjects at a given site and the mean cortical thickness value of all sites. 

Relative to non-harmonized data (Fig. 2), the cortical thickness data harmonized by ComBat 

(controls: t-values = -10.162~-2.908, p-values = <0.001~0.014 corrected; PTSD: t-values = -
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10.028~-2.865, p-values = <0.001~0.016 corrected; across regions) and ComBat-GAM (controls: 

t-values = -10.150~-1.601, p-values = <0.001~0.254 corrected; PTSD: t-values = -9.978~-1.907, 

p-values = <0.001~0.146 corrected; across regions) resulted in smaller residuals. There was no 

significant difference in residuals between ComBat and ComBat-GAM harmonized data 

(controls: t-values = -1.645~0.197, p-values = 0.999 corrected; PTSD: t-values = -1.662~0.173, 

p-values = 0.999 corrected; across regions).  

There was no significant difference in the standard deviations between all data-pairings 

across all regions (controls: t-values = -0.576~2.584, p-values = 0.788~2.584 corrected; PTSD: 

t-values = -0.545~3.070, p-values = 0.654~1.000 corrected). These results suggest that both 

ComBat and ComBat-GAM efficiently reduce differences in site-specific intercepts, but do not 

change differences in site-specific variances. The age-related distribution of non-harmonized, 

ComBat harmonized, and ComBat-GAM harmonized data are shown in Fig. 3.  

Main effects of Age 

As shown in Fig. 4A&B, the number of regions showing a significant main effect of age 

was significantly different across harmonization methods (Χ 2(3) = 223.550, p < 0.001). The age-

related declines in cortical thickness were detected by ComBat-GAM and ComBat in 148 (100%) 

regions, by LMEINT in 145 (98.0%) regions, and by LMEINT+SLP in 78 (52.7%) regions. It seems 

that LMEINT+SLP harmonization was less efficient in detecting age-related differences in cortical 

thickness. 

We found that 53.8%, 100%, and 100% of regions detected by LMEINT were identified by 

LMEINT+SLP, ComBat, and ComBat-GAM, respectively. All regions detected by LMEINT+SLP were 

identified by the other three methods. 98.0%, 52.7%, and 100% of regions detected by ComBat 

were also identified by LMEINT, LMEINT+SLP, and ComBat-GAM, respectively. 98.0%, 52.7%, and 
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100% of regions detected by ComBat-GAM were also identified by LMEINT, LMEINT+SLP, and 

ComBat, respectively.  

As shown in Fig. 4C, the regression coefficients were significantly different across 

harmonization methods (F(1.4, 212.3) = 123.25, p < 0.001). Post-hoc analyses (Fig. 4D) 

showed that all the other three methods produced higher age-related regression coefficients 

(i.e., lower estimates of age-related declines) than ComBat-GAM, while LMEINT+SLP produced 

lower age-related regression coefficients than LMEINT and ComBat. 

Main effects of diagnosis 

As shown in Fig. 5A&B, the number of regions showing a significant main effect of 

diagnosis was significantly different across harmonization approaches (Χ 2(3) = 34.339, p < 

0.001). Case-related reductions in cortical thickness were found by ComBat-GAM in 25 (16.7%) 

regions, by ComBat in 6 (4.0%) regions, by LMEINT in 4 (2.7%) regions, and by LMEINT+SLP in 4 

(2.7%) regions. The regions discovered by ComBat-GAM include those within the salience 

network (SN; right anterior cingulate cortex and bilateral insula regions), executive control 

network (ECN; left intraparietal sulcus and bilateral supramarginal gyri), default mode network 

(DMN; bilateral ventromedial prefrontal cortex, and bilateral precuneus), and bilateral superior 

and inferior temporal gyri and sulci, which are consistent with previous reports (Shalev et al., 

2017).  

We found that 75.0%, 75.0%, and 100% of regions detected by LMEINT were identified 

by LMEINT+SLP, ComBat, and ComBat-GAM, respectively. 75.0%, 75.0%, and 100% of regions 

detected by LMEINT+SLP were identified by LMEINT, ComBat, and ComBat-GAM, respectively 

66.7%, 66.7%, and 100% of regions detected by ComBat were identified by LMEINT, LMEINT+SLP, 

and ComBat-GAM, respectively. 16.0%, 16.0%, and 24.0% of regions detected by ComBat-

GAM were identified by LMEINT, LMEINT+SLP, and ComBat, respectively. Importantly, data 
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harmonized with ComBat-GAM led to the detection of all regions identified by the other three 

methods. 

As shown in Fig. 5C, regression coefficients were different across harmonization 

methods (F(1.6, 163.0) = 169.55, p < 0.001). Post-hoc analyses (Fig. 5D) showed that the three 

other methods produced higher case-related regression coefficients (i.e., lower estimates of 

case-related cortical thickness reduction) than ComBat-GAM, while LMEINT produced higher 

regression coefficients than ComBat. 

Age by Diagnosis Interaction 

As shown in Fig. 6A, B, significant age by diagnosis interactions were detected by 

ComBat-GAM in 5 regions, while no significant interactions were detected by ComBat, LMEINT, 

and LMEINT+SLP. ComBat-GAM outperformed the other methods in detecting this interaction 

effect (Χ 2(3) = 15.128, p = 0.002). Age-related declines in cortical thickness were slower in 

cases than controls for 5 regions within the DMN, which include the left middle-posterior part of 

the cingulate gyrus and sulcus, the right marginal branch of the cingulate sulcus, the right 

superior frontal sulcus in ECN, right inferior temporal areas that include the right medial 

occipital-temporal sulcus and lingual sulcus, and the right fusiform gyrus. The linear (Fig. S1) 

and non-linear (Fig. S2) fits of the age-related distributions of cortical thickness in the 5 regions 

were shown in supplementary. 

As shown in Fig. 6C, regression coefficients differed across harmonization methods 

(F(1.2, 184.0) = 121.99, p < 0.001). Post-hoc analyses (Fig. 6D) showed that the three other 

methods compared to ComBat-GAM produced lower age-related regression coefficients in 

cases than controls (i.e., higher estimates of age-related declines in cortical thickness in cases 

than controls), while both LMEINT and LMEINT+SLP produced lower regression coefficients than 

ComBat. 
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 Main effects of Sex 

As shown in Fig. 7A, B, the number of regions showing a significant main effect of sex 

was not significantly different across harmonization methods (Χ 2(3) = 2.749, p = 0.432). 

Differences between males and females in cortical thickness were detected by ComBat-GAM 

and ComBat in 38 regions, by LMEINT in 32 regions, and by LMEINT+SLP in 28 regions. The 

analyses based on ComBat-GAM harmonization showed that females had greater cortical 

thickness than males in bilateral precentral and postcentral regions, bilateral anterior cingulate 

cortex, bilateral superior frontal gyri, bilateral angular gyri, bilateral medial occipito-temporal 

sulci and lingual sulci, left frontal pole, left superior temporal sulci, and right parahippocampal 

gyrus. By contrast, males had greater cortical thickness than females in bilateral inferior 

temporal regions, left rectus, left planum polare of the superior temporal gyrus, left vertical 

ramus of the anterior segment of the lateral sulcus, bilateral calcarine sulci, left insula, left 

inferior and middle frontal sulci, left orbital sulci, right ventral posterior cingulate cortex, right 

temporal pole. 

We found that 87.5%, 87.5%, and 84.4% of regions detected by LMEINT were also 

identified by LMEINT+SLP, ComBat, and ComBat-GAM, respectively. We found that 100%, 96.4%, 

and 92.9% of regions detected by LMEINT+SLP were also identified by LMEINT, ComBat, and 

ComBat-GAM, respectively. We found that 73.7%, 71.1%, and 94.7% of regions detected by 

ComBat were also identified by LMEINT, LMEINT+SLP, and ComBat-GAM, respectively. We found 

that 71.1%, 68.4%, and 94.7% of regions detected by ComBat-GAM were also identified by 

LMEINT, LMEINT+SLP, and ComBat, respectively. 

As shown in Fig. 7C, the regression coefficients were different across harmonization 

methods (F(1.2, 173.6) = 54.06, p < 0.001). Post-hoc analyses (Fig. 7D) showed that both 

LMEINT and LMEINT+SLP produced higher regression coefficients (i.e., higher estimates of cortical 

thickness in females than males) than ComBat and ComBat-GAM. 
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Sex by PTSD diagnosis interaction 

As shown in Fig. 8A, B, no significant sex by diagnosis interactions were found using 

data from the 4 the harmonization methods. As shown in Fig. 8C, the regression coefficients 

were significantly different across harmonization approaches (F(1.2, 184.0) = 121.99, p < 0.001). 

Post-hoc analyses (Fig. 8D) showed the three other methods produced higher regression 

coefficients (i.e., higher estimates of the female-male contrast of cortical thickness in cases than 

controls) than ComBat-GAM, while LMEINT produced higher regression coefficients than the 

three other methods. 

 

Discussion 

We compared the performance of four harmonization methods by applying them to 

cortical thickness data in participants grouped into clinical cases and controls from 29 different 

sites. The four harmonization methods included LMEINT, LMEINT+SLP, ComBat, and ComBat-GAM. 

We acknowledge at the outset the number of regions reaching significance by any given method 

does not necessarily reflect the ground truth. ComBat and ComBat-GAM harmonization 

detected the greatest number of regions with significant age-related declines in cortical 

thickness, LMEINT+SLP detected the fewest number of significant regions, while LMEINT detected 

an intermediate number of regions. Consistent with our a priori hypothesis, data harmonized 

with ComBat-GAM, relative to the other harmonization methods, led to the detection of more 

regions with significant case-related reductions in cortical thickness, and more regions 

displaying slower rates of age-related cortical thinning in cases than controls. There were no 

significant differences between the 4 harmonization methods in detecting sex-related 

differences in cortical thickness. A comparison of the regression coefficients showed that 

ComBat-GAM, relative to the other methods, produced higher estimates of cortical thickness 
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reduction, lower estimates of age-related cortical thickness decline, and lower female-male 

contrast estimates in cases compared to controls. ComBat-GAM showed higher estimates for 

age-related declines in cortical thickness in cases and controls as compared to other 

harmonization methods. Both ComBat and ComBat-GAM methods produced lower cortical 

thickness estimates in females than males when compared to LMEINT and LMEINT+SLP. 

ComBat models the expected values of the imaging features as a linear combination of 

the biological variables and the site effects whose error term is modulated by additional site-

specific scaling factors (Fortin et al., 2018). It also uses empirical Bayes to improve the 

estimation of the model parameters in studies with small sample size. (Radua et al., 2020) used 

cortical thickness, surface area, and subcortical volume data in cases and controls from 

ENIGMA-Schizophrenia to compare ComBat to random-effects meta-analysis and random-

effects mega-analysis, which we term LMEINT in the present study. They reported that ComBat 

delivered more results that were statistically significant than random-effects meta-analyses, and 

slightly more than LMEINT. However, they did not report results of non-linear age effects on 

cortical thickness, which are well documented (Frangou et al., 2021; Pomponio et al., 2020; 

Walhovd et al., 2017), nor did they report on effects of group membership on age-related 

changes in cortical thickness. By contrast, Pomponio et al. (2020) developed ComBat-GAM to 

support harmonization of neuroimaging data with age-related non-linearities or other variables 

by investigating cortical and subcortical gray matter volumes in 10,477 healthy subjects from 18 

sites ranging in age from 3-96 years. They concluded that ComBat-GAM is superior to ComBat 

at predicting age based on regional volume data. However, Pomponio et al. (2020) only 

investigated healthy participants, which lacked guidance on harmonization of data used to make 

case-control comparisons. Moreover, prior studies did not report the magnitude of regression 

coefficients obtained from various harmonization methods, in spite of an urgent plea by 
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researchers to understand how harmonization methodology influences the output of statistical 

models run on harmonized data.  

Our study sought to fill these gaps by formally comparing regression coefficients and the 

number of regions showing statistically significant results, including the case-control differences 

in cortical thickness across the lifespan. Harmonization with ComBat-GAM was the most 

efficient at detecting case-control differences as evidenced by significantly more regional 

findings as compared to other harmonization methods. ComBat-GAM was also one of the most 

efficient methods at detecting age-effects in cortical thickness, and the only method to uncover 

regions with different rates of age-related cortical thinning in cases compared to controls. 

Whereas we have no collateral information to corroborate the findings from ComBat-GAM 

harmonization pertaining to case-control differences or age-dependent case-control differences, 

we have reliable evidence of age-related patterns of cortical thickness across the lifespan 

(Frangou et al., 2021; Mutlu et al., 2013). One caveat is that motion related artifacts, which are 

associated with lower cortical thickness measurements, increase with age (Savalia et al., 2017). 

Consequently, reduced cortical thickness with aging may be partially explained by motion-

induced reduction in apparent cortical thickness. Nonetheless, Fig. 3B shows concrete 

evidence of erroneous harmonization by ComBat that is handled correctly in Fig. 3C by 

ComBat-GAM as corroborated by independent studies, which demonstrate that the highest 

cortical thickness occurs in childhood and that age is negatively correlated to cortical thickness 

with a steeper slope up to the third decade of life then more gradual thereafter (Frangou et al 

2021; Mutlu et al 2013). By contrast, ComBat harmonized data along a linear pattern with age 

throughout the lifespan. Thus, ComBat-GAM harmonization may be advantageous, particularly 

for consortia studies of participants of all ages. 

The performance of ComBat-GAM is attributable to its algorithm. LME models assume 

that the error terms follow the same normal distribution at all sites, which is rarely the case 
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(Radua et al., 2020). ComBat overcomes this shortcoming by assuming different normal 

distributions at different sites for the error terms (Radua et al., 2020). ComBat-GAM further 

improves on ComBat by assuming a normal distribution as the prior for the intercept location 

effect and an inverse-gamma distribution as the prior for the scale effect of the sites. It also uses 

the generalized additive models (GAMs) to capture the non-linear variations in age-related 

changes in cortical thickness while avoiding overfitting (Pomponio et al., 2020). In this study, 

ComBat-GAM appears to be the best method to capture the cortical variations associated with 

age, and therefore enhance its ability to accurately capture variations associated with diagnosis 

and sex. By contrast, harmonization with LMEINT+SLP produced the smallest number of regions 

with age-related changes. LMEINT+SLP allows the relationship between age and cortical thickness 

to be different across sites, which may reduce the variations of cortical thickness that could be 

explained by the fixed effect of age.  

We found that the age-related decline in cortical thickness was slower in cases than 

controls for 5 regions, but only for data harmonized with ComBat-GAM. As shown in 

supplementary Fig. S1 and S2, cases compared to controls exhibited lower cortical thickness in 

youth and higher cortical thickness in elderly in the 5 regions. It is possible that PTSD induces 

more powerful cortical thinning in youth and delayed age-appropriate declines in cortical 

thickness in elderly. This explanation is partly consistent with previous findings that maltreated 

youth with versus without chronic PTSD have smaller volumes in the right ventromedial 

prefrontal cortex (Morey et al., 2016) and posterior brain structures (De Bellis et al., 2015). More 

studies are warranted to test whether case-control differences in age-related cortical thinning is 

overfit by ComBat-GAM. 

A study by Ritchie et al. (2018) that examined sex-differences in adults from UK Biobank 

(2,750 females; males 2,466; 45-80 years old) found greater cortical thickness in the postcentral, 

superior, and inferior parietal, and supramarginal gyri in females, whereas males had greater 
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cortical thickness in the ventromedial prefrontal cortex and rostral anterior cingulate cortex. 

Similarly, in our study, data harmonization with ComBat-GAM showed that females have greater 

cortical thickness in prefrontal cortex, inferior parietal regions, cingulate cortex, and left temporal 

pole, whereas males had greater cortical thickness in ventromedial prefrontal cortex, bilateral 

insula, posterior cingulate areas, and occipital lobe. We found no statistically significant 

difference between harmonization methods in the number of regions showing sex-effects. 

These results suggest that all four harmonization methods effectively detect regions with sex-

related changes in cortical thickness. While we did not formally test harmonization methods to 

detect age-related sex differences in cortical thickness, Frangou et al. (2021) report that sex-

differences in cortical thickness are age dependent. 

The comparison of the regression coefficients showed that the selection of 

harmonization methods may overestimate or underestimate effects of interest, even though the 

corresponding comparisons of the number of regions exhibiting significant effects were identical 

between methods. ComBat-GAM, relative to the other methods, generated higher estimates of 

reductions in cortical thickness, and lower estimates of age-appropriate declines as well as 

female to male contrast in cases compared to controls. ComBat-GAM also generated higher 

estimates of age-related declines in cortical thickness in both cases and controls. Both ComBat 

and ComBat-GAM estimated lower cortical thickness in females than males when compared to 

LMEINT and LMEINT+SLP. This knowledge is critical to interpreting statistical outputs. For instance, 

the magnitude of reductions in cortical thickness per year are biased by the harmonization 

method being used. 

In reporting that ComBat-GAM is more sensitive than other methods, we must be clear 

to specify our narrow definition of “sensitive”, as the harmonization method that leads to the 

maximum number of brain regions with statistically significant effects. In fact, this metric does 

not necessarily determine better performance if we adopt a preferred definition, namely the 
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method that produces results that are most consistent with the ground truth. Unfortunately, 

identifying ground truth is a challenging proposition, but we consider two options that may be 

informative and feasible. The first option is to acquire MRI scans and calculate cortical thickness 

on a variety of scanner manufacturers and MRI facilities. However, a sufficient sample size is 

essential as it must contain (1) a representative number of cases and controls from (2) across 

the lifespan in (3) participants of both sexes, (4) scans at each MRI facility and on scanners 

from each manufacturer. This is required to avoid possible confounds from interactions of 

scanner type and age, scanner type and diagnosis, and scanner type and sex. A second option 

is to generate simulated data from a large enough sample of participants, sites, and MRI 

facilities. The simulated data could be generated by adding characteristic noise, covariance, and 

bias profiles for each scanner manufacturer and each MRI facility. The simulated data could 

then be harmonized with several tools of interest to determine the method that produces data 

that most closely resembles the pre-noised data. Along the same lines, the post-harmonization 

data and the pre-noised data could be modeled for case-control effects, age effects, and 

interaction effects. The results of statistical modeling on post-harmonization datasets could be 

compared to the results from modeling the pre-noised dataset. The harmonization method that 

leads to results that most closely resemble the results obtained from modeling the pre-noised 

data would be deemed most faithful to the ground truth. Scanning an appropriate phantom may 

add value to ascertaining the ground truth, but is unlikely to add value to characterizing the role 

of age, sex, and diagnosis on harmonization methods. 

While our study focused on 4 widely adopted harmonization methods, these represent 

only a small number in a large array of available methods. There has been a recent explosion in 

methods that apply machine learning and other advanced multivariate techniques to tackle 

harmonization. Machine learning methods, including deep-learning approaches, have been 

developed in recent years to harmonize neuroimaging data without a priori hypotheses about 
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data distributions (Blumberg et al., 2019; Dinsdale et al., 2021; Liu et al., 2021; Moyer et al., 

2020; Ning et al., 2020; Tax et al., 2019). A universal machine learning method that is capable 

of harmonizing data across sites, time, and imaging modalities may enhance our ability to use 

both existing data and yet to be acquired data (Zuo et al., 2021). For instance, a machine 

learning harmonization method proposed by Blumberg et al. (2019) applies multi-task learning. 

From a biological perspective, multi-task learning is inspired by human learning that applies 

knowledge of performing a known task to new tasks that are related to the known task. Similarly, 

a subset of harmonization solutions may be found by learning scanner invariant representations 

while simultaneously maintaining performance on the main task of interest, which include 

representations of the data that are uninformative about the scanner or the site where imaging 

data was collected. These representations and the mappings between them may then be 

manipulated to provide image reconstructions that are minimally informative of their original 

collection site (Blumberg et al., 2019). This method has several advantages over regression-

based methods, including a practical implementation that does not require paired data from a 

traveling phantom as training input, and extensibility to a multi-site case (Huynh et al., 2019). 

Other machine learning developments feature domain adaptation techniques (Robinson et al., 

2020) that provide immunity against test case data which departs appreciably from the training 

data, referred to as domain shift (Chen et al., 2020a). Domain adaptation techniques attempt to 

address domain shift by finding a feature space that performs a prescribed main task while 

being invariant to the domain of the data. Therefore, domain adaptation should be well-suited to 

MRI data harmonization by creating features that are indiscriminate with respect to the scanner, 

but correctly discriminate with respect to the data features of interest such as case-control 

status, age, etc. (Chen et al., 2020b). Convolutional neural networks (CNN), which are popular 

and well-adapted to vision problems, have also been deployed for data harmonization with 

demonstrated success at age prediction, although CNN performance can be susceptible to 

registration related artifacts (Dinsdale et al., 2021). Ning et al. (2020) evaluated 19 algorithms 
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that were developed to harmonize cross-scanner and cross-protocol multi-shell diffusion MRI 

data acquired from the participant sample on two scanners with different maximum gradient 

strength using two protocols. The algorithms use various signal representation approaches and 

computational tools, such as rotational invariant spherical harmonics, deep neural networks, 

and hybrid biophysical and statistical approaches.  

The dawn of the big data age has heralded the need for harmonization methods that 

operate well beyond neuroimaging data to flexibly and extensibly harmonize manifold data types 

from social media, mobile devices, and sensors (Agarwal et al., 2013; Davatzikos, 2019). The 

rapid proliferation of data harmonization methods and the ubiquity of machine learning 

applications will require careful vetting and rigorous comparisons between competing methods 

using standard criteria for ascertaining harmonization success. The urgent goal of embracing 

open science will be facilitated by developing advanced harmonization methods (Foster and 

Deardorff, 2017). 

Limitations 

There are two major limitations in the present study. Firstly, we investigated age-related 

changes in cortical thickness. However, only one scan was administered on each participant in 

this dataset. New approaches have been developed to harmonize data across scanners and 

sites as well as longitudinal visits (Beer et al., 2020; Dewey et al., 2019). Age-related cortical 

thinning estimated by one longitudinal study design was 3 times greater than cortical thinning 

from a cross-sectional study (Rast et al., 2018). Secondly, we only investigated cortical 

thickness, which is one of many brain measures that is disturbed in neuropsychiatric disorders. 

Further studies should fully investigate the performance of harmonization methods on multi-

modal neuroimaging data with various anatomical, diffusion, functional, and clinical/behavioral 

measures. 
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Conclusion 

ComBat-GAM relative to LMEINT, LMEINT+SLP, and ComBat is more sensitive for detecting 

regions showing significant case-control differences in cortical thickness, and case-control 

differences in age-related effect on cortical thickness. ComBat-GAM led to larger estimates of 

cortical thickness reductions, smaller age-related declines, and lower female to male contrast in 

cases compared to controls. ComBat-GAM also led to greater estimates of age-related declines 

in cortical thickness in both cases and controls. Our results support using ComBat-GAM to 

harmonize cortical thickness data across study sites to increase statistical power. 
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Table 1. Demographic information per study site. 

 Control PTSD 

SiteName N 
Female 
: Male 

Age (yrs: 

mean± 
SD) N 

Female: 
Male 

Age (yrs: 

mean± 
SD) 

ADNIDoD
1 

106 1:105 70.0±5.3 80 0:80 67.9±3.6 

Amsterdam Medical Center 37 18:19 39.6±10.0 38 17:21 40.4±9.9 

Columbia University 35 23:12 35.2±10.6 53 34:19 36.3±9.3 

Duke University-De Bellis 86 47:39 10.5±2.6 29 15:14 9.9±2.5 

Duke University-Morey 270 59:211 39.7±10.1 114 16:98 40.7±9.9 

Ghent University 59 59:0 37.7±12.3 8 8:0 32.6±10.3 

University of Groningen - - - 40 40:0 38.2±9.7 

U.W. Madison-Grupe 38 1:37 30.7±6.6 19 3:16 30.4±6.2 

Emory University-GTP 108 103:5 40.8±12.2 66 66:0 37.0±12.3 

INTRuST
2 

254 121:133 34.8±13.0 104 23:81 38.6±10.6 

U.W. Milwaukee-Larson 47 24:23 35.2±11.3 20 10:10 28.8±8.5 

Leiden University 30 26:4 14.7±1.6 22 19:3 16.0±1.9 

University of Mannheim - - - 48 48:0 35.9±11.8 

Harvard University-McLean 13 13:0 35.6±10.5 39 39:0 38.2±12.9 

Minneapolis V.A.-Disner 95 6:89 33.2±8.6 74 2:72 32.0±7.6 

University of Münster 26 21:5 26.5±7.4 21 21:0 27.4±7.0 

University of Illinois-Chicago 20 0:20 34.0±8.9 23 0:23 31.3±9.3 

Harvard University-Rosso 85 44:41 33.5±9.3 20 13:7 35.3±7.9 

University of South Dakota 44 7:37 29.9±6.9 78 17:61 28.8±7.1 

Stanford University 1 0:1 61.0±0 68 40:28 36.9±10.3 

Stellenbosch University 139 100:39 43.1±14.4 121 88:33 39.4±11.0 

University of Toledo 61 27:34 34.3±11.6 15 7:8 40.9±9.5 

UCAS-Beijing 36 17:19 48.2±6.8 34 21:13 51.0±6.7 

University of Cape Town 55 55:0 28.7±6.4 7 7:0 30.5±7.2 

University of Sydney-Westmead 113 74:39 40.9±13.1 49 25:24 39.3±11.6 

University of Washington 202 105:97 14.1±3.0 53 25:28 13.2±2.9 

Waco V.A. 25 4:21 40.7±11.6 41 6:35 41.0±11.0 

University of New Haven 34 3:31 34.2±9.8 37 5:32 34.8±9.2 

Yale University 48 8:40 29.4±8.2 22 3:19 31.8±6.9 
1 
Alzheimer’s Disease Neuroimaging Initiative - Department of Defense  

2  
Injury & Traumatic Stress Clinical Consortium 
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Figure Legend 

Figure 1. Scatter plots and age-related linear trends of mean cortical thickness averaged across 

regions for each study site. Participants are color-coded based on study site. 

Figure 2. Site-specific cortical thickness averaged across regions for non-harmonized, ComBat 

harmonized, and ComBat-GAM harmonized data in trauma-exposed participants with and 

without PTSD.  

Figure 3. Scatter plots and non-linear trends of mean cortical thickness averaged across 

regions for (A) non-harmonized data, (B) ComBat harmonized data, and (C) ComBat-GAM 

harmonized data, in trauma-exposed participants with and without PTSD.  

Figure 4. Main effect of age. (A) negative log-transformed statistical significance, i.e. –log10(p). 

The dashed and solid vertical lines represent thresholds p = .05 (uncorrected) and p = .05 

(Bonferroni corrected), respectively. (B) Regions show a significant main effect of age. The color 

bar represents the magnitude of the regression coefficient. Cooler colors represent age-related 

declines in cortical thickness. (C) Magnitude of regression coefficients. The ordering of regions 

from top to bottom in both (A) and (C) is by ascending order of regression coefficients from 

cortical thickness data harmonized by ComBat-GAM. Boxplots of the regression coefficients per 

harmonization methods were also displayed. (D) Corrected p-values associated with pairwise 

comparisons of regression coefficients. The color bar represents differences in regression 

coefficients between row-labeled and column-labeled harmonization methods. LMEINT, LME 

models site-specific random intercept. LMEINT+SLP, LME models both site-specific random 

intercepts and age-related random slopes. 

Figure 4. Case-control main effects. (A) negative log-transformed statistical significance, i.e. –

log10(p). The dashed and solid vertical lines represent thresholds p = .05 (uncorrected) and p 

= .05 (Bonferroni corrected), respectively. (B) Regions that show a significant case-control main 
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effect. The color bar represents the magnitude of the regression coefficient. Cooler colors mean 

lower cortical thickness in PTSD than controls. (C) Magnitude of regression coefficients. The 

ordering of regions from top to bottom in both (A) and (C) is by ascending order of regression 

coefficients from cortical thickness data harmonized by ComBat-GAM. Boxplots of the 

regression coefficients per harmonization methods were also displayed. (D) Corrected p-values 

associated with pairwise comparisons of regression coefficients. The color bar represents the 

differences of regression coefficients between row-labeled and column-labeled harmonization 

approaches. LMEINT, LME models site-specific random intercept. LMEINT+SLP, LME models both 

site-specific random intercepts and age-related random slopes. 

Figure 6. Interaction of age and diagnosis. (A) negative log-transformed statistical significance, 

i.e. –log10(p). The dashed and solid vertical lines represent thresholds p = .05 (uncorrected) and 

p = .05 (Bonferroni corrected), respectively. (B) Regions show significant age by diagnosis 

interaction. The color bar represents the magnitude of the regression coefficient. Warmer colors 

mean that age-related declines in cortical thickness are slower in PTSD than controls. (C) 

Magnitude of regression coefficients. The ordering of regions from top to bottom in both (A) and 

(C) is by ascending order of regression coefficients from cortical thickness data harmonized by 

ComBat-GAM. Boxplots of the regression coefficients per harmonization methods were also 

displayed. (D) Corrected p-values associated with pairwise comparisons of regression 

coefficients. The color bar represents differences in regression coefficients between row-labeled 

and column-labeled harmonization methods. LMEINT, LME models site-specific random intercept. 

LMEINT+SLP, LME models both site-specific random intercepts and age-related random slopes. 

Figure 7. Main effects of sex. (A) negative log-transformed statistical significance, i.e. –log10(p). 

The dashed and solid vertical lines represent thresholds p = .05 (uncorrected) and p = .05 

(Bonferroni corrected), respectively. (B) Regions show a significant main effect of sex. The color 

bar represents the magnitude of the regression coefficient. Cooler (warmer) colors indicate 
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lower (higher) cortical thickness in females compared to males. (C) Magnitude of regression 

coefficients. The ordering of regions from top to bottom in both (A) and (C) is by ascending 

order of regression coefficients from cortical thickness data harmonized by ComBat-GAM. 

Boxplots of the regression coefficients per harmonization methods were also displayed. (D) 

Corrected p-values associated with pairwise comparisons of regression coefficients. The color 

bar represents the difference in regression coefficients between row-labeled and column-

labeled harmonization approaches. LMEINT, LME models site-specific random intercept. 

LMEINT+SLP, LME models both site-specific random intercepts and age-related random slopes. 

Figure 8. Sex by diagnosis interaction. (A) negative log-transformed statistical significance, i.e. 

–log10(p). The dashed and solid vertical lines represent thresholds p = .05 (uncorrected) and p 

= .05 (Bonferroni corrected), respectively. (B) No region shows significant sex by diagnosis 

interaction. The color bar represents the magnitude of the regression coefficient. (C) The 

magnitude of regression coefficients. The ordering of regions from top to bottom in both (A) and 

(C) is by ascending order of regression coefficients from cortical thickness data harmonized 

ComBat-GAM. Boxplots of the regression coefficients per harmonization methods were also 

displayed. (D) Corrected p-values associated with pairwise comparisons of regression 

coefficients. The color bar represents the difference in regression coefficients between row-

labeled and column-labeled harmonization methods. LMEINT, LME models site-specific random 

intercept. LMEINT+SLP, LME models both site-specific random intercepts and age-related random 

slopes. 
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