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Abstract—Diffusion-weighted Magnetic Resonance Imaging
(dMRI) can unveil the microstructure of the brain white
matter. The analysis of the anisotropy observed in the dMRI
contrast with tractography methods can help to understand the
pattern of connections between brain regions and characterize
neurological diseases. Because of the amount of information
produced by such analyses and the errors carried by the
reconstruction step, it is necessary to simplify this output.
Clustering algorithms can be used to group samples that are
similar according to a given metric. We propose to explore
the well-known clustering algorithm k-means and a recently
available one, QuickBundles [1]. We propose an efficient
procedure to associate k-means with Point Density Model, a
recently proposed metric to analyze geometric structures. We
analyze the performance and usability of these algorithms on
manually labeled data and a database a 10 subjects.

Keywords-fiber clustering - point density model - DWI
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I. INTRODUCTION

By using Diffusion-weighted Magnetic Resonance Imag-

ing (dMRI), local orientation of neural pathways can be

inferred and their trajectories can be reconstructed using

tractography algorithms. Depending on the tractography

algorithm used, the setting of its parameters and the image

resolution, the numbers of streamlines obtained (called fibers

in the sequel) can vary from a few thousands to a few

millions. These objects are noisy and often fail to reflect

the true neural axons that create the observed anisotropy in

the white matter. Because of the large number of complex

objects (trajectories) to be considered and many spurious

bundles coming from tractography limitations, such as low

resolution and crossing fibers issues, white matter analysis

is an extremely complicated task. Several fiber clustering

procedures have been proposed to simplify the resulting

representation [2].

Clustering of fibers can be done in a supervised or an

unsupervised setting. In the former, an initial anatomical

segmentation of the brain is used or ROIs (regions of

interest) are defined to subdivide to whole fiber set into

smaller ones [3]. However these methods are biased by the

anatomical model, and segmentation mistakes are carried on

to the clustering.

Unsupervised fiber clustering suffers from high computa-

tional cost, which in the best case is O(N2M), N being the

number of fibers and M the fiber resolution (the number of

points per fiber) as pairwise distances are needed in most

algorithms. In consequence, specific methods try to keep

fiber distances simple (linear) [1], at the risk of not capturing

well the fiber shape.

In this work we analyze the most common distances

available on the literature that have been used on fibers, such

as Hausdorff and Euclidean, and we propose to use the Point

Density Model (PDM) metric which has been previously

used for representing sulcal lines [4]. The oriented version

of Point Density Model called currents has been used to

represent fibers in a registration scheme in [5].

Since PDM time complexity is quadratic in the number

of points per fiber, using it for computing a full distance

matrix is unaffordable time-wise. By using multidimensional

scaling we only compute a partial distance matrix and embed

this information in a new set of fiber-like points.

We introduce several evaluation criteria for unsupervised

clustering evaluation and compare variants of the k-means

clustering to the recently proposed QuickBundles method

[1] on manually labeled data and a dataset of 10 subjects.

II. METHODS

In this work we aim at easing the analysis of brain

fibers by compressing the overall fiber set and keeping a

few representatives. To do so we take the well known k-

means clustering algorithm and we explore different metrics.

Given two fibers represented as a sequence of k points

in a 3-dimensional space X = {x1, x2, ..., xk} and Y =
{y1, y2, ..., yk} where xi, yj ∈ R

3 0 ≤ i, j ≤ k , the

following metrics are considered.

1) Undirected Euclidean (UE): The Euclidean distance

on vectors of stacked coordinates is a metric used widely for

clustering, yet it can yield very different results depending

on the chosen orientation for the fiber. Having a consistent

orientation for all fibers across the brain is an extremely

difficult task without previously segmenting the brain. To

overcome this issue we evaluate the distance in both direc-

tions. The UE is thus defined as follows:

UE(X,Y ) = min(||X − Y ||2, ||X − reverse(Y )||2) (1)

where reverse(X) = {xk, ..., x1}
2) Point Density Model (PDM): We propose the Point

Density Model to better capture the fibers’ shape. PDM is

sensitive to the fibers’ form and position and is quite robust

to missing fiber segments. This last property is much desired

as fibers are often mis-segmented due to noise and crossing



fibers issues. Given a fiber X we represent it as the sum

of Dirac concentrated at each fiber point:
∑k

i=1 δxi
(resp.

Y ). Let Kσ be a Gaussian kernel with scale parameter σ,

we can conveniently define the scalar product between two

fibers as follows:

〈X,Y 〉 =
1

k2

k∑

i=1

k∑

j=1

Kσ(xi, yj)

The Point Density Model distance is thus defined as:

PDM2(X,Y ) = ‖X‖2 + ‖Y ‖2 − 2〈X,Y 〉 (2)

This distance captures misalignment and shape dissimilar-

ities at the resolution σ. Distances much larger or much

smaller than σ do not influence the metric.

3) Hausdorff (H):

H(X,Y ) = max(max
i=1..k

min
j=1..k

‖xi−yj‖, max
j=1..k

min
i=1..k

‖xi−yj‖)

(3)

A. Algorithm & Multidimensional Scaling

The main drawback of Point Density Model distance is its

high computational cost. In compression algorithms inputs

are expected to be numerous, and having a costly measure

to compare them pairwise is inefficient. For this reason we

propose a method which, given a subset of the distances,

allows to embed that information in a new set of fiber-like

points. This new feature set maps one-to-one to the original

set and is clustered using the euclidean distance.

The algorithm is defined as follows:

1: s← take random sample(F )
2: ∆← compute distance matrix(s, F,metric)
3: F ′ ← multidimensional scaling(∆)
4: L← k-means(F ′, nclusters)

We first take a random sample s from the full set of

fibers F . In step 2, we compute the pairwise distances

between fibers in s and fibers in F , creating a distance

matrix ∆ ∈ R#s×#F and metric can be any fiber distance

such as UE, Hausdorff or PDM. Note that the size of this

matrix depends linearly on #s×#F . With MDS we obtain

a new set of transformed samples F ′ which maps 1-to-1

to the original set F and approximately preserves the input

distances. Here we use it asymmetrically, using the classical

Nyström’s approach for efficient dimension reduction [6]. In

section IV-B we discuss the accuracy of this approximation

and the required sample size for it to yield a good trade-off

between accuracy and running time.

Finally, in step 4 we run the traditional k-means algorithm

over the set F ′ to obtain the clusters of fibers.

III. VALIDATION SCHEME

The problem of evaluating models in unsupervised set-

tings is notoriously difficult. Ideally, the loss should be

task-dependent; here we consider a set of standard criteria:

the inertia of the clusters, the silhouette coefficient and

some measures that require a ground truth: completeness,

homogeneity and adjusted rand index.

• The Silhouette Coefficient measures how close a fiber

is to its own cluster in comparison to the rest of the

clusters, i.e. whether there is another cluster that might

represent it better or as well [7].

• The cluster Inertia is the variance of the cluster mea-

sured by the distance of each fiber on the cluster to

the cluster centroid. We use the Hausdorff distance for

evaluation.

• Given a reference, Homogeneity penalizes the cluster-

ing scheme in which samples from different modes are

clustered together.

• Completeness measures whether fibers from the same

mode are clustered together given a reference.

• The Normalized Adjusted Rand Index (NARI) is a

normalized and corrected for chance index of the global

consistency of assignments with respect to the reference

assignment[2].

IV. DATA, RESULTS AND DISCUSSION

A. Data description

We use a database of ten healthy volunteers scanned with

a 3T Siemens TRioTim scanner. Acquisitions consisted of

an MPRAGE T1-weighted ( 240 × 256 × 160, 1.09375 ×
1.09375 × 1.1mm) and DW-MRI (128 × 128 × 60, 2.4 ×
2.4 × 2.4mm) TR = 15000ms, TE = 104 ms, flip angle =

90o, 36 gradient directions, and b-value = 1300 s/mm2. Eddy

currents correction were applied to DTI data using the FSL

software. We used the medInria software for tractography

and fibers shorter than 40mm were discarded. This yielded

an average of 25000 fibers per subject.

B. Experiments

Use of the MDS+Nyström’s method with 10% of the

fibers, we obtain The relative error between the true distance

matrix and an approximate one was smaller than 10−2 on a

random fiber set.

Manually labeled data: We tested the algorithms on a

subset of real fibers previously identified from the corpus

callosum, corticospinal tract, u-shape, and fronto-occipital.

We compare the clustering solutions to the ground truth

while varying the number of clusters (k-means) or the

threshold parameter (QuickBundles, see below), using the

five criteria described previously.

Real data: We performed a parameter selection test

over one subject to analyze the impact of the kernel size

for k-means with Point Density Model. We vary σ from

10 to 60mm and the number of clusters from 200 to 1200.

We noticed that after σ = 42mm the quality of the clusters

stop increasing in a significant amount. For the following

tests we fixed σ = 42mm. About 20% of the full set of

fibers were used for the random sample, then only 5%,
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Figure 1. Manually labeled data results: (top) Example of clusterings
obtained with fours methods on the simulation (bottom) Average of the
criteria obtained over 10 random samplings of the manually labeled data,
as a function of the number of clusters obtained.

obtaining very similar results and significantly decreasing

running time. Results are shown in Fig. 2.

We exhaustively tested over ten subjects k-means with

PDM, Hausdorff and UE while varying the number of clus-

ters from 18 to 3200. Additionally we compared their output

to the available QuickBundles (QB) clustering algorithm

[1]. However, in QB the resulting number of clusters is

guided by a threshold value. Therefore we ran QB over one

subject varying the threshold from 5 to 40mm, and selected

threshold values based on the number of clusters obtained

to run them over the 10 subjects.

C. Results and Discussion

Manually labeled Data: On the manually labeled data

we were able to run the validation criteria that need a ground

truth, such as Homogeneity, Completeness and NARI. We

tested each clustering 10 times while randomly removing

1/8 of the fibers, to sample variable configurations. It can

be seen in Fig. 1 that QB performs well regarding com-

pleteness but not so well on homogeneity, which means

that clusters have fibers from different structures but fibers

from the same structure are clustered together. QB obtains

higher performance with large numbers of fibers. On the

Figure 2. Silhouette score on real data: (left) Comparison of k-means
with PDM, UE, and Hausdorff metrics, and QuickBundles. Each curve
shows the average silhouette score of the ten subjects, as a function of the
number of clusters. k-means+PDM is used with two sized of the learning
set in Nyström step. (right) Dependence of the results of k-means+PDM
on the parameter σ.

other hand, k-means+PDM obtained high homogeneity but

lower completeness, indicating that clusters contain fibers

from the same structure but that they are not complete,

which means that some structures are split. Looking at the

inertia criterion, we can effectively confirm that for QB’s

clusters have high variance, and k-means+PDM a low one. k-

means+UE performs poorly both regarding homogeneity and

completeness compared to the other approaches; as could be

anticipated, it yields lower inertia. k-means+H seems to have

a similar behavior than k-means+PDM except that for the

silhouette criterion, which means that the resulting clusters

are typically not well separated. Regarding Silhouette and

NARI, one can observe that k-means+PDM plateaus is

maximal at around 9 clusters and then decreases, while QB

reaches a maximal value when more clusters are considered,

and then decreases more slowly.

Last, by looking the silhouette criterion k-means+PDM

seems to better assign the clusters to the fibers than QB,

which is probably related to the algorithm itself that, unlike

k-means, does not systematically update the cluster assign-

ment.

Real data: On real data, we can only use the fully

unsupervised criteria, such as inertia and the silhouette

criterion. We focus on the latter. Results are given in Fig. 2

for each of the aforementioned criteria and algorithms.

We can see that the k-means+H and k-means+UE metrics

result in a poor silhouette score, meaning that the sepa-

ration between the clusters is not very clear with these

algorithms. Moreover, k-means+PDM consistently improved

results given by the other algorithms. Nonetheless when

going to large number of clusters (over 3000) curves between

QB and k-means+PDM seem to converge in terms of cluster

quality. Note that a given number of cluster can correspond

to strikingly different structures in the data, depending on the

algorithm and metric: In Figure 3 we show the result of the

full brain fiber clustering for all algorithms on an arbitrary
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Figure 3. (top) 560 clusters on brain: Qualitative algorithm comparison
for the resulting fiber clusters on an arbitrary chosen subject. (below)
Histogram of the cluster sizes for the different algorithms.

chosen subject. Number of fibers was set to 560 for all of

them. Resulting clusters on (e), (f) and (g) seem to be wider

and more heterogeneous than (h), showing that PDM metric

can indeed better capture shape of fibers. Homogeneity of

clusters in comparison to (e) (f) and (g) can clearly be seen

on the corpus callosum and the corticospinal tract. Below,

we can see the histograms on the clusters sizes. We see

that QB has the biggest amount of small clusters, that likely

correspond to outlier fibers, and it also formed very large

clusters. k-means+PDM also seems to generate a few small

clusters, in contrary to k-means+H and k-means+UE that

have no small clusters, meaning that spurious fibers are

included in clusters, and not rejected as outliers.

Both QB and PDM-k-means running time are sensitive to

the number of clusters, however QuickBundles’ time com-

plexity is O(NCk) and k-means+PDM O(NSk2 +NCk),
where C is the number of clusters, k the fiber resolution

and S the sample size. In k-means+PDM, the creation of

the partial distance matrix dominates the time complexity

as long as Sk > C.

This code has been implemented in Python using utilities

provided by Scikit-Learn [8].

V. CONCLUSION

We presented an analysis and comparison of some of

the techniques most commonly used on fiber clustering.

Believing that clustering can help to simplify the compli-

cated structure of brain fibers, we look for homogeneous

clusters which can easily be represented by the cluster

centroid. We compared the available metrics on the liter-

ature for measuring distances between fibers, incorporating

PDM which has been used recently to represent geometric

structures in the brain, but never for fiber clustering. We

show different behaviors of the methods depending on the

number of clusters: while QB is good at isolating outlier

fibers in small clusters, it requires a large number clusters to

represent effectively the whole set of fibers. k-means+PDM

has a better compression power, but is less robust against

outlier fibers. It clearly outperforms other metrics.

We believe this method along with a posterior fiber

registration [5] can be a consistent tool for white matter

group analysis. In the future, it could be applied for the

analysis of white matter in neurological settings [9].
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