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Abstract

Several metrics have been developed for estimating phylogenetic signal in comparative data. These may be impor-
tant both in guiding future studies on correlated evolution and for inferring broad-scale evolutionary and ecological
processes (e.g., phylogenetic niche conservatism). Notwithstanding, the validity of some of these metrics is under
debate, especially after the development of more sophisticated model-based approaches that estimate departure
from particular evolutionary models (i.e., Brownian motion). Here, two of these model-based metrics (Blomberg’s
K-statistics and Pagel’s �) are compared with three statistical approaches [Moran’s I autocorrelation coefficient, co-
efficients of determination from the autoregressive method (ARM), and phylogenetic eigenvector regression (PVR)].
Based on simulations of a trait evolving under Brownian motion for a phylogeny with 209 species, we showed that all
metrics are strongly, although non-linearly, correlated to each other. Our analyses revealed that statistical ap-
proaches provide valid results and may be still particularly useful when detailed phylogenies are unavailable or when
trait variation among species is difficult to describe by more standard Brownian or O-U evolutionary models.
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Introduction

Phylogenetic signal was defined by Blomberg and

Garland (2002) “...as a tendency for related species to re-

semble each other more than they resemble species drawn

at random from a tree”. The lack of statistical independ-

ence among species implied by a phylogenetic signal pre-

cludes the use of traditional statistical tests in studies of

correlated evolution (Felsenstein, 1985). However, it is im-

portant to note that the lack of independence should first be

tested, and not simply assumed a priori, before using

phylogenetically-based statistical methods (Gittleman and

Kot, 1990). Thus, one initial motivation for estimating

phylogenetic signal was to establish which (in any) correc-

tion must be made to take the phylogenetic relationships

among species into account (see Martins and Garland 1991;

Martins et al., 2002).

In addition to this methodological issue, there has

been a growing interest on how phylogenetic signal can be

used to infer broad-scale evolutionary and ecological pro-

cesses (Martins, 2000; Diniz-Filho, 2001; Cooper et al.

2010; Hof et al., 2010; but also see Revell et al., 2008;

Losos, 2008). For instance, when a trait is positively auto-

correlated across the phylogeny, the most common expla-

nation involves inheritance from a common ancestor or

phylogenetic niche conservatism. Negative phylogenetic

autocorrelations (i.e., when close relatives are more differ-

ent in a given trait than randomly chosen pairs of taxa), al-

though not so common, may arise due to recent events of

evolutionary divergence induced by character displace-

ment.

Currently, there are several ways to quantify phylo-

genetic signal in comparative data (see Blomberg and

Garland, 2002). The earliest techniques were based on sta-

tistical methods (e.g., phylogenetic autocorrelation coeffi-

cients, phylogenetic correlograms and autoregressive mod-

els), that quantify the level of phylogenetic autocorrelation

for a given trait of interest throughout the phylogeny (see

Cheverud et al., 1985; Gittleman and Kot, 1990; Diniz-

Filho et al., 1998), or under non-stationary processes

(Diniz-Filho et al., 2010). When more detailed and accurate

phylogenies are available, it is also possible to ascertain the

expected divergence between species by assuming a theo-

retical model of trait evolution, and thus derive model-

based metrics to compare expected and observed diver-
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gences (e.g., Pagel, 1999; Freckleton et al., 2002;

Blomberg et al., 2003). In this case, Brownian motion is the

most commonly used reference model for inferring changes

in quantitative traits. Under Brownian motion, phenotypic

divergence (covariance) among species increases linearly

with time (Felsenstein, 1985, 1988; Hansen and Martins,

1996), and this can be interpreted as resulting from a pure

neutral evolutionary model or from rapid and independent

responses of species traits to randomly changing environ-

ments (e.g., see Hansen et al., 2008).

In spite of the debate on the relative merits of statisti-

cal and model-based approaches (e.g., Martins et al., 2002),

they usually produce similar results when evaluating evolu-

tionary correlations between traits (see Martins et al., 2002;

Diniz-Filho and Tôrres, 2002). Thus, it is likely that these

approaches would also provide similar results when esti-

mating phylogenetic signal (for a theoretical evaluation of

the metrics underlying phylogenetic autocorrelation analy-

sis see Pavoine et al., 2007; Diniz-Filho et al., 2012a). Here

we use simulated data and show that, for a constant phylog-

eny, all metrics are comparable and provide similar results,

despite their different statistical and conceptual back-

grounds. Focus was not placed on the statistical perfor-

mance of well-established methods (Martins 1996;

Diniz-Filho et al., 2012a), but rather on the correlations

among estimates across evolutionary models.

Materials and Methods

Simulations

We performed simulations for a trait with zero mean

and unity variance evolving under Brownian motion. We

also generated simulations for Ornstein-Uhlenbeck (O-U)

processes with �-parameter equal to 2, 4, 6, 8 and 10, which

tend to progressively eliminate phylogenetic signal (see

Diniz-Filho, 2001). For each parameter, 200 simulations

were performed using the routine PDSIMUL of “Pheno-

typic Diversity Analysis Program” (PDAP) (Garland et al.,

1993).

In all simulations, the phylogenetic relationships

among the 209 species were based on the terrestrial

Carnivora supertree (Bininda-Emonds et al., 2008). This

phylogeny was used only as a reference for Brownian-

motion evolution and to represent a real topology and ob-

served distribution of branch lengths. The phylogenetic dis-

tances among species were expressed as patristic distances,

forming the matrix D, or conversely as phylogenetic

covariances (matrix C), the proportion of shared branch

length from root to tip between pairs of species (in this case

with an ultrametric tree, the main diagonal was set to 1.0, so

that this C matrix can also be viewed as a pairwise matrix of

phylogenetic correlations between species - see Helmus et

al., 2007). This C matrix is the expectation correlation

among phenotypes under Brownian motion (Hansen and

Martins, 1996).

Metrics for phylogenetic signal

Five methods for measuring phylogenetic signal were

used for each simulation, which can be broadly divided into

“statistical” and “model-based” approaches. A detailed de-

scription of these metrics can be found elsewhere

(Cheverud et al., 1985; Gittleman and Kot, 1990,

Diniz-Filho et al. 1998; Pagel, 1999; Freckleton et al.,

2002; Blomberg et al., 2003). First, for statistical-based

metrics, we used the Moran’s I autocorrelation coefficient,

which is given by
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where n is the number of species, yi and yj are the trait val-

ues in a vector Y for species i and j (i.e., in this case the val-

ues of species is simulated under a given process - see

above), with average y, and wij are the elements of the

weighting matrix W with the pairwise phylogenetic rela-

tionship between species. Here the matrix W was replaced

by the phylogenetic covariance (matrix C). We also esti-

mated Moran’s I in the first class of a phylogenetic

correlogram, by using a binary weighting matrix W, with

values of one indicating pairs of species that are separated

by less than 12 million years (about 0.8 of phylogenetic cor-

relation) (see Diniz-Filho, 2001; see also Diniz-Filho et al.

2009 for details of the phylogeny).

The second metric was given by the coefficient of de-

termination (R2) estimated by the Cheverud et al. (1985)

autoregressive model (ARM), which can be written as

Y = �WY + �.

where � is an autoregressive coefficient estimated by maxi-

mum likelihood, W is the weighting matrix (as defined

above, and equals to covariance among species V here in

this application), and � are the model residuals.

The third metric was based on the coefficient of deter-

mination (R2) derived from a multiple regression model

called Phylogenetic eigenVector Regression (PVR; Diniz-

Filho et al., 1998; see Desdevises et al., 2003; Kuhn et al.,

2009; Staggemeier et al., 2010; Diniz-Filho et al., 2011 and

Safi and Pettorelli, 2010 for recent applications and expan-

sions). The PVR model is given by Y = X� + �, where � is a

vector with regression coefficients, X is a matrix with k

(k < n-1) selected eigenvectors extracted from the phylo-

genetic distance matrix (D), and � are the model residuals

as before. The eigenvectors represent the patterns of phylo-

genetic relationships among the species at distinct hierar-

chical levels throughout the phylogeny, and PVR is part of

a group of techniques that have been widely used to take

autocorrelation into account in spatial, phylogenetic and

temporal data (see Peres-Neto, 2006; Peres-Neto and

674 Diniz-Filho et al.



Legendre, 2010). For PVR, we used k = 90 eigenvectors

which explained 95% of the variability in the phylogenetic

distance matrix (D) because of computational constraints.

Diniz-Filho et al. (2012a) showed that, under Brownian

motion, the amount of variation explained by PVR (the co-

efficient of determination R2) must be correlated to the

amount of variation explained by the eigenvectors. Because

here we are using the same set of eigenvectors for all com-

parisons, the R2 can be directly comparable among simula-

tions and can be correlated with other metrics. Thus, the

coefficients of determination (R2) of both models (ARM

and PVR) were used to quantify the amount of phylogen-

etic signal in the simulated data sets for the so-called “parti-

tion methods”.

The other two metrics we used to quantify phylogen-

etic signal explicitly assume a Brownian motion model of

trait evolution as a reference for estimating the phylogen-

etic signal. Thus, the first “model-based” statistic was the

(Pagel, 1999) �, which is equal to 0 when the trait is evolv-

ing independently of the phylogeny, while a value of 1.0 in-

dicates that the trait under study is evolving according to

Brownian motion. Details on how to estimate Pagel’s � can

be found in Freckleton et al. (2002). Blomberg et al. (2003)

K was the second model-based metric used in this study.

Values of K-statistics lower than 1.0 indicate that related

species resemble each other less than expected under the

Brownian motion model of trait evolution, while values

greater than 1.0 signify that more related species are more

similar, for the trait under study, than predicted by this

model. Because K has a right-skewed distribution (see re-

sults), we used a logarithmic transformation (base 10) to

normalize this metric, so that the neutral expectation (i.e.,

evolution under Brownian motion) can be inferred when

K = zero.

The final dataset used for analyses was then com-

prised by the 200 simulated values of the five metrics

(Moran’s I, R2
ARM, R2

PVR, � and K). A stochastic variation

in the magnitude of phylogenetic signal is expected under

Brownian motion, so that the convergence among the met-

rics can be evaluated in terms of the amount of phylogen-

etic structure observed in each simulation. We used

Spearman’s rank correlation to measure to level of associa-

tion between pairs of metrics because it is robust against

outliers and can also measure nonlinear relationships. We

also calculated correlation among mean estimates of phylo-

genetic signal among the different methods when increas-

ingly �-parameter along O-U simulations.

Moran’s I coefficients, ARM’s and PVR’s R2 were

calculated with the use of a software written in the Basic

and Delphi programming languages, available from the au-

thors upon request. K and � were calculated by using the

package picante (Kembel et al., 2010) and geiger (Harmon

et al., 2008) respectively, both implemented in the R soft-

ware environment (R Development Core Team, 2009).

Results

Pagel’s � was equal to 1.0 in 97% of the simulations

performed, thus revealing high statistical power and ability

to correctly detect Brownian motion. However, this metric

was not sensitive to stochastic variation in species values

generated under Brownian motion and disturbing the mag-

nitude of phylogenetic signals, being not correlated with

the other metrics.

Moran’s I varied between 0.03 and 0.89, with a mean

of 0.31 � 0.19, with a slightly right-skewed distribution

(median = 0.27) (Figure 1a). The R2 from ARM also varied

widely (Figure 1b), ranging from 0.07 to 0.89 (mean =

0.43 � 0.17), whereas values of R2 from PVR (Figure 1c)

were higher (mean = 0.94 � 0.02) and varied much less

(0.88 and 0.99) than those estimated from ARM. Compara-

tively, the distributions of both R2 tended to be more sym-

metric (Figure 1). K-statistics varied from 0.41 to 4.44, with

a mean of 0.99 (as expected under Brownian motion), but

the values were strongly right-skewed, and this remained

even after logarithm transformation (Figure 1d).

Under Brownian motion, all metrics (Moran’s I, R2

from PVR and ARM and K-statistics) were highly corre-

lated to each other, with Spearman correlation higher than

0.70 (Table 1). The lowest correlation (rS = 0.728) was be-

tween Moran’s I and PVR’s R2. Because Moran’s I and

ARM’s and PVR’s R2 are all empirical (statistical) metrics

and K-statistics was explicitly designed to work under

Brownian motion, we show the relationships between K-

statistics and each one of these metrics in Figure 2. In

general, as indicated by the Spearman’s correlations, these

empirical metrics were clearly associated to K, but the rela-

tionships were curvilinear.

Increasing the value of the �-parameter in the O-U

process caused, as expected, a monotonic decrease in all

metrics (all Spearman’s correlation among metrics higher

than 0.95), and thus the mean phylogenetic signals esti-

mated using different methods are also strongly correlated

across simulations, with decreasing signal when increasing

O-U parameter (Table 2). However, the rate of decrease

varied among them. For �, the best indicator of deviation

from Brownian motion was not the mean, but the frequency

with which � differed from 1.0. For PVR, even when signal

was nearly absent, the mean R2 was still very high

(0.724 � 0.048). However, these coefficients of determina-

tion were usually not significant due to the small degrees of

freedom left after using 90 eigenvectors. Thus, the adjusted

R2, ranging from 0.027 (� = 10) to 0.785 (� = 0), provided a

more standardized metrics for the decrease in phylogenetic

signal.

Discussion

Our analyses show that all metrics for estimating

phylogenetic signal in quantitative traits are strongly, albeit

Evolutionary models and estimation of phylogenetic signal 675



non-linearly, associated to each other. Thus, criticisms to

some of these metrics, including PVR and ARM (e.g.,

Rohlf, 2001), although referring to more detailed behavior

of these methods under specific evolutionary processes, do

not invalidate results of empirical analyses if phylogenetic

structures are well defined and distance/weighting matrices

reflect evolutionary dynamics and expectations for trait

variation among taxa, as done here.

High Moran’s I coefficients and R2 values derived

from PVR and ARM are consistent with the expected struc-

ture in data generated under Brownian motion process, in

which closely related species will tend to be similar and this

similarity decreases with phylogenetic distance (see Han-

sen and Martins, 1996). However, on average, both global

Moran’s I and R2 from ARM were low, indicating that these

metrics have a low statistical power in detecting signal, by

considering the wide range of values observed under

Brownian motion (which is expected to generate strong and

linear relationship between species divergence and time,

especially with large, i.e., n > 50, sample sizes). Note that

we estimated a single (global) Moran’s I statistics, instead

of a phylogenetic correlogram composed by several Mo-

ran’s I (see Gittleman and Kot, 1990; Diniz-Filho, 2001), so

that it was directly comparable with the other metrics. Be-

cause of random process at larger phylogenetic distances,

global Moran’s I cannot be so high, even under Brownian

motion. However, Moran’s I in the first distance class was

closer to 1.0 under Brownian motion and also decreased

676 Diniz-Filho et al.

Figure 1 - Frequency distributions of metrics measuring phylogenetic signal in a trait evolving under a Brownian motion model (a - Moran’s I; b - R2 from

an Autoregressive Model; c - R2 from a Phylogenetic Eigenvector Regression; d - Blomberg et al., 2003 K-statistics). All metrics were derived from 200

simulations of a Brownian motion model of trait evolution.

Table 1 - Spearman correlations under Brownian motion (below diagonal)

among estimates of phylogenetic signals, when using different metrics,

such as R2 from PVR and ARM, Moran’s I autocorrelation coefficient

(global, MORAN), Moran’s I for the first distance class (MORAN(1) and

Blomberg’s K statistics, at log-scale.

PVR ARM MORAN MORAN(1) K

PVR 1.000

ARM 0.796 1.000

MORAN 0.728 0.816 1.000

MORAN(1) 0.438 0.557 0.431 1.000

K 0.949 0.851 0.778 0.463 1.000



with the increase of the �-parameter in the O-U process, al-

though at a much lower rate (because, even under strong

O-U, similarity between closely related taxa persists - see

Hansen and Martins, 1996). Thus, using only first distance

class is more effective in taking into account more com-

plex, non-linear, models of evolution. Also, Moran’s I co-

efficients tend to be more independent of errors in the

phylogeny in general, being only affected by errors at a par-

ticular distance class (see Diniz-Filho and Nabout, 2009).

On the other hand, coefficients of determination de-

rived from PVR were usually very high and close to 1.0 un-

der Brownian motion (see Diniz-Filho et al., 2012b). More

importantly, they were highly correlated with K-statistics,

so PVR can be considered a powerful way to estimate the

relative amount of phylogenetic signal. Rohlf (2001) criti-

cized PVR as producing a trivial result when all eigen-

vectors are used to fully represent the phylogeny. Indeed,

when all eigenvectors are used, a trivial R2 of 1.0 is ob-

tained. Thus, although all eigenvectors are indeed neces-

sary to fully summarize the original phylogenetic distance

matrix (as in any Principal Coordinate Analysis), our re-

sults indicate that not all of them are necessary to correctly

estimate phylogenetic signal. Also, it is important to re-

member that a phylogenetic distance matrix is not error-

free and, therefore, some of the (residual) variation in this

matrix, summarized by eigenvectors associated to very low

(absolute) eigenvalues can be discarded (as in any multi-

variate analysis). In terms of scaling, we realize that using

the adjusted R2 offers a more appropriate range of values,

being closer to zero under strong O-U processes that mini-

mizes phylogenetic structure in data.

The main advantage of the model-based approaches,

such as K-statistics or �, is that they provide a reference

value for departure from Brownian motion, whereas the

pure statistical methods only indicate whether a small or

large amount of signal is present in data. Even so, the simi-

larity among the metrics suggests that they all must be

someway related to this evolutionary model and thus must

be calibrated according to neutral expectations. Indeed,

Diniz-Filho (2001) showed that, under Brownian motion,

phylogenetic correlograms were better described by a lin-

ear model (i.e., large positive Moran’s I coefficients in the

first distance classes, followed by non-significant coeffi-

cients and afterward by negative and significant coeffi-

cients at high phylogenetic distances). Here there is also a

conspicuous change in the correlogram profile and the

elimination of the phylogenetic signal with the increase of

the alpha parameter (which controls the strength of stabiliz-
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Figure 2 - Bivariate relationships between Blomberg et al. (2003) K- statistics and global Moran’s I (a), R2 from an Autoregressive Model (b) and from a

Phylogenetic Eigenvector Regression (c).

Table 2 - Results from the alternative metrics for phylogenetic signals analyzed here, including R2 from PVR and ARM, Moran’s I autocorrelation coeffi-

cient (global and in the first phylogenetic distance class), Blomberg’s K statistics and Pagel’s lambda, under the Ornstein-Uhlenbeck (O-U) process, with

distinct levels of restraining forces (alphas). Freq for lambda is the frequency with which values lower than 1.0 appeared in the 200 simulations.

O-U alpha PVR ARM MORAN K Lambda

Mean sd R2adj Mean sd Mean sd 1st class Mean sd Mean sd Freq

0 0.939 0.024 0.785 0.431 0.166 0.312 0.193 0.796 0.994 0.585 1.000 0.009 0.030

2 0.894 0.034 0.626 0.307 0.148 0.216 0.142 0.663 0.571 0.178 0.999 0.016 0.050

4 0.857 0.032 0.496 0.195 0.099 0.131 0.085 0.558 0.392 0.092 0.999 0.004 0.135

6 0.804 0.038 0.309 0.133 0.074 0.091 0.063 0.459 0.301 0.055 0.994 0.016 0.270

8 0.760 0.039 0.154 0.084 0.059 0.062 0.052 0.382 0.245 0.037 0.976 0.038 0.585

10 0.724 0.048 0.027 0.057 0.047 0.042 0.038 0.328 0.212 0.030 0.941 0.068 0.810



ing selection) of the O-U process. This reference value for

O-U is not available, however, for global Moran’s I coeffi-

cients, and also not for coefficients of determination from

PVR and ARM.

However, the distribution of Moran’s I and PVR’s R2

under Brownian motion obtained here can give some clues

on the expected values under Brownian motion. If Moran’s

I is interpreted as a ratio between evolutionary covariance

and total variance of a trait, it should be inversely related to

phylogenetic species variability (PSV) (Helmus et al.,

2007), which is actually the denominator of the K-statistics

of Blomberg et al. (2003). For the phylogeny used here, the

PSV was equal to 0.781, whose complement (1 - PSV) is

then equal to 0.219 and thus close to median Moran’s I

(= 0.278) from the simulations. This value of PSV indicates

that, due to the shape of the tree, a trait evolving under

Brownian motion would not attain a strong phylogenetic

signal, if measured by ratios of variances. Notice that K-sta-

tistics takes this possibility of different expectation due to

shape of the phylogeny into account by dividing the ob-

served by expected (under Brownian motion) ratio of vari-

ances.

For the PVR’s R2 the interpretation of Brownian mo-

tion expectation is even more obvious after the compari-

sons between metrics (i.e., PVR’s R2 and K), and follows

the reasoning of Rohlf (2001)for criticizing the PVR. If all

eigenvectors are needed to describe the full structure of the

phylogeny, and if using them will produce (by definition)

an R2 equal to 1.0, then not using all of them would produce

a drop in the R2 proportional to the importance of the

eigenvalues not used. Thus, if the eigenvectors used ex-

plain 95%, this value would be the expected R2 if a trait is

evolving linearly along the phylogeny. Indeed, the mean R2

from PVR was equal to 0.94, and it is possible to observe in

Figure 2c that this value corresponds to a K-statistics close

to zero (see Diniz-Filho et al., 2012b).

Notice that all these comparisons between PVR,

ARM and Moran’s I with K-statistics were performed using

simulated data on the same phylogeny, and thus the denom-

inator of K-statistics is constant throughout the compari-

sons. Thus, the quantity being compared is actually the

ratio between observed and phylogenetic mean squares, the

“absolute” magnitude of the phylogenetic effect in data

(see Blomberg et al., 2003). Further comparisons in which

several phylogenies are used are still necessary, and in this

case both the magnitude of the phylogenetic effect and the

shape of the phylogeny (the denominator of K-statistics)

would be taken into account.

Therefore, criticisms about these methods should be

re-examined by considering the phylogenetic relationships

used (e.g. Pavoine et al., 2007). Further analyses address-

ing more complex scenarios, including different tree

shapes, sample sizes and evolutionary models, can validate

their robustness and better establish their statistical power

under more variable situations. Also, now that theoretical

issues require the measurement of phylogenetic signal as

deviations (both positive and negative) from neutral expec-

tation of species divergence modeled by Brownian motion

(e.g., Cooper et al., 2010), it should be important to derive

neutral (not null) expectation for these statistics. However,

our analyses reveal that old metrics based on auto-

correlation analyses may still be valid and useful especially

when detailed phylogenies are unavailable or when trait

variation among species is difficult to describe by more

standard Brownian or O-U evolutionary models.
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