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To 	nd e
cient methods for classifying mine seismic events, two features extraction approaches were proposed. Features of
source parameters including the seismic moment, the seismic energy, the energy ratio of S- to P-wave, the static stress drop,
time of occurrence, and the number of triggers were selected, counted, and analyzed in approach I. Waveform characteristics
consisting of two slope values and the coordinates of the 	rst peak and the maximum peak were extracted as the discriminating
parameters in approach II. �e discriminating performance of the two approaches was compared and discussed by applying the
Bayes discriminant analysis to the characteristic parameters extracted. Classi	cation results show that 83.5% of the original grouped
cases are correctly classi	ed by approach I, and 97.1% of original grouped cases are correctly classi	ed by approach II.�e advantages
and limitations pertaining to each classi	er were discussed by plotting the event magnitude versus sample number. Comparative
analysis shows that the proposed method of approach II not only has a low misjudgment rate but also displays relative constancy
when the testing samples �uctuate with seismic magnitude and energy.

1. Introduction

Mining excavations induce elastic and then inelastic defor-
mation within the surrounding rock mass. A seismic event is
a sudden inelastic deformationwithin a given volume of rock.
Having recorded and processed a number of seismic events
within a given volume of interest Δ� over time Δ�, one can
then quantify the changes in the strain and stress regimes and
in the rheological properties of the rock mass deformation
associatedwith the seismic radiation [1, 2]. However, a variety
of dynamic processes in mines which radiate seismic waves
are detected by the seismic monitoring systems and in gen-
eral, seismograms generated by a development or production
blast and a shear fracturing or a sudden slip on a surface
of weakness are the majority of records [3–8]. As recorded
quarry blasts may mislead scienti	c interpreting and lead to
erroneous results in the analysis of seismic hazards in mines,
standard processing of seismic monitoring data require these
events to be separated. An automatic classi	er is necessary
to be developed to reduce the dramatically arduous task of
	nding to which class each recorded event belongs [9–17].

Many researches have been carried out on the topic
of source location during the last decade. All techniques
for source location methods can be classi	ed under two
conditions that require prior knowledge of the sonic speed of
the structure [18] andmethods that do not require such infor-
mation [19–21]. However, few researches focused on the dis-
crimination of mine seismic events in the past. Generally two
steps, features extraction and statistical identi	cation, could
be separated from all those limited amount discriminators.
Parameters characterizing the source (such as magnitude,
potency, moment, energy, static stress drop, apparent stress,
and apparent volume) and parameters directly extracted
from the seismograms (including amplitude, polarization,
frequency, correlation coe�cient, and travel time) are the
two categories of discriminating features. Statistical method-
ologies like �sher discriminant classi�er, logistic regression,
unascertained measurement, and neural networks have been
occasionally carried out onmine seismic events identi	cation
and classi	cation.

Malovichko selected the time of day, the repetition of
waveforms, the high-frequency versus the low-frequency
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Figure 1: �e microseismic monitoring system installed at Yongshaba mine: (a) isometric view of the ground surface, tunnels, and the
microseismic monitoring system and (b) the con	guration of the seismic network used in the project.

radiation and the radiation pattern as features and then
established the GaussianMaximumLikelihoodClassi	cation
method for the classi	cation [2]. �is method provides
a way to identify signals of di�erent type, but the great
amount of computation leads to low e
ciency. Vallejos and
McKinnon proposed the identi	cation of seismic records in
seismically activemines by considering the logistic regression
and the neural network classi	cation techniques. An e
cient
methodology was presented for applying these approaches to
the classi	cation of seismic records [3]. However, the calcu-
lation of seismic source parameters requires precise signal
processing, namely expertise-required and time-consuming
P- and S-wave hand-picking. Besides, the statistical classi	-
cationmodels that only rely on source parameters show great
di�erence in accuracy when applied to di�erent mine sites.

Liu et al. proposed a synthesis method to identify micro-
seismic event based on the triggering principle of short term
average to long term average [9]. But very small �uctuations
in the threshold would cause a great rate of misclassi	cation
since the threshold setting completely depends on experi-
ence. Zhu et al. decomposed the microseismic signals into
5 layers to gain speci	ed frequency bands using wavelet
analysis. Based on the box fractal dimensions and those
speci	ed frequency bands, 23-dimensional values of pattern
recognition feature vector were established. �e support
vector machine, which was adopted to train, classify, and rec-
ognize, shows a correct identi	cation rate of 94% [10]. Jiang
et al. presented a three-step strategy to achieve the classifying
of local multichannels microseismic waveforms. �e author
extracted the time-frequency, the amplitude distribution,
and the correlation coe
cient as features and established
an e�ective judgment mechanism [11]. However, the studies
did not provide much attention to the huge workload of
calculation in practical application. �eir input data could
not be obtained directly from the monitoring system and
their calculation algorithm is very complicated.�e e
ciency
of identi	cation still needs further improvement since any
algorithm must be as simple as possible in order to run on
a small low-power microprocessor.

A classi	cation method of mine blasts and microseismic
events suing the starting-up features in seismograms was
proposed. It is a method that presents less computation
with a relatively low misjudgment rate. In this study, the
Bayes discriminant classi	er is applied to further analyse
the “starting-up features.” �e di�erential discriminating
performances acquired by means of extracting the features
of, respectively source parameters and waveform, were com-
pared and discussed.

2. Data

2.1. Engineering Background. �e Yongshaba Mine is located
at Gaobang, which is about 85 km northeast of Guiyang
(26∘38�N, 106∘37�E), Guizhou Province, PR China. It is the
main operation base of the Guizhou Kailin Co. Ltd. with
phosphate production capacity over 200,0000 tons/year. �e
current exploitation stopes are mainly scattered on levels of
1090m to 840m with a relative depth of 500m to 700m
below the surface. Tens of millions of tons has cumulatively
excavated employing open stoping mining method since
initial operating in the 1950s.

�e study region covers a volume of approximately
3000m × 300m × 350m, between the depths of 300m and
700m below the surface. �e underground microseismic
monitoring system, used to inform the evolution of the
microfracture behavior, consists of 26 uniaxial and 2 triaxial
geophones (Figure 1). �e geophone manufactured by IMS
holds a natural frequency of 14Hz and a sampling rate of
6000Hz. Signals from various dynamic processes, fracturing
in rock mass, production and development blasts, impacts,
and vibration of machinery, all are being recorded by the
microseismic monitoring system.

2.2. Databases. �e sample databases used in this study
consist of two parts: the subset of the signals of blast events
and the subset of the signals of normal microseismic events.
Each of the signals in the blast subset has been con	rmed
to be consistent with the blast operations according to
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Figure 2: Two typical seismic source processes inmines, blast (a) and shear fracturing (b) (Malovichko 2012). Radiation pattern of an idealized
explosion and of a strike-slip earthquake along a vertically dipping fault are shown correspondingly (Bormann, 2002). �e arrows show the
directions of compressional (outward, polarity +, red shaded) and dilatational (inward, polarity −, green shaded) motions in P-wave.

the time and location records provided by the mining
workers.�e subset of themicroseismic events can be divided
into two parts: those related to discrete, large-scale rock
mass failures and those not resulting in observable rock mass
damage. �e observable ones also have been con	rmed to
be consistent with the fact. For the unobservable ones, they
were processed manually by three independent processors.
To aid in determining whether an event is a microseismic
or not, the guide lines of an unequivocal classi	cation
were listed in Table 1. Only when the three discriminating
results are exactly equivalent can the event be recruited into
the database. �ose events that could not be determined
which type belongs to by manually approaches, were not
enrolled into the sample database. �e databases used in this
paper contain a total of 103 seismic records with all seismic
parameters calculated, from which 56 are labeled as normal
events and the others are tagged as blasts.

3. Discriminating Features

3.1. Approach I: Source Parameters. A seismic event is the
sudden release of potential or stored energy in the rock.
�e released energy is then radiated as seismic wave [7].
�e two typical seismic source processes in mines (the blasts
and the shear fracturing of the microseismic events) and
its approximate radiation patterns are shown in Figure 2.
It is obvious that the explosion radiates predominantly P-
waves outward directing compressional directions while the
shear fracturing or slip on a surface radiates S-waves that
are stronger than P-waves. �ese characteristics can be used
to identify the type of source process and to discriminate
between blasts and microseismic events [2].

3.1.1. Seismic Moment. �e basic characteristics of radiation
can be described by a seismic moment tensor. �is tensor

represents a set of 	ctitious dipoles acting on a point in the
source area.�emoment tensor makes it possible to describe
the low-frequency amplitudes and polarities of seismicwaves.
Inverting the moment tensor from the observed waveforms
and analysis of its components allows the discrimination
of blasts from slip-type and, even, from crush-type events
[2, 13, 14].�e logarithm of the seismicmoment is considered
as the feature of radiation.

Figure 3(a) shows that the values of the log(�) at the
points with the highest probability density are 10.0 for blasts
and 8.0 for microseismic events. �e seismic moment is
a relative useful performing discriminating feature as it
provides a relatively large separation between normal events
and blasts.

3.1.2. Seismic Energy. �e energy release during rock frac-
turing and frictional sliding comes from the transformation
of elastic strain into inelastic strain [14]. �is transformation
may occur at di�erent rates ranging from slow creep-like
events to very fast dynamic seismic events. �e average
velocity of deformation at the source is up to a few meters
per second. Unlike the dynamic sources of the same size,
the slow type events have long time duration at the source
and thus radiate predominantly lower frequency waves. In
terms of fracture mechanics, the slower the rupture velocity
is, the less energy the event radiates. A quasi-static rupture
would radiate practically no energy. Similarly for blasting,
smaller blasts make smaller changes to the rockmass ormore
gradual stress changes, so that the response is less dynamic
[12–16].

Observations from the probability density distribution
(Figure 3(b)) indicate that the seismic energy is one of the
best performing discriminating features. �e value of log(�)
distributed from−2 to 2 formicroseismic events and 0 to 6 for
blasts. More than 65% of the blasts events could be accurately
identi	ed in terms of this single indicator.
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Table 1: Guidelines for mine seismic events classi	cation manually.
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Blasts, especially stope 	rings, have multiple delays, which are
expressed in the seismogram as similar signals repeating closely
within a short time interval. �e practice of decides whether an event
is a blast or a microseismic event is based on the repetition feature.
Besides, seismograms capturing a blast will have a monotonically
decreasing tail commonly. For the waveform of a microseismic signal,
a large amplitude di�erence exists between the maximum peak and
the peak closest behind, without a gradual decrease.

�e steeper rise in the energy curve of the normal
event
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Seismograms capturing a microseismic event usually associated with
shear fracturing and have an S-wave arrival more obvious than in the
cases of blasts due to the source of the latter are usually in the focal
mechanism of expansion and compression. Furthermore, blasting
events will typically have a consistent gradual rise in their energy
curve while seismic events will tend to have a steeper, more distinct,
rise in the energy curve, and the energy curves for blasting events can
be loosely compared to a positive sloping �at line.

�e time of occurrence
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Another way to eliminate blasts from the microseismic catalogue is to
apply the time 	lters (i.e., generally mines have prescribed blasting
times, and the events that does not occur at the blasting time are
marked as microseismic events). Two main daily blasting shi�s are
observed from the typical diurnal chart of Chinese mines, hours
between 10∼16 (stope 	rings) and 23∼1 (development 	rings), each of
which triggers an increase in seismicity. It has to be classi	ed
referring to other features for the cases that recorded during the
blasting time and located close to the blasting area.
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Fp = 66.87

Fp = 22.11 A large number of actual observations and analysis show that blasts
or explosions usually radiate higher frequency waves compared to
normal microseismic events. �e statistics show that the value of the
dominant frequency of the microseismic events varies from 10 to
100Hz and from 70 to 260Hz for blasts. In addition, blasting events
will typically not be well matched to the Brune’s model curve as
plotted in the Stacked Spectra Plot within TRACE (the so�ware
provided by IMS). Spectral analysis is o�en considered as a relative
e�ective method to distinguish blasts from microseismic events.
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Table 1: Continued.

Characteristics Description
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�emaximum amplitude of the waveform, which characterizes the
size of energy released, is also considered as an important reference
for the recognition of blasts and microseismic events. Generally the
maximum vibration velocity of microseismic events is about
10−5m⋅s−1 far less than 10−3 m⋅s−1 of the blasting. However, this
approach cannot be considered as universally applicable since it is
possible to have a scenario where a blast triggers shear fracturing that
radiates stronger seismic signals than the blast itself.

3.1.3. S : P Energy Ratio. �ere are several seismic phases, but
only S-waves and P-waves are commonly recorded in mining
induced seismicity. P-waves, or compressive waves, are the
	rst ones which arrive at receivers. When seismic waves
propagate, they carry energy from the source of the shaking
outward in all directions. �e ratio between S-wave energy
and P-wave energy can be an indicator of seismic source
mechanism [4]. Seismic energy is proportional to the integral
of the square of the vectorial sum of the velocity waveform
and can be calculated separately for the P-wave and S-wave
[7]. For fault-slip type events in seismology (earthquakes),
there is considerablymore energy in the S-wave than in the P-
wave with the ratio of the S-wave energy to the P-wave energy
frequently greater than 10 [12]. Urbancic et al. noted that
for nonshear seismic source mechanisms, there would be a
de	ciency in S-wave energy or relatively more P-wave energy
than for shearing events. For nonshearing eventmechanisms,
such as strain-bursting, tensile failure, and volumetric rock
mass fracturing, the ratio of S-wave energy to P-wave energy
is frequently in the range of 3 or less [14].

Observations from Figure 3(c) point out that the most
probability of the log(�S/�P) falls in the interval of 0.0 to
2.0 for microseismic events and −1.0 to 4.0 for blasts. It was
obvious that the S : P energy ratio performs not well in this
mine site since too small separation was provided.

3.1.4. Static Stress Drop. Shearer de	ned the term-stress
drop, Δ	, as the average di�erence between the stress across
the fault before and a�er an earthquake [17]. �ere are
several di�erent methods of determining the stress drop,
of which some use records of ground velocity and ground
acceleration. Stress drops can vary considerably from event
to event. For microseismic events in Yongshaba mine, the
range of log(SSD) is from 2.5 to 4.5 and 3.0 to 6.5 for blasts
(Figure 3(d)). �is parameter plays a tremendous role in
Yongshaba mines seismic discrimination.

3.1.5. Time of Occurrence. Mining-induced seismic events
occur most of the time in the ultimate proximity of mine
workings and concentrate during blasting time. Statistical
results show that almost all the blasts occur at 10:00 to 15:00
and rarely occur in other time (Figure 3(e)). However, a
large number of microseismic events take place at this time
simultaneously.�e performance of the “time of occurrence”
is discounted.

3.1.6. Number of Triggers. �e Number of triggers is a�ected
by many factors. Mine layout, geological features, seismic
locations, and the sensor array all are likely to a�ect the
number of triggered sensors. It should be guaranteed that
the potential areas of microseismic occurring and blasting
operations are enclosed inside the sensor array. Only in
this way can the “number of triggers” re�ect the pattern of
seismic wave propagation and the scale of seismic energy.
Figure 3(f) shows blasting events usually triggering more
sensors than normalmicroseismic events.�e discriminating
feature of the “number of triggers” provides a relatively
medium separation between normal events and blasts.

3.2. Approach II: Waveform Features. �e classi	cation
method of mine blasts and microseismic events suing the
starting-up features in seismograms was proposed. Signals
from databases of di�erent event types were drawn into a
uni	ed coordinate system. All waveform sections are starting
at the point of each P-wave 	rst arrival and ending in their
	rst peak points (Figure 4(a)). It is noticed that the starting-
up angle of the two types tends to be concentrated into
two di�erent intervals. Since it is di
cult to calculate the
starting-up angle directly due to the inaccuracy of P-wave
arrival’s picking, the slope value of the starting-up trend line
obtained from linear regression was proposed to substitute
the angle. Two slope values associated with the coordinates
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Figure 3: Distributions of the measured features for the database are displayed as histograms. �e seismic energy is the best performing
discriminating feature as it provides maximum separation between normal events and blasts. �e feature “time of occurrence” provides the
slightest separation between blasts and normal events.
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the reds represent the selected). �e x- and y-axis in frame (b) represent the time and the amplitude axis in frame (a).
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Figure 5: Comparison chart of slope value of the two starting-up trend lines within waveforms of blasts andmicroseismic events. Histograms
are used to illustrate the behavior of the discriminating features.

of the 	rst peak and the maximum peak were extracted as the
characteristic parameters.

Set 
1 as the absolute value of the slope of the trend line
of the waveform section that is from the P-wave arrival to
the 	rst peak, and set 
2 as the absolute value of the slope
of the trend line of the waveform section that is from the P-
wave arrival to the maximum peak. �e two trend lines are
constructed by linear regression based on four points. �e
method of the features extraction and their performance are
displayed in Figures 4 and 5.

4. Method

Bayes discriminant is a branch of modern statistics with the
basic hypothesis that some certain cognitions of the studying
collectivity had been received before extracting samples.
Generally using the priori probability to describe the level of
awareness, and then the posterior probability was obtained by
modifying it [22–26].

Suppose G = (X1,X2, . . . ,Xp)� is a collectivity with �
member indexes, and �1(X) and �2(X) are the distribution
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density functions of the two collectivities: G1 which refers to
blasts and G2 which refers to microseismic events. Indexes
X1, X2, X3, X4, andX5 represent the characteristic parame-
ters, respectively.

�e priori probability of G1 and G2 are calculated by the
following formulas:

�1 =  (G1) =
�1

�1 + �2
, �2 =  (G2) =

�2
�1 + �2

, (1)

where �1 and �2 are the number of training samples belonged
to the collectivity G1 and G2.

Set Σ1, Σ2, and Σ as the covariance matrix of G1, G2,
and G. �e Bayes discriminant function can be expressed as
follows when Σ1 = Σ2 = Σ:

�� (X) = (Σ−1�j)
� − 0.5�j

�Σ−1�j + ln��, � = 1, 2, (2)

where �j is the mean vectors of Gj and the generalized

squared distance function can be obtained as

�2� (X) = (X − �j)
� Σ−1 (X − �j) − 2 ln��. (3)

�e a posteriori probability function can be obtained as
follows:

 (Gj | X) =
���� (X)

�1�1 (X) + �2�2 (X)
. (4)

Since pj��(X) ∝ exp[−0.5�2�(X)], then

 (Gj | X) =
exp [−0.5�2� (X)]

exp [−0.5�21 (X)] + exp [−0.5�21 (X)]
. (5)

Normally �1, �2, and Σ are unknown and their estima-

tion values �̂1, �̂2, and Σ̂ can be obtained from the training
samples; then

�̂2� (X) = (X−�̂j)
� Σ̂−1 (X−�̂j) − 2 ln��. (6)

�e estimation of a posteriori probability function is

̂ (Gj |X) =
exp [−0.5�̂2� (X)]

exp [−0.5�̂21 (X)] + exp [−0.5�̂21 (X)]
. (7)

Bayes discriminant criterion can be expressed as

X ∈ G1, when ̂ (G1 | X) ≥ ̂ (G2 | X) ,

X ∈ G2, when ̂ (G1 | X) < ̂ (G2 | X) .
(8)

To estimate the reliability of the discriminator, the resub-
stitutionmethod was used to calculate the misdiscrimination
rate. All the training samples were regarded as the new
samples and resubstituted into the classi	er. �e rate of
misjudgment can be evaluated by the following index �̂:

�̂ = �12 + �21
�1 + �2

, (9)

where �12 is the number of training samples regarded to be
G2 which belong to collectivity of G1 actually and �21 is the
number of training samples discriminated as G1 but belongs
to G2 in fact.

Table 2: Prior probabilities for groups.

Type Prior
Cases used in analysis

Unweight Weighted

Blast 0.5 47 47.0

Microseismic event 0.5 56 56.0

Total 1.0 103 103.0

5. Results

�eaimof the present study is to compare the two approaches
for event accurate identi	cation of di�erent classes.�eBayes
discriminant models for signal identi	cation are established
a�er developing the theory discussed above to the 103 sets of
samples selected. �e prior probabilities for di�erent groups
and the classi	cation function coe
cients are listed in Tables
2 and 3.

As can be seen from the classi	cation functions coef-
	cients, the features of source parameters are in the fol-
lowing order according to their importance in the accurate
identi	cation of microseismic events: the seismic moment,
the static stress drop, the seismic energy, the S : P energy
ratio, the number of triggers, and the time of occurrence.
According to their importance in the accurate identi	cation
of microseismic events, the waveform characteristics are in
order of the time of the 	rst peak arrival (�11), the amplitude
of the maximum peak ( 21), the slope value of the 	rst trend
line (
1), the slope value of the second trend line (
2),
the amplitude of the 	rst peak ( 11), and the time of the
maximum peak arrival (�21).

�e classi	cation results show that 83.5% of original
grouped cases are correctly classi	ed by approach I, and
97.1% of original grouped cases are correctly classi	ed by
approach II (Table 4). �e results show that the second
features extraction approach (waveform characteristics) has
higher accuracy. Although the input data used for classi	-
cation in approach II cannot be given directly by the moni-
toring systems, the calculation process of those characteristic
parameters are not complicated.

�ese misclassi	ed events are labeled in Figure 6 accord-
ing to the order of moment magnitude. Figure 6 shows the
misclassi	ed cases of both approaches falling without speci	c
magnitude intervals. It is concluded that the error rate is not
a�ected by the seismic magnitude or the scale of seismic
energy. Although approach I has a higher misclassi	ed rate
with a more complex computation, it has been widely used in
many mines. Approach II is a new straight-forward method
with lower error rate and got very good application in the
Yongshaba mine. But in other mines or in more complex
cases (mines existing variety of dynamic processes which
radiate seismic waves, such as shock and vibrations induced
by orepass), the feasibility of this approach may need further
improvements.

6. Conclusion

(1) �e considerations and the criteria of manual identi	-
cation of blasts and microseismic events were summarized
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Table 3: Classi	cation function coe
cients.

Approach I log(�) log(�) log(�S/�P) log(SSD) TOOa NOTb Constant

Blast 18.229 −9.827 2.964 18.790 0.625 −1.495 −11.242
Microseismic 18.248 −9.761 2.410 16.133 0.557 −1.596 −100.464
Approach II log(�11) log( 11) log(
1) log(�21) log( 21) log(
2) Constant

Blast −92.588 3.878 −8.471 −3.704 −33.644 −4.304 −186.187
Microseismic −91.487 2.263 −10.915 −0.344 −32.830 −7.053 −193.783
aTOO presents the time of occurrence; bNOT presents the number of triggers.

Table 4: Classi	cation results.

Type

Predicted group membership Predicted group membership

(approach I) (approach II) Total

Blast Microseismic events Blast Microseismic events

Count

Blasts 39 8 46 1 47

Microseismic events 9 47 2 54 56

%

Blasts 83.0 17.0 97.9 2.4 100.0

Microseismic events 16.1 83.9 3.6 96.4 100.0

83.5% of original grouped cases are correctly classi	ed by approach I, and 97.1% of original grouped cases are correctly classi	ed by approach II.
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Figure 6: Events that are misclassi	ed: frame (a) misclassi	ed by approach I and frame (b) misclassi	ed by approach II. �e hollow ones
represent the misclassi	ed cases.

based on experiences.�eguide lines listed in this study cover
well the majority of all the encountered situations in seismic
data processing. �e sample databases of the two types’
events were established by three independent processors with
reference to these guidelines.

(2) Two features extraction approaches were proposed.
Features of source parameters including the seismicmoment,
the seismic energy, the energy ratio of S- to P-wave, the
static stress drop, the time of occurrence, and the number of
triggers were selected, counted, and analyzed in approach I.

Waveform characteristics consisting of two slope values and
the coordinates of the 	rst peak and the maximum peak were
extracted as the discriminating parameters in approach II.

(3) �e discriminating performance of the two
approaches were compared and discussed by applying the
Bayes discriminant analysis to the characteristic parameters
extracted. �e classi	cation results show that 83.5% of the
original grouped cases were correctly classi	ed by approach
I, and 97.1% of original grouped cases were correctly classi	ed
by approach II.
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(4) Comparative analysis shows that the misclassi	ed
cases of the two approaches all fall without speci	cmagnitude
intervals. �e error rate is not a�ected by the seismic magni-
tude. Although approach II has got very good application in
the Yongshabamine, the feasibility of this approachmay need
further improvements in other mines or in more complex
cases, mines existing in variety of dynamic processes which
radiate seismic waves, such as shock and vibrations induced
by orepass.
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