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This paper compares a variety of modal decomposition methods used in matched-mode processing 

(MMP) for ocean acoustic source localization. MMP consists of decomposing far-field acoustic mea­

surements at an array of sensors to obtain the constituent mode excitations (modal decomposition), 

and then matching these excitations with modelled replica excitations computed for a grid of possible 

source locations. Modal decomposition can be ill-posed and unstable if the sensor array does not pro­

vide an adequate spatial sampling of the acoustic field, so the results of different approaches can vary 

substantially. Solutions can be characterized by modal resolution and solution covariance; however the 

ultimate test of the utility of the various methods is how well they perform as part of a MMP source 

localization algorithm. In this paper, the resolution and variance of the methods are examined using 

an ideal ocean environment, and MMP results are compared for a series of realistic synthetic test cases, 

including a variety of noise levels and sensor array configurations. Zeroth order regularized inversion is 

found to give the best results.

SO M M A IRE

Cet article compare différentes méthodes de décomposition modale utilisées en matched-mode process­

ing (MMP) pour la localisation de source acoustique marine. La méthode MMP consiste à décomposer 

le champ acoustique mesuré par un réseau de capteurs pour obtenir les excitations modales présentes 

(décomposition modale), et ensuite à faire correspondre ces excitations avec les excitations calculées par 

un modèle numérique pour une grille de positions possibles de la source. Le problème de décomposition 

modale peut être mal posé et instable si les capteurs du réseau ne fournissent pas un échantillonnage 

spatial adéquate du champ acoustique. Les résultants de différentes approaches peuvent donc varier 

considérablement. Les solutions peuvent être caractérisées par la résolution modale et la covariance de 

la solution. Cependant, le critère ultime d’utilité des différentes méthodes est de savoir leur degré de 

perfomance dans l’algorithme MMP pour la localisation de source. Dans cet article, la résolution et 

la variance des méthodes sont examinées en utilisant un environnement océanique idéal. Les résultats 

obtenus avec la méthode MMP sont comparés pour une série de cas réalistique et synthétiques, com­

prenant différents niveaux de bruit et différentes configurations du réseau de capteurs. Les meilleurs 

résultats sont obtenus avec la méthode d’inversion basée sur une régularisation d’ordre zéro.

1. IN T R O D U C T IO N

Localization of acoustic sources is an important prob­
lem in underwater acoustics. Two common approach­

es to this problem are beamforming (e.g., Burdic1) and 
matched-field processing2-5 (MFP). Beamforming as­
sumes the incident acoustic fields consist of plane waves, 
and searches for the inter-sensor time delay and corre­

sponding incidence angle that maximizes the total 
acoustic power. This provides the bearing of the acoustic 

source, but not its range and depth. MFP localization

matches acoustic pressure fields measured at an array of 
sensors with replica fields computed for a grid of possible 
source locations using a numerical propagation model, 
and can provide localization in range, depth, and bear­

ing. A third method for localizing an acoustic source 
is matched-mode processing (MMP), which is similar to 

MFP, but decomposes the measured fields to obtain the 
excitations of the constituent propagating modes, and 
matches these with modelled replica excitations.

A potential advantage of MMP over MFP is that sub­
sets of the complete mode set can be considered. Thus,
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for example, in cases where bathym etry or geoacoustic 

param eters of the seabed are poorly known, the m atch ­

ing can be applied only to  low-order modes which inter ­

act minimally with the bo ttom .7,8 However, a potential 

disadvantage of MMP involves the  modal decomposition 

itself. Modal decomposition represents a  linear inverse 

problem th a t is non-unique (an infinite number of 

solutions exist) and can be unstable (small errors on the 

measured da ta  can lead to  large errors on the solution). 

MM P can provide poor results when the sensor array 

inadequately samples the acoustic field. If an array con­

tains fewer sensors than  there are propagating modes, the 

highest-order mode functions are under-sampled (spatial ­

ly aliased), and the inversion is singular. Alternatively, if 

the  array aperture spans too  small a  fraction of the wa­

te r  column, the lowest-order modes are poorly sampled, 

leading to  an ill-conditioned decomposition problem.

Standard techniques of inverse theory, such as least 

squares, singular-value decomposition (SVD), and zeroth- 

order regularization, have been applied to  compute a 

generalized pseudo-inverse for the  modal decomposition 

problem.9-14 The constructed solution can be character ­

ized in term s of the modal resolution and solution vari­

ance. However, for this paper, the  ultim ate test of a 

modal decomposition m ethod is how well it performs in 

source localization, quantified here by the probability of 

correct localization for realistic synthetic test cases.

This paper compares a variety of modal decomposi­

tion techniques by considering solution resolution and 

variance, and localization performance. Although several 

papers have compared different approaches to modal de- 

compostion in various ways,10-13 a  tru ly  comprehensive 

comparison considering resolution, accuracy and local­

ization performance has not been carried out. The paper 

is organized as follows. Section 2 reviews the underlying 

theory, including the normal-mode model, pertinent re ­

sults from linear inverse theory, and an overview of modal 

decomposition methods. Section 3 provides modal reso ­

lution and solution variance comparisons for an ideal 

ocean environment using a variety of array configura­

tions. In Sec. 4, MMP source localization results for re ­

alistic testcases are compared. Finally, Sec. 5 summarizes 

the paper.

2. THEORY

2.1 N o rm a l M o d es

In the far-field, the normal-mode model for the  acous­

tic pressure signal s a t depth z  due to  a point source a t 

a  depth z s and range r  can be w ritten as4,5

M
o i k m T

s{r,Z) = b ^  < t>m{zWm{Zs)-7= ,

m—1 VK,nr
(1)

where * denotes complex conjugation, cj)m and k rn rep ­

resent the  m th  mode function and horizontal wavenum- 

ber respectively, M  is the to ta l number of propagating 

modes, and b — e ^ ^ y / z i r / p ( z s ) where p  is density. The 

mode functions are eigenfunction solutions of the depth-

separated wave equation, and form an orthonorm al set 

according to 6

fJo
4>m{z)(l)*n{z) 

P(z)

if m  7̂  n,  

if m  =  n.
(2)

The mode function shape depends on c(z)  and the bound ­

ary conditions applied a t the  ocean surface and bottom .

In the special case of an ideal ocean consisting of a 

homogeneous water column (p(z) =  p and c(z)  =  c) of 

depth h  and perfectly-reflecting boundary conditions of 

a pressure release surface (s(r, 0) =  0) and a rigid seafloor 

(ds  (r, h ) / d z  =  0), the mode functions and radial wavenum- 

bers are given by

4>m{z) =  J  — sin(Kmz),

km =  [W2/C2 -  « 4 ]1/2,

and the vertical wavenumbers nm by

(2m — 1 ) 7T
Km —

2 h

(3)

(4)

The horizontal wavenumbers are either real (w2/c 2 >  

corresponding to  trapped  modes, or purely imaginary 

(w2/c 2 < s j , ) ,  corresponding to evanescent modes th a t 

decay exponentially w ith range. For a general ocean en ­

vironment, including variable ocean sound speeds and 

a layered elastic bottom , simple analytic expressions do 

not exist for <j>m , k m , and nm, b u t they can be computed 

numerically using a  model such as ORCA.15

If the acoustic signal is recorded a t a vertical line array 

(VLA) of N  sensors, (1) can be w ritten  as a linear m atrix  

equation

A  x  =  s, (5)

where s =  [s(^i ) , . . . ,  s(2;jv)]t  represents the signal vector 

and T  denotes transpose, A  is an N  x M  m atrix  with 

columns consisting of the  sampled mode functions

A  =

0i(zi) 4>m {z i )

<t>l(zN ) . . .  <Pm {z n )

(6)

and x  is a  vector of the  mode excitations a t the  receivers

...w

Note th a t  x contains all the  inform ation regarding source 

location (range r  and depth z s). In practical cases, the 

signal is contam inated by additive noise n , so (5) be ­

comes

A x  =  s +  n  =  p, (8)

where p is the vector of measured acoustic pressures 

p = \p {z{ ) , . . . , p (z n ) ] t . M odal decomposition consists 

of solving (8) for an estim ate x  of the true  mode excita ­

tions x.
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2.2 General Linear Inverse Theory

The modal decomposition problem presented in the 

previous section is representative of a class of discrete 

linear inverse problems. This and the following section 

provide an overview of results from linear inverse theo­

ry relevant to this paper; more complete treatments are 

available in Refs. 17-20. If the matrix A is square and 

well-conditioned, an exact inverse A -1 and a solution to 

the inverse problem x =  A -1p exist. However, A is often 

neither square nor well-conditioned, so methods of linear 

inverse theory must be employed to obtain a solution. 

Specific modal decomposition inversion methods for con­

structing solutions are discussed in Sec. 2.3. This section 

introduces general methods of examining the characteris­

tics of a solution x  obtained using any generalized inverse 

A -9 (e.g., Menke19),

x =  A ~9 p. (9)

The solution can be characterized by three properties: 

(i) data misfit, (ii) model resolution, and (iii) solution 

covariance.

The data misfit (i.e., the level to which the solution 

fits the data) is typically quantified by

X 2 =  |G (Ax  -  p)|2 

=  p f ( A A ~ 9 -  I)t G*G (AA"« -  I) p, (10)

where G  is a diagonal matrix with the reciprocal of the 

estimated standard deviation for the ith  datum pi on 

the main diagonal, I is the identity matrix, and f de­

notes conjugate (Hermitian) transpose. If the data errors 

are assumed to be independent, zero-mean, Gaussian- 

distributed random variables, minimizing (10) leads to 

the maximum-likelihood solution. Under the assump­

tion of Gaussian noise, the misfit in (10) is distributed 

according to the central x 2 distribution.16 In addition, if 

the noise terms all have the same standard deviation £, 

(10) simplifies to

X2 =  p t [A A - * - I ] 2p /£2. (11)

If A -9 acts like a right inverse, then AA~9 =  I and 

X2 =  0. The closer A A~9 is to I, the smaller the mis­

fit. However, for noisy data, the solution should not be 

expected to fit the data too closely. For Gaussian noise, 

a  statistically meaningful level for misfit is \ 2 =  2N, the 

expected value for N  complex (noisy) data.16’20 For the 

case of correlated noise, (10) can be generalized by re­

placing the G^G term by the inverse of the estimated 

data covariance matrix (nn^), where (•) represents the 

expected value.

Model resolution indicates how well individual param ­

eters of the model can be resolved. Noting that (p) = 

A(x) from (8), it follows tha t for the noise-free case, 

x =  A -9 s =  A -9 A(x), or

x =  R(x), (12)

where

R  =  A -9 A  (13)

is defined to be the model resolution matrix. If R  = I, 

each model parameter is perfectly resolved. If R  is diago­

nally dominant (small non-zero off-diagonal terms), each 

parameter is well-resolved. However, if R  has significant 

non-zero off-diagonal terms, the parameters of x repre­

sent weighted averages of the expected parameters, and 

cannot be individually resolved. Resolution matrices for 

several different modal decomposition methods and VLA 

configurations are illustrated in Sec. 3.
The solution covariance is defined as

C =  ([x  — (x)][x — <x)]t> =  A~9(nn^)(A-9 ) .̂ (14)

For Gaussian errors with the same standard deviation £, 

(nnt) =  £2I, and

C =  £2A - 9 (A“9)t. (15)

The m th diagonal element Cmm gives the variance of the 

m th model parameter xm, with the solution standard de­

viations given by am = \JCrnrrl. Note tha t these standard 

deviations are with respect to the expected solution (x), 
which only coincides with the true solution for even- and 

over-determined problems. The off-diagonal terms of C 

represent the covariances between solution parameters.

In general, for linear inverse problems, there is a trade ­

off between solution variance and resolution. The fol­

lowing section illustrates how particular solutions can be 

developed for the modal decomposition problem by ex­

ploiting this trade-off.

2.3 Modal Decomposition  Methods

This section briefly reviews the various inversion meth­

ods applied to modal decomposition. One of the simplest 

approaches to modal decomposition is the sampled-mode 

shapes (SMS) filter. This method is based on the as­

sumption th a t the modes are orthogonal and applies A^ 

as the general inverse to (8) to obtain9,21

x «  A  ̂p. (16)

Equation (16) provides a fast (no matrix inversion) and 

effective solution as long as the modes are well-sampled 

over their entire extent so th a t the columns of A are ap­

proximately orthonormal. Buck et al.13 noted that the 

generalized SMS inverse is optimal for detecting a sin­

gle mode in spatially white noise, but is non-optimal for 

more than one mode when the spatial modal sampling 

does not preserve mode orthogonality. They suggest nor­

malizing At by applying a matrix W  so that the diagonal 

elements of W A^A are unity, where

W  =  diag [||<Mz)ir2, • • •, H m ( z ) \ \ - 2] (17)

and \\(t>m\\2 = Y j j  \4>m{zj) \2/ p { z j ) d z  for j  sampled depth 

points. The modal resolution (13) for the SMS pseudo­

inverse is found to be

R  = W A t A, (18)

and the solution covariance (14) is

C =  ( 2W A t A W t. (19)
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This method can perform poorly if an adequate sampling 
of the modes (to ensure orthogonality) is not possible, 
particularly in practical cases of an acoustically pene­
trable seabed where the mode functions extend into the 
bottom.

The least-squares (maximum likelihood) solution is de­
termined by minimizing the x 2 misfit

X2 = (A x — p)* G* G (A x — p) (20)

by setting dx2/dSi =  0 to yield

i c = [ A t G t G A ) - 1A t G t Gp.  (21)

Note that if A is orthogonal and the data have the same 
uncertainty, the least-squares solution (21) reduces to the 
SMS solution (16). The least-squares approach provides 
an unbiased estimate of the true solution (i.e., the 
solution to the noise-free problem) provided the matrix 
in square brackets is non-singular. In addition to the pos­
sibility of singularity, the matrix can be ill-conditioned, 
leading to an unstable inversion (i.e., small errors in the 
data can lead to large errors in the solution).

A common approach for solving ill-conditioned inver­
sions is based on singular-value decomposition (SVD).16 
The SVD of GA is given by

G A =  U A V t , (22)

where U and V are N  x M  and M  x M  matrices whose 
columns are orthonormal eigenvectors, and A is a M  x M  
diagonal matrix of singular values ordered according to 
decreasing magnitude. Using (22) in (21), the SVD solu­
tion to the linear inverse problem is given by

M

x =  V A - 1U t G p = ^ v rau | „ - G p ,  (23)
ro= 1 m

where the vm and um represent the mth columns of V 
and U, respectively. Equation (23) is not defined if one 
or more Xm are zero, which corresponds to a singular 
matrix in (21). An ill-conditioned matrix is character­
ized by one or more A m  being very small. Equation (23) 
indicates that small Am  can cause the errors on the 
data p to have a greatly magnified effect on the solution x 
(i.e., small Am cause instability). Yang10 and Voronovich 
et al.11 apply SVD to modal decomposition, but decom­
pose A^G^GA instead of GA. However, the SVD of 
GA is recommended, because its singular values are the 
square roots of the singular values of A^G^GA, which 
are more numerically stable for small singular values.16 
To stabilize ill-conditioned inversions, the reciprocals of 
zero or small singular values in (23) can be set to zero, 
thereby removing their effect on the inversion. If M  — Q 
small singular values are omitted, (23) becomes

Q 1 
x =  V  vmuj„— Gp,  Q < M .  (24)

m= 1 m

How small A m  needs to be in order to be omitted from 
the inversion is somewhat arbitrary. Omitting singular

values generally decreases the solution variance at the 
expense of parameter resolution, which can be seen as 
follows. The solution covariance for (24) is obtained by 

substituting A -9 = J2m=i vm«liG/Am (from 24) into 
(14), which yields

« ] 

c = 5Z (25)
m =  1 m

The 1 / Xjn term in (25) is large for small Am , so neglecting 
these Xm can significantly reduce the solution variance. 
The resolution matrix (13) for this case is found to be

Q

r = E v- v-- (26)
m = l

If Q — M  in (26), then R  = I (as V  is orthonormal), in­
dicating unique modal resolution. However, for Q < M, 
columns of V are omitted, and the resolution is degraded.

The number of singular values removed must be care­
fully chosen so that resolution is not unduly sacrificed 
in an effort to reduce variance. In an Arctic application 
of MMP, Yang10 noted that the singular values divided 
naturally into two groups, with the singular values in one 
group being several orders of magnitude larger than those 
in the other. He proposed that the large singular values 
correspond to eigenvectors that span the mode “signal 
space” while the eigenvectors associated with the small 
singular values span the mode “noise space,” providing 
a physical basis for neglecting the small singular values. 
However, when the singular values do not divide natu ­
rally into groups, deciding which ones to omit is more 
difficult. An objective approach is to require that the 
data be fit to a statistically appropriate level: for exam­
ple, omit small A m  until the x 2 misfit is approximately 
equal to its expected value. Note that the formulation in 
(24) applies to both over- and under-determined inver­
sions, although for Q < M , the solution is not unbiased: 
removing singular values stabilizes the inversion by im­
plicitly determining the “smallest” solution in the sense 
that |x[ is biased to be as close to zero as possible.16

A variation of the smallest solution can be formulat­
ed using zeroth-order or smallest regularization, which is 
based on minimizing an objective function ’S' that com­
bines a term representing the data mismatch and a term 
representing the magnitude of the solution16

$  = | G ( A x - p ) | 2 + 0 |Hx |2. (27)

In (27), H  represents an arbitrary weighting, known as 
the regularization matrix, and 6 is a trade-off parameter 
that controls the relative importance of the two terms in 
the minimization. Minimizing $  with respect to x leads 
to

x = [A* G t G A + 0 H]-1 A + G f G p. (28)

For the simple case of an identity weighting in (27), (28) 
can be expressed as

M  \

*  =  Y , v ™u ™ a 2 +  0 G  P  ( 2 9 )_ = 1 Am f  u
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From (29), it is apparent that the factor Am/(A ^ +  0) 
serves as a weighting for the contribution associated with 
the m th singular value, rather than the factor 1/Am in 
(23). For an appropriate choice of 6 in (28), this weight­
ing is small for small \ m (rather than large), and a stable 
inversion is achieved. The trade-off parameter 8 in (28) 
can be set so as to just stabilize the inversion; alterna­
tively, 6 can also be set to achieve the expected x2 misfit 
(determining the appropriate trade-off parameter is con­
sidered in detail in Collison,7 and Collison and Dosso8). 
Buck et al.13 and Timonov et al.14 considered small­
est regularizations with identity weightings. Voronovich 
et al.11 considered two forms of (28), one with H = I, and 
the other with H  =  diag [|<^i(£s) |-1 , . . . ,  \(j>M{zs)\~l ] so 
as to concentrate the minimization on the mode ampli­
tudes whose excitations at the source are small.

In the case where there are fewer sensors than modes, 
the modal decomposition is under-determined, with M — 
N  zero singular values indicating spatially aliased modes. 
For SVD inversion, Yang10,22 suggested neglecting the 
aliased high-order modes (effectively set M = N) and 
then inverting the resulting square, non-singular mode 
matrix. This method only inverts the properly sampled 
low-order modes. However, omitting the aliased modes 
from the inversion effectively relegates them to be part 
of the noise, thereby reducing the signal-to-noise ratio 
(SNR) by an unknown amount.

3. M O D A L  R E S O L U T I O N  A N D . V A R I ­
A N C E  I N  T H E  I D E A L  O C E A N

The resolution and variance of the modal decompo­
sition results are determined by the VLA configuration 
and the type of inversion applied. Both of these proper­
ties directly affect the success of MMP localization. This 
section investigates the resolution and variance of var­
ious modal decomposition schemes for a simple ocean 
environment.

The ideal ocean model consists of a uniform water col­
umn and boundary conditions of a pressure release sur­
face and a rigid seafloor. Figure 1 illustrates the ideal 
ocean example used here, consisting of a 300-m water 
column with a sound speed and density of 1500 m /s and
1.0 g/cm 3, respectively. A 30-Hz source at (r, z) — (6 
km, 100 m) in this environment produces 12 propagating 
modes, shown in Fig. 2. These modes are sine waves con­
fined to the water column (Sec. 2.1), so uniform modal 
sampling can be explained simply using the sampling the ­
orem of time series analysis (see Ref. 7). Thus, the ideal 
ocean provides an appropriate starting example to ana ­
lyze resolution and variance for modal decomposition.

3.1 U n d e r-sam p led  C ase

This section considers the effect of spatial sampling 
on modal resolution and solution variance. To consider 
the effects of under-sampling the modes, seven different 
VLA configurations are considered involving from 12 to 
6 sensors; in each case, the sensors are equally spaced over 
the entire water column. For a 12-sensor VLA, Fig. 3

p(r,0) = 0

f = 30 Hz

h = 300 m (r, z) = ( 6 km, 100 m)

p = 1.0 g/cm 

c = 1500 m/s
dp

dz
=  0

z = h

Figure 1: Schematic diagram of the ideal ocean envi­
ronment.

Figure 2: Normal modes for the ideal ocean environ­
ment described in Fig. 1.

shows resolution matrices (normalized by their largest 
values) and corresponding solution standard deviations 
for various inversion techniques. The SNR of the data in 
Fig. 3 is taken to be 15 dB, where the (per sensor) SNR 
is defined

SNR =  10 log [|s|2/ |n |2] . (30)

From Fig. 3, it is apparent that 12 sensors adequately 
sample the 12 modes, as indicated by the diagonal res­
olution matrices. In this figure, the solution standard 
deviations am are scaled by the true mode excitation 
values. These (scaled) standard deviations provide a rel­
ative measure of the uncertainty of the constructed solu­
tion. The SVD inversion in Fig. 3a produces fairly large 
relative standard deviations. The SMS pseudo-inverse 
gives only slightly smaller standard deviations, as shown 
in Fig. 3b. The standard deviations from using smallest 
regularization (Fig. 3c) are significantly smaller than the 
other approaches.
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(a)

(b)

(c)

0 .1.2.3.4.5.6.7.8.91

2 3 4 5 6 7 8 9 1011 12 
Mode Number, m

0 .1.2.3 .4.5.6.7.8.91

1 2 3 4 5 6 7 8 9 10 11 12 
Mode Number, m

f  lx-l:':'g:‘F:‘ÆjSB888l8B81

0 .1.2.3.4.5.6.7 .8.91

1 2 3 4 5 6 7 8 9 1011 12 
Mode Number, m

Figure 3: Resolution m atrices (normalized by largest 
values) and corresponding solution standard  deviations 
(normalized by true  excitation values) using a  12-sensor 

VLA spanning the w ater column for (a) SVD , (b) SMS, 
and (c) smallest regularization with H  =  I.

cycle, so the critical (or Nyquist) frequency is f c — f s/ 2. 
Thus, if f m <  f c for all m ,  the  modes are uniquely de­
term ined; however, aliasing occurs when f m > f c. For 
example, a  12 sensor VLA has f s =  12/300 m -1 and 
f c =  24/1200 m - 1 , so all of the  modes are uniquely sam ­

pled as / i  < ■■■<  f i 2 =  23/1200 <  f c =  24/1200 m " 1; 
whereas, for a  11-sensor VLA, f c =  22/1200 m _1 so the 
spectral components for / 1 2  are aliased. Spectral com­

ponents a t frequencies greater th an  the Nyquist frequen ­
cy are aliased with components a t lower frequencies for 

which

\ fm I — |/m —i +  j f a \ ,  (31)

where j  =  ± 1 , ± 2 , . . .  and 1 <  i  < m .  Equation (31) de­
term ines the  lower frequency components w ith which the 
higher frequency components are aliased.7 For instance, 
returning to  the 11-sensor VLA case, the  spectral com­
ponents for / i 2  are aliased with those for f u ,  determined 
by evaluating (31) w ith j  = —1; th is is in complete 
agreement w ith the  resolution analysis results in Fig. 4a.

(a)l

( b ) «

(c)

1
1
1
$

ft
- :sit

&

*
V

«y
a

Sf

0 .1 .2 .3 .4 .6 .6 .7 .8 .9 1

Figure 4: Resolution matrices for 11—6 sensors spanning 

the  water column are given in (a)-(f), respectively. A ~ 9 

uses stabilized SVD.

As mentioned previously, spatial aliasing occurs when 
the modes are insufficiently sampled, resulting in poor 
resolution. For the ideal ocean, spatial aliasing (and res ­
olution) can be explained by a  simple application of the 
sampling theorem, which sta tes th a t critical sampling of 

a sine wave is two points per cycle.16 In this case, the 
mode frequency is f m =  ( 2 m -  l) /4 /i, according to (4). 
T he spatial power a t f m can contain aliased energy from 

higher frequencies f m + j  f s (j  — 1 ,2 , . . . )  where f s =  1 / A z  

is the  sampling frequency and A z  is the  sampling in ter ­
val (i.e., the  inter-sensor spacing). To avoid aliasing, a 
mode function m ust be sampled a t least twice per

(a)

(b)

(c)

<d)

o

1.0

(e)

(f)

(9 )

1 2 3 4 5 6 7 8 9  10 11 12 
Singular Value Index, j

3 4 5 6 7 8 9 10 11 12 
Singular Value Index, j

Figure 5: Singular value spectra (normalized by largest 
value) for 12-6 sensors are shown in (a)-(g), respectively. 

Note the discontinuity of all vertical axes.
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F ig u re  6: Normalized resolution matrices and solution 

standard deviations using a 6-sensor VLA for: (a) sta ­

bilized SVD, (b) fitted SVD, (c) SMS, and (d) smallest 

regularization.

The number of high-order modes th a t are aliased is 

directly related to the number of zero singular values, as 

illustrated by comparing Figs. 4 and 5b-g which show the 

computed resolution matrices and singular value spectra 

for 11-6 sensors. These figures indicate that as the num­

ber of sensors is decreased by one, there is corresponding­

ly one additional zero singular value and one additional 

aliased pair (linear combination) of modes. In Fig. 4, the 
higher-order modes are each aliased with only one lower- 

order mode because the modes are sine functions. For a 

more general ocean environment and more complicated 

mode functions, predicting mode aliasing via the 

sampling theorem is not as simple; however, this infor­

mation is always provided by modal resolution matrices. 

Figures 4f and 5g show tha t for a 6-sensor VLA, there 

are 6 zero singular values and all modes are affected by 

aliasing (i.e., the 6 highest-order modes are aliased with 

the 6 lowest-order ones). This provides an interesting 

case in which to consider the resolution and standard 

deviations for various inversion techniques, as shown in 

Fig. 6. Figure 6a shows the resolution and standard devi­

ations for a stabilized SYD pseudo-inversion omitting the 

6 zero singular values. These results are quite similar to 

the fitted SVD pseudo-inversion, i.e., omitting 7 singular 

values so x 2 «  2N, as shown in Fig. 6b. Figure 6c and 

d show the resolution and deviations for SMS pseudo­

inversion and smallest regularization, respectively. The 

standard deviations for smallest regularization are an or­

der of magnitude smaller than those for the other three 

modal decomposition methods.

(a)

B
0.1.2.3.4.5.6.7.8.91

1 2 3 4 5 6 7 8 9 1011 12 
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F ig u re  7: Normalized resolution matrices and solution 

standard deviations using a 6-sensor VLA for:(a) SVD 

inversion, (b) SMS, and (c) smallest regularization, all 

neglecting the aliased high-order modes.

Figure 7 shows inversion results for the same meth­

ods when the aliased high-order modes are neglected in 

the inversion (i.e., delegated to noise), as suggested by 

Yang.10,22 Neglecting the aliased high-order modes 

leads to  well resolved low-order modes, but to substan­

tially larger standard deviations for the modes retained 

than in Fig. 6 (due to the increased noise). Fig. 7c indi­

cates that smallest regularization still provides the 
smallest standard deviations with respect to  the other 

methods.

3.2  S h o r t- a p e r tu re  Case

This section considers modal resolution and variance 

for short-aperture arrays. The VLA configurations con­

sidered here all contain 12 sensors and span various frac­

tions of the water column from the entire column (well- 

sampled) to just the top half. Figure 8 shows the singular 

value spectra for VLA configurations with apertures of 

1.0-0.5 of the water column. The singular values decrease 

in a continuous manner and do not exhibit the abrupt 

cut-off evident in the under-sampled case (Fig. 5). In 

this case, it is not obvious where to truncate the spec­

trum  in an SVD inversion.

One approach is to consider the trade-off between the 

modal resolution and solution variance. In the case of a 

well-conditioned A, all the singular values can be includ­

ed in the inversion, which leads to perfect resolution and 

small solution standard deviations. For ill-conditioned 

A, perfect resolution, although possible, occurs at the ex­

pense of large solution variance. Figure 9 illustrates the 

trade-off between resolution and variance for an aperture 

of 0.5 and SNR=15 dB for various inversion techniques. 

Figure 9a shows th a t including all singular values 

leads to ideal resolution, but th a t the inversion is unsta ­

ble with exceedingly large standard deviations. Figure 

9b d shows the trade-off between resolution and solu-
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Figure 8: Singular value spectra (normalized by largest 
value) for apertures of 1.0-0.5 of the water column are 
shown in (a)-(f), respectively.

tion accuracy for SVD pseudo-inversions. As more sin­
gular values are omitted, the resolution of the low-order 
modes degrades, and the accuracy improves (standard 
deviations decrease). The fitted SVD pseudo-inversion, 
shown in Fig. 9e, has significantly smaller standard de­
viations than the other SVD cases. Figure 9f shows the 
resolution and accuracy for the SMS pseudo-inversion. 
For this case, the maximum value of resolution is off the 
main diagonal (indicating significant modal cross-terms). 
Figure 9g gives results for smallest regularization. The 
resolution is similar to that of the fitted SVD pseudo­
inversion (Fig. 9e), but the solution standard deviations 
are substantially smaller.

4. SO U RCE LO CA LIZA TIO N  RESULTS

This section compares various approaches to modal 
decomposition by considering MMP source localization 
results for three SNRs, and a variety of VLA configu­
rations. To compare the results of MMP source local­
ization based on various decomposition techniques, it is 
useful to consider a realistic ocean environment. Source 
localization techniques are illustrated and compared here 
for synthetic acoustic data computed for the shallow- 
water environment illustrated in Fig. 10. The environ­
ment consists of a 300-m water column with a typical 
N.E. Pacific continental shelf sound-speed profile23 over- 
lying a 50-m thick sediment layer and semi-infinite base­
ment. The sediment layer has a compressional speed 
of cp=1650 m /s, shear speed of cs=300 m/s, density of 
p = 1.6 g/cm 3 and compressional and shear attenuations 
of a =0.3 dB/A (where A is the acoustic wavelength). The 
basement has cp=2000 m /s, cs=800 m /s, p =  2.1 g/cm 3, 
and «=0.5 dB/A. This environment supports 12 propa­
gating modes at a source frequency of 40 Hz, as shown in

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

3  4  5  6  7  8  9  10  11 12 

Mode Number, m

Figure 9: Resolution matrices and solution standard 
deviations using a 0.5-aperture VLA for (a) SVD (in­
cluding all A j)-, and SVD omitting A j  for which (b) 
|Aj/ Ax| < 10-6, (c) lAj/Ail < 10-4, (d) lAj/Ail < 10"2; 
(e) fitted SVD; (f) SMS; and (g) smallest regularization.

Fig. 11. In order to compare various approaches to MM- 
P, 100 independent acoustic data sets p  are computed 
by adding 100 different random realizations of uncorre­
lated Gaussian noise n  to an acoustic signal s computed 
with the wavenumber integration model SAFARI24 for a 
source located at (r, .z)=(6 km, 100 m). The replica mod- 
e excitations used in the matching process are computed 
using the normal mode model ORCA15 for all test cases.

Source localization results are considered for three noise 
levels of SNR = 15, 5, 0 dB, and for a number of VLA 
configurations that sample the 12 modes in various ways: 
(i) well-sampled, with 12 sensors equally spaced over
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Figure 10: (a) Schematic diagram of the shallow-water 
environment. Three types of VLA configurations and 
three SNRs are considered for various source positions, 
(b) Ocean sound-speed profile.

Figure 11: Normal modes produced by a 40-Hz source 
in the ocean environment described in Fig. 10. Dashed 
lines denote the water-sediment and sediment-basement 
interfaces.

the entire water column; (ii) under-sampled, with few­
er than 12 sensors equally spaced over the water column; 
and (iii) short-aperture, with 12 sensors spanning only 
a fraction of the water column. MMP source localiza­
tion results are presented for four modal decomposition 
methods: (i) SMS pseudo-inversion; (ii) stabilized SVD 
pseudo-inversion omitting singular values Aj for which 
|Aj/Ài| < 10-6 ; (iii) fitted SVD pseudo-inversion omit­
ting singular values so x 2 ^  2iV; and (iv) smallest reg­
ularization with x 2 — 2JV. To localize the source, a 
search grid was adopted that extended from 0-12 km 
in range with a range increment of 100 m, and 0-300 m 
in depth with a depth increment of 10 m (i.e., a total of 
120 x 30 = 3600 grid points). The estimated source loca­
tion corresponds to the grid point at which the match be­
tween the mode excitations was a maximum. The match 
is quantified using the normalized Bartlett processor

where x represents the constituent mode excitations from 
the measured fields, and x(r, z) represents the replica ex­
citations. The correlation at each grid point is indicated 
on a depth-range plot, known as an ambiguity surface, to 
obtain a visual representation of the source localization.

Figure 12 shows ambiguity surfaces for the smallest 
regularization approach to MMP at SNR=5 dB. In this 
figure, the ambiguity surfaces are plotted in a decibel 
scale using —101og(l — B). Figure 12a shows that for

a well-sampled case, the source is correctly localized at 
(r, ^)=(6 km, 100 m), with no strong sidelobes. For the 
under-sampled case, Fig. 12b, the highest peak is located 
in a sidelobe at (2.5 km, 210 m), resulting in an incorrect 
localization. For a short-aperture array (Fig. 12c), the 
source is again incorrectly localized in a sidelobe at (10.4 
km, 230 m), and there is no significant peak in the correct 
source area.

The ambiguity surfaces in Fig. 12 are based on a sin­
gle set of noisy data. To obtain a more representative 
comparison of the four approaches to MMP, statistics 
are compiled for 100 noisy data sets. The relative MMP 
performance is measured by the estimated probability of 
correct localization P, taken to be the fraction of times 
(for the 100 noisy data sets) that the estimated source 
location is within a suitably small region about the true 
source location, defined by ± 200 m in range and ± 10 m 
in depth.

Figure 13 summarizes the comparative performance of 
the four approaches to MMP for three SNRs and various 
VLA configurations. The error bars on each probabil­
ity measure indicate 90% confidence level for the true 
probability, computed using25

P ± 1 . 6 4 5 ^ A  (33)

with n = 100 data sets. The first column of Fig. 13 
shows localization results for under-sampled cases, and
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Figure 12: Ambiguity surfaces for (a) well-sampled 
case, (b) under-sampled case of 6 sensors, and (c) short- 
aperture case of half the water column, using the smallest 
regularization approach to MMP at SNR=5 dB.

the second column shows the results for short-aperture 
cases. In each plot, the well-sampled case (12 sensors, 
aperture of 1.0) is also included as the right-most point. 
The rows of the figure correspond to  SNRs of 15, 5, and 
0 dB (top to bottom).

From Fig. 13, it is apparent that as SNR decreases the 
localization results for all methods degrade, regardless 
of the VLA configuration. For a relatively high SNR of 
15 dB, Fig. 13a shows that with 7-12 sensors, all the de­
composition methods lead to a high probability of source 
localization. However, with 6 sensors, smallest regular­
ization localizes substantially better than the other three 
methods (also the case for SNR=5 dB in Fig. 13b). With 
SNR < 5 dB, the under-sampled localization results ob­
tained using smallest regularization and stabilized SVD 
are quite similar while SMS gives slightly poorer results 
(Fig. 13b and c). The fitted SVD method has consistently 
poorer localization results. For array apertures less than 
or equal to 0.8 of the water column, all methods produce 
poor localization results, as indicated in Fig. 13d-f. At 
SNR < 5 dB, Fig. 13e and f shows that SMS and small­
est regularization have substantially larger probabilities 
of correct localization than the other two methods for 
apertures of 0.9 and 1.

As described in Sec. 2.3, Yang10,22 suggested neglect­
ing the aliased high-order modes for stabilized SVD in­
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Figure 13: Estimated probability of correct localiza­
tion P  for SMS (squares), stabilized SVD (crosses), fit­
ted SVD (triangles), and smallest regularization (circles). 
Results are given for under-sampled cases and SNRs of 
(a) 15 dB, (b) 5 dB, and (c) 0 dB. (d)-(f) are the same as 
(a)-(c), but give results for short-aperture cases. Error 
bars denote 90% confidence intervals for P.

version. To investigate this idea, the aliased modes were 
neglected in all four modal decomposition methods, with 
the source localization results given in Fig. 14. Neglect­
ing the aliased high-order modes generally leads to equiv­
alent or better localization results for all methods. The 
largest improvement in localization results is obtained 
for SMS. This is likely due to the resulting square mode 
matrix being closer to orthogonal than the original (sin­
gular) rectangular matrix, improving the approximation 
A - 9 =  WAT. Neglecting modes has the added bene­
fit of providing faster inversions, since the dimension of 
the mode matrix is reduced. From Figs. 13 and 14, it 
appears that smallest regularization gives slightly better 
source localization results for more cases than the other 
methods.

The probabilities of correct localizations shown in Figs. 
13 and 14 indicate the relative success of each approach 
to MMP, but give no indication of the actual distribution 
of the localization. This can be illustrated by probabili­
ty ambiguity surfaces (PAS), which show the estimated 
source positions for the 100 localizations. Figure 15 gives 
PAS for the well-sampled case with SNR=5 dB. Smallest 
regularization and SMS (Figs. 15a and b) localize most 
sources in the correct area, with the incorrect localiza-
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Number of Sensors

Figure 14: Estimated probability of correct localiza­

tion P  for SMS (squares), stabilized SVD (crosses), fit­

ted SVD (triangles), and smallest regularization (circles). 

Aliased high-order modes are neglected prior to all inver­

sions. Results are given for the under-sampled cases with 

SNRs of (a) 15 dB, (b) 5 dB, and (c) 0 dB.

tions corresponding to sidelobes of the ambiguity surface 

(Fig. 12). The SVD methods do not localize as well, as 

indicated in the increased probabilities of source localiza­

tion outside of the correct region. The two SVD methods 

have similar values of P  for this case, but their PAS indi­

cate that the methods do not always localize at the same 

position.

Figure 16 shows the PAS for the four approaches to 

MMP using a 6-sensor VLA at 5 dB, both including and 

omitting the aliased high-order modes. In Fig. 16a-d, 

MMP using smallest regularization is the only method 

that localizes sources in the correct region. It is ap­

parent from the PAS in Fig. 16e-h that neglecting the 

aliased high-order modes improves all methods to vary­

ing degrees. The SMS and stabilized SVD methods are 

substantially improved, while smallest regularization and 

fitted SVD are only slightly improved using this array 

configuration. In this figure, the incorrect localizations 

again concentrate in areas that correspond to ambiguity- 

surface sidelobes. Figure 17 shows PAS for a 0.5-aperture 

VLA with SNR=5 dB. In this figure, smallest regulariza­

tion, SMS, and fitted SVD approaches to MMP all have 

high probabilities of localization at an incorrect position 

corresponding to a sidelobe. Stabilized SVD (Fig. 17d) 

also localizes incorrectly, but a t a different location than 

the other three methods that does not seem to corre-
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F ig u re  15: PAS using (a) smallest regularization, (b) 

SMS, (c) fitted SVD, and (d) stabilized SVD approach­

es to MMP for the well-sampled case with SNR=5 dB. 

Gray scale levels indicate the probability of localization 

for each grid point, and the black boxes indicate the area 

of correct localization.

spond to a sidelobe from the original ambiguity surface 

(Fig. 12c).

5. SUMMARY

This paper presents a comprehensive comparison of 

a variety of approaches to modal decomposition. These 

comparisons include resolution and variance analyses, and 

matched-mode processing localization results. The modal 

methods considered include the sampled mode shape fil­

ter, singular value decomposition pseudo-inversion, and 

smallest regularized inversion. SVD and regularization 

can be applied to just stabilize the inversion, or to fit 

noisy (complex) data to the expected value of ( x2) =  2Ar 

(this can be done exactly for regularization and approx­
imately for SVD). Stabilized and fitted SVD, and fitted 

regularized inversions were considered here (results for 

stabilized regularization are similar to those for stabilized
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Figure 16: PAS for a 6-sensor VLA using (a) smallest 
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Figure 17: PAS for a 0.5-aperture VLA with SNR=5 

dB, using (a) smallest regularization, (b) SMS, (c) fitted 

SVD, and (d) stabilized SVD.

SVD). These methods were compared for vertical array 

configurations that properly sampled the acoustic field, 

and for configurations that under-sampled the field (few­

er sensors than modes) or that sampled only a fraction 

of the water column. High, moderate, and low signal- 

to-noise ratios were considered. In addition, the idea of 

omitting aliased high-order modes in under-sampled 

cases, previously suggested for stabilized SVD inversion, 

was applied here to all inversion methods.

Modal resolution and variance were examined for the 

case of a homogeneous ocean with reflecting boundary 

conditions. In this environment, the modes are sine func­

tions, and hence the resolution analysis can also be ex­

plained by simple application of the sampling theorem. 

For under-sampled cases, the regularized inversion pro ­

vided the smallest standard deviations. Omitting the 

aliased high-order modes degraded the accuracy of 

all methods, but yielded unique resolution of the modes 

retained. For short-array cases, the singular value spec­

trum does not exhibit an obvious cut-off, so the number 

of singular values required to stabilize SVD inversion is

somewhat arbitrary, and was shown to control the trade ­

off between modal resolution and accuracy. Of all the 

methods, the regularized inversion appeared to provide 

the best compromise between resolution and accuracy.

The performance of the various modal decomposition 

algorithms within MMP localization was quantified by 

the probability of correct localization for a realistic 

shallow-water environment. For under-sampled cases, it 

was found that the localization results for regularized, 

stabilized SVD, and SMS inversions were similar, with 

fitted SVD performing considerably poorer (as non-zero 

singular values were omitted in an attem pt to approxi­

mate x 2 =  2N). Omitting aliased higher-order modes 

generally improved the results of all methods, with the 

regularized inversion giving the best overall results by a 

small margin. Interestingly, SMS inversion provided the 

second best results, benefiting the most from omitting 

aliased modes. Localization results were poor for array 

apertures of <  0.8 of the water column for this envi­

ronment. For apertures > 0.8, the regularized and SMS 

inversions provided the best localization results.
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