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Abstract 
An application of model-based reasoning and model- 
based learning to an operative diagnostic domain such 
as electrical power transmission networks is presented. 
Most of the research in model-based diagnosis is 
based on maintenance diagnosis. Operative diagnosis, 
on the other hand, is done while the system is still in 
operation even afer  the fault. We plan to develop an 
efficient algorithm for operative diagnosis which can 
handle large domain of faults and multiple faults in 
real time. In our search toward a better algorithm, we 
develop and compare two different reasoning methods: 
diagnosis based on model based reasoning, and 
diagnosis based on heuristic rules leamt ji-om model 
based reasoning. This paper presents the results of the 
comparison. 

Introduction 

Operative diagnosis (OD) of a physical system is 
the process of detecting faults while it is in operation 
whereareas in maintenance diagnosis (MD) [l], the 
fault diagnosis is done offline. Operative diagnosis is 
needed for systems which cannot be stopped for 
maintenance (as it is too expensive), and the diagnosis 
involves the consideration of symptoms and state 
which can change with time. In electrical power 
transmission networks, operative diagnosis is confined 
to alarm readings in real time while the effects of the 
faults are still propagating through the network. OD is 
heuristic in nature and often provides a challenging 
task for experts involved. Experts find that the pattern 

recognition of alarms triggered by a fault in the system 
is relatively easier task compared to the identification 
of the physical origins of the fault from a list of alarms. 
This difficulty could be due to several components 
malfunctioning at the same time within the network. 

Power transmission networks carry power from 
supply utilities to the consumer and any fault in the 
network directly affects the consumers. The hazards of 
performing fault diagnosis in this domain incorrectly 
and too slowly result in notable accidents such as 1977 
New York City blackout where the power restoration 
took several minutes causing inconvenience to 
consumers. Earlier research [2] has shown that 
decision-support systems can aid system controllers 
during emergency situations. This paper presents the 
proceedings of our attempt to develop an efficient fault 
diagnostician for power transmission network in New 
Zealand. Towards this development, model based 
techniques are applied to the domain and the results are 
presented in this paper. 

Model Based Diagnosis 

Model based diagnosis (MBD) is a form of 
diagnostic reasoning which incorporates operational 
principles of the devices in the form of models where 
the problem can be simulated under ideal conditions 
and the output (predicted) is compared with the 
observed output [l]. This comparison would reveal 
useful information for problem solving such as the 
status of the equipment in the power system network 
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and the authenticity of information reaching the control 
centres. Figure 1 shows operation of the fault 
diagnosis system using the model based approach. 

I 

Figure 1. Model based reasoning. 

As model based diagnosis or MBD is ireasoning 
based on system model’s behavioural comparison, it 
does not use any heuristic information about system 
failures [I]. Due to this reason model based diagnosis 
can be more advantageous over heuristic reasoning. 
Some of these advantages are listed below [ 101: 

MBD covers a wide range of fault sciniiios than 
heuristic reasoning because MBD is basad on the 
system’s behavioural analysis. 
MBD can detect deviations from the expected 
behaviour. 
MBD can detect malfunctioning equipment in the 
early stages. 
MBD can predict the effects of the fimlts and 
unnecessary alarms as it simulates the faults. 
MBD can handle multiple faults efficiently because 
the cascading effects of the faults can be simulated 
and analysed. 
Adopt rule-based system’s goal driven reasoning 
P O I .  

Fault Diagnosis In Power Transmission 
Networks 

A prototype model based system for fault analysis 
and diagnosis (MoBFAD) of electrical power 
transmission was developed and was implemented in 
Prolog on L”uX/486. The motivation for its 
development was to produce and test a generic 
diagnostic system for electrical power networks. 
MoBFAD has a generic reasoning mechanism and can 
be setup to work for a particular network by encoding 
the model of that power network in the system. 

MoBFAD is based on Reiter [3] and de Kleer, et 
al.’s [4] definition of model based diagnosis 
represented as a 3-tuple (system description, 

components and observations) and Igor Mozetic’s [ 13 
hierarchical model based diagnosis. The advantage of 
Reiter’s approach is that it can infer diagnoses in terms 
of components from a set of observations. The 
important feature of these diagnoses is that they are 
minimal2. Hierarchical structure is employed because 
the power system can easily be divided into different 
levels. In addition, hierarchical model based diagnosis 
is efficient to handle complex systems with large 
number of components or states of components and this 
helps a great deal when multiple faults are considered 
for diagnosis. 

New Zealand’s power transmission network 
comprises 13,005 route Kms of both AC and DC 
power cables and transmits around 30,000 Gw of 
power per annum. For a network of this size, time and 
accuracy plays a very important role on its fault 
diagnosis. Solving the diagnostic problem in 
hierarchical levels has proven [5] to be faster than 
conventional model based reasoning. Diagnosis in 
MoBFAD is done in 3 levels: 

1. Observation level. 
2. Synopsis level. 
3. Abstract level. 

Observation level is the level where the components 
are observed for their behaviour. Any change in the 
network is reflected on this level; therefore, it is always 
active. The components are checked almost 
immediately for their operation and the component 
operation information is then passed onto synopsis 
level (level 2) where it is used to derive more abstract 
diagnoses. Abstract level (level 3) is a generalised 
heuristic level where the domain experts’ knowledge is 
encoded and is used in the diagnosis at “network” 
level. Abstract level also has heuristic knowledge 
relating to problems (for example, cable faults) which 
do not need detailed diagnosis. Figure 2 shows the 
organisation of MoBFAD’s hierarchical levels. 

‘igure 2. Hierarchical modelling in MoBFAD. 

’ A minimal diagnosis is such that by changing a status of any 
abnormal component to normal would make the diagnoses 
inconsistent with the observations. 
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Goal driven reasoning in MoBFAD Model Based Learning 

MoBFAD starts with “abstract” level by trying to 
solve the problem with its shallow reasoning 
knowledge. Observation and Synopsis levels are 
triggered by changes in the network and hence they 
operate in real time. If the shallow reasoning process 
of “abstract” level cannot find a solution, then the 
outputs (components’ behaviour) of “observation” and 
“synopsis” levels are considered for the diagnosis. The 
behavioural component of the model is expressed as 
rules describing its qualitative properties. The model 
does not deal with quantitative representation of the 
components; instead, it symbolically describes the 
components’ characteristic features. Examples of 
qualitative modelling can be found in [5] and [6] where 
the technique is used to model the electrical activity of 
heart and electrical power components, respectively. 

An example of alarms input to MoBFAD would 
illustrate how model based reasoning works in practice. 
When the alarm list is input to MoBFAD, the list is 
analysed by “observation” level to find any 
malfunctioning of the components. Then heuristic 
rules are applied from the “abstract” level to solve the 
problem using shallow reasoning. If the problem could 
not be solved using shallow reasoning, then rules in 
“synopsis” level use the output from “observation” 
level to deduce some preliminary diagnosis. This 
preliminary diagnostic output is then used by “abstract” 
level to arrive at a solution. 

Depending upon the problem, MoBFAD takes 
0.13 to 2.5 secs (with multiple fault alarms) to arrive at 
a diagnosis. It is inferred that problems which can be 
solved using shallow reasoning are solved faster than 
model based reasoning3. This brings our focus on 
using machine learning algorithms to learn from 
simulated output of models and create generalised 
heuristic rules. The algorithm would search through 
the logical aspects of the reasoning process and record 
the common search paths by generalising them. The 
work done by several others has also prompted our 
utilisation of machine learning techniques. Mozetic 
[ 514 discusses the compression of rules using Induction 
and Fattah & 0’ Rorke[7I5 discuss the learning of 
association rules from models using Explanation based 
learning. Due to our domain’s generalised nature, we 
chose to investigate some algorithms based on 
explanation based learning [ 81. 

Tests were conducted with same alarm list on both reasoning 
techniques. Model based reasoning took 0.24 secs to find the faulty 
device where as shallow reasoning took 0.19 secs to solve the same 
problem. 

This research is applied to operative diagnosis. 
This research is applied to maintenance diagnosis. 

Model based learning can be done in two ways: 

1. learning knowledge by analysing the goal driven 
reasoning of model based reasoning [7]. 

2. learning meta-knowledge from existing knowledge 
using a qualitative model of the domain [8]. 

The first method was used to develop the learning 
mechanism. Two machine learning algorithms which 
are generally based on Explanation Based 
Generalisation (EBG), Peter Clark’s “Lazy Partial 
Evaluation” (LPE) [8] and Mitchell et al.’s 
“Explanation Based Generalisation” (EBG) [SI, were 
chosen for this purpose. 

Lazy Partial Evaluation 

Lazy Partial Evaluation (LPE) is a learning 
algorithm which is a hybrid of explanation based 
generalisation (EBG) and partial evaluation (PE) 
algorithms. Learning of LPE is same as that of EBG 
but, it also includes PE’s ability to generalise and store 
the failed proofs. LPE replaces the original theory by a 
more generalised equivalent thereby making the run- 
time of the solution faster. The main advantages of 
LPE over EBG are [XI: 
l+ LPE eliminates EBG’s repeated computation as it 

saves the total work done in exploring proofs other 
than the main proof. 

l+ LPE’s “alternative proof saving” eliminates EBG’s 
“masking effect6” which enhances the quality of the 
solution. 

Explanation Based Generalisation 

Explanation based generalisation is an articulation 
of the common aspects of various explanation based 
learning systems [9]. It is based on generalisation of a 
proof for a positive example by synthesising an 
operational definition of the proof in terms of its sub- 
goals. The new definitions thus created are then added 
to the domain for future reasoning. 

Model based learning in MoBFAD 

Learning in MoBFAD is primarily based on Fattah 
and O’Rorkes’ [7] proposal of integrating EBG and 
model based reasoning. However, their model is based 

The Masking Effect of EBG is its inability to find altemative 
solutions as this may sacrifice the learning of most efficient solution; 
EBG learns only one solution it finds at the f is t  instance. 
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on maintenance diagnosis and need several additions. 
Our system adds the “state of the system” and learns 
the association rules with respect to MoBFADl’s model 
hierarchy. In general, the learned rules will be of the 
following format: 

top-level-rule(Y) i f  
state-of-sy stem(SD), 
state-of-component(Comps ), 
state-of -observations(Obs). 

The variable Y is a function of logical variables 
appearing in the rule. 

The resulting systems of this integration of 
machine learning algorithms and model based 
reasoning are called MOBFAD&, (EBG+MBR) and 
MOBFAD,, (LPE+MBR). Both algorithms learn rules 
in advance. 

Comparative Results And Analysis 

To evaluate the algorithms, seven training (4 
positive, 3 negative) examples are chosen. The results 
are shown in Table 1. MOBFAD,, generates fewer 
hypotheses and goal expansions than MoBFAIDhg. 

CPU time 

Figure 3 shows the graph of CPU time utilised by 
each algorithm to solve* all seven examples. All the 
examples for this analysis are taken from only one 
range of problems (a range with no pilot wire faults and 
observations are incomplete). During this an,alysis, the 
state of the power system is also considered constant. 
Under these circumstances, MOBFAD,, takes more 
time to solve the proofs, but for the rest of the 
examples it used less time to solve. This is because 
MoBFAD1, reformulates the original definitions into 
several definitions using some initial examples and 
uses them on the following examples. On the other 
hand, MoBFADhg does not use much time to learn in 
the initial stages, but it incrementally learns with the 

The performance comparison is based on Peter Clark‘s criteria 
@I. * Solving in here relates to algorithms’ attempt to satisfy the goal 
and learn concept definitions (rules) simultaneously. 

number of examples. Eventhough MoBFAD1, is 
slower in the initial stages, it is more efficient than the 
other algorithms. MoBFADhg is also efficient than 
MoBFAD but sometimes it uses more time than 
MoBFAD as in example 5 (Figure 3). 

- - - - - - - _ _ _ _  
- - - - - _ _  

- - - - . . - - _ _ _ _  
- - - - _ _  

Figure 3. Performance graph of CPU-time. 

Number of rules learnt 

From the CPU time graph, it can be estimated that 
MoBFADI, learns more rules than MoBFADh,. For a 
given example, MoBFADl, learns more concept 
definitions (see figure 4) than MOBFAD&,. This is 
because MoBFAD1, learns “all” possible “good” 
explanations of the example and it also learns some 
“not relevant” explanations along with explanations 
which lead to “failures”. MoBFADhg learns only the 
explanations which satisfy the example. Hence its 
upgradation of rules is linear. MoBFADl,, on the 
other hand, replaces the original definitions with new 
ones and this changes number of rules accordingly. 

1 2 3 4 5 6 7  

Learning Examples 
4gure 4. Graph of number of rules learnt. 

Discussion 

The above tests are done by considering constant 
“state” of the power system network. The need for this 
assumption is to test the efficiency of the algorithms 
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under conditions used in other papers. Figure 5 shows 
the performance of each algorithm under dynamic 
conditions of power system state. The examples were 
chosen from a wider range of problems. According to 
the graph, reasoning with model based learning 
algorithms is faster than model based reasoning. On 
the other hand, it is also evident that the number of 
inferences used to find a solution increases with the 
increase in the number of rules. MOBFAD,, is a 
preferred algorithm for fault diagnosis under constant 
network state but due to its longer learning time, it is 
not recommended for networks under dynamic 
conditions. In addition, MOBFAD,, may not be able to 
deal with larger domains such as power transmission 
networks efficiently [SI. MOBFAD&, is consistent 
under both (constant and dynamic) conditions of the 
network but clearly demonstrates its inability to learn 
an efficient solution to the problem (see example 3 & 5 
in Figure 5). At this stage, it can be concluded that 
MOBFAD, is preferred over MoBFADl, and 
MoBFAD because MOBFAD&, takes less time on 
average to arrive at a solution. 
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Figure 5. Performance graph of all algorithms 
under operative diagnostic conditions. 

Conclusion 

We have presented three algorithms applied to 
operative diagnosis based on model based reasoning 
and machine learning. MoBFAD, a pure model based 
system, is based on Igor Mozetic’s Hierarchical Model 
Based Diagnosis and incorporates the domain models 
in three levels. MoBFADl, and MOB FAD&^ are 
hybrid systems combining model based reasoning and 
machine learning. The machine learning algorithms, 
LPE and EBG, are used to learn top level rules from 
the model based diagnosis. All three algorithms are 
compared and their performance analysed. The hybrid 
algorithms work faster than model based diagnosis 

unless the top level rules grow unacceptably large. 
Under dynamic system conditions however, 
MOBFAD, seems to provide the required solution 
faster. 
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