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ABSTRACT Knowing the distribution of fitness effects (DFE) of new mutations is important for several topics in evolutionary genetics.

Existing computational methods with which to infer the DFE based on DNA polymorphism data have frequently assumed that the DFE

can be approximated by a unimodal distribution, such as a lognormal or a gamma distribution. However, if the true DFE departs

substantially from the assumed distribution (e.g., if the DFE is multimodal), this could lead to misleading inferences about its properties.

We conducted simulations to test the performance of parametric and nonparametric discretized distribution models to infer the

properties of the DFE for cases in which the true DFE is unimodal, bimodal, or multimodal. We found that lognormal and gamma

distribution models can perform poorly in recovering the properties of the distribution if the true DFE is bimodal or multimodal,

whereas discretized distribution models perform better. If there is a sufficient amount of data, the discretized models can detect

a multimodal DFE and can accurately infer the mean effect and the average fixation probability of a new deleterious mutation. We

fitted several models for the DFE of amino acid-changing mutations using whole-genome polymorphism data from Drosophila

melanogaster and the house mouse subspecies Mus musculus castaneus. A lognormal DFE best explains the data for D. melanogaster,

whereas we find evidence for a bimodal DFE in M. m. castaneus.

NEWmutations generate genetic variation in the genome

of every species. For example, it has been estimated that

a newborn human has �70 new mutations that originated in

its parents’ germlines (Keightley 2012). The fitness effects of

new mutations can range from deleterious to neutral and to

advantageous, and the relative frequencies of their effects is

known as the distribution of fitness effects (DFE) of new

mutations. Inferring the properties of the DFE is a long-

standing goal of evolutionary genetics and is key to several

important questions, including the evolution of sex and re-

combination, the prevalence of Muller’s ratchet, and the

constancy of the molecular clock (Charlesworth 1996;

Eyre-Walker and Keightley 2007).

A number of methodologies have been developed to infer

the DFE based on DNA sequence data (Sawyer et al. 2003;

Nielsen and Yang 2003; Piganeau and Eyre-Walker 2003;

Loewe et al. 2006; Eyre-Walker et al. 2006; Keightley and

Eyre-Walker 2007; Boyko et al. 2008; Schneider et al. 2011;

Wilson et al. 2011). All of these assume that there is a neu-

trally evolving class of sites and contrast patterns of poly-

morphism and/or divergence from an outgroup with that

of a tightly linked focal site class. Selection affecting the

focal sites is expected to alter the pattern of polymorphism

compared to that of the neutral class. A distribution of

selection coefficients is then fitted to the data and its prop-

erties inferred. The three most widely used methods are

those developed by Eyre-Walker et al. (2006), Keightley

and Eyre-Walker (2007), and Boyko et al. (2008). Keight-

ley and Eyre-Walker (2007) use a Wright–Fisher transition-

matrix approach (Ewens 1979), whereas Eyre-Walker et al.

(2006) and Boyko et al. (2008) use a diffusion approxi-

mation (Sawyer and Hartl 1992; Williamson et al. 2005).

All three methods have been reported to give similar

results, but make slightly different assumptions. For

example, they differ in the way in which they model de-

mographic changes (e.g., population size changes). Eyre-

Walker et al. (2006) use a heuristic approach, whereas

the other two explicitly model some simple demographic

scenarios. It is necessary to model demographic change,

because this is known to alter patterns of polymorphism

in ways that can resemble selection. Because these meth-

ods use allele-frequency information (summarized as the
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site-frequency spectrum or SFS), they are expected to be sen-

sitive to demographic change.

Several studies have employed the above methods to

infer properties of the DFE of amino acid-changing muta-

tions. In these analyses, a gamma distribution of fitness

effects has often been assumed, since it is a flexible

distribution with two parameters, the shape (b) and the

scale (a). For example, for amino acid-changing mutations

in Drosophila melanogaster, the shape parameter has been

estimated to be �0.4 (implying a leptokurtic distribution),

and most (.90%) new mutations are inferred to be mod-

erately to strongly deleterious, with effective strength of

selection Nes . 10 (Keightley and Eyre-Walker 2007; Eyre-

Walker and Keightley 2009). In humans, the DFE appears to

be more even more leptokurtic than in Drosophila (i.e., the

estimated shape parameter is �0.2), and only �60% of

mutations appear to be moderately to strongly deleterious

(Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007;

Boyko et al. 2008; Eyre-Walker and Keightley 2009). Differ-

ences between Drosophila and humans in the properties of

the DFE have been attributed to a difference in their effec-

tive population size (Ne), the former being at least 2 orders

of magnitude larger (Eyre-Walker et al. 2002). An effect

attributable to Ne has also been observed in several other

species. For example, Ne in wild house mice is substantially

larger than humans but smaller than Drosophila, and �70–

80% of amino acid mutations are estimated to be moderately

to strongly deleterious (Halligan et al. 2010; Kousathanas

et al. 2011). Capsella grandiflora and Aribidopsis thaliana

are two plant species with large and small Ne, respectively,

and �86% and �66% of amino acid mutations are estimated

to be moderately to strongly deleterious, respectively (Foxe

et al. 2008; Slotte et al. 2010).

Most of the above methods assume that the DFE can be

approximated by a certain type of mathematical distribu-

tion, such as the gamma distribution. One would like,

however, to have a more general approach to obtain

information about the DFE without needing to assume an

explicit distribution. Steps in this direction were taken by

Keightley and Eyre-Walker (2010), who examined a model

of multiple discrete selection coefficients rather than assum-

ing a continuous distribution. However, Keightley and Eyre-

Walker (2010) did not examine the performance of their

models when the true distribution deviated from a gamma

distribution. Boyko et al. (2008) also fitted several types of

distributions and combinations of continuous distributions

and discrete fixed effects when inferring the DFE for amino

acid-changing mutations in humans. Wilson et al. (2011)

recently developed a new method that assumes a series of

discrete fixed selection coefficients, the density associated

with each selection coefficient estimated as a parameter.

However, due to the complexity of the model, Wilson et al.

(2011) needed to assume constant population size.

Although several different types of parametric and non-

parametric DFE models have been fitted to DNA poly-

morphism data, to our knowledge their performance in

cases where the true DFE is bimodal or multimodal has not

previously been investigated. In this study, we use simu-

lations to examine cases in which the true DFE is unimodal,

bimodal, or multimodal. We analyze simulated data assum-

ing six models for the DFE. The first two are parametric

unimodal distributions: the lognormal and the gamma

distribution. The third model is a parametric distribution

that can be bimodal: the beta distribution. The fourth model

is a discrete point mass distribution of selection coefficients

where the locations and the probability densities of each

point mass (or “spikes”) are estimated parameters. We refer

to this model as the spikes model, which is similar to the

discretized model used by Keightley and Eyre-Walker (2010).

The fifth model (“steps” model’) consists of multiple contin-

uous, uniform distributions (or steps), the boundaries and

probability densities of which are estimated parameters. The

sixth model is a variant of the model used by Wilson at al.

(2011) and assumes six fixed selection coefficients where only

their probability densities are estimated parameters. We refer

to this model as the “fixed six-spikes” model. We use simula-

tions to test the performance of the six models assuming var-

ious scenarios for the complexity of the true DFE. We go on to

fit the six models to protein polymorphism data sets from

D. melanogaster and Mus musculus castaneus, each containing

sequences of several thousand protein-coding genes.

Materials and Methods

Population genetic model and assumptions

In this study, we extend the methods developed by Keightley

and Eyre-Walker (2007) to infer the DFE of new mutations

based on the allele frequency distribution of polymorphic

nucleotide sites among individuals sampled from a popula-

tion. This approach is based on Wright–Fisher population

genetics theory and makes a number of assumptions. We

assume that sites are unlinked and have the same mutation

rate and that polymorphic sites are biallelic. We assume that

there are two classes of sites in the genome, one “neutral”

and one “selected.” The fates of new mutations in the neu-

tral class are affected only by genetic drift. New mutations at

selected sites are assumed to be unconditionally deleterious

and to have additive effects on fitness. We define the selec-

tion coefficient s as the fitness reduction experienced by the

homozygote for the mutant allele compared to the homozy-

gote for the wild-type allele. Therefore, the fitnesses of

the wild-type, heterozygote, and mutant homozygote are

1, 1 2 s/2 and 1 2 s, respectively.

Description of the modeled distributions
of selection coefficients

New mutations affecting the selected class of sites are

sampled from a probability distribution. We investigated

six models for this probability distribution: the first is a

lognormal distribution, which has two parameters: the

mean or location (m) and the standard deviation or scale
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(s). The second is a gamma distribution, which has two

parameters: the shape (b) and the scale (a). The third model

is the beta distribution, which has two shape parameters (k1,

k2). The fourth model (spikes model) assumes m mutational

effects classes (spikes), which are modeled as point masses.

For each mutational effect class i (i = 1. . .m), the location si
and the probability density (pi) are estimated parameters,

for a total of 2m 2 1 parameters. The fifth model (steps

model) assumes m mutational effects classes, and each class

i (i = 1...m) is modeled as a uniform distribution where

the minimum and maximum values (Nesi21 and Nesi, respec-

tively) and the probability density (pi) are estimated param-

eters. The minimum value of the first step is fixed to zero.

We assume that the start of each step is the end of the pre-

vious, that is, for step i, Nesi = Nesi21, ensuring that there

are no overlapping steps. The total number of parameters to

be estimated is m for the minimum and maximum values

values of the steps plus m 2 1 for the probability density of

each step, giving a total of 2m 2 1 parameters. The sixth

model (fixed six-spikes) assumes six mutational effects classes

(spikes), modeled as point masses arbitrarily fixed at Nes1 = 0,

Nes2 = 1, Nes3 = 5, Nes4 = 10, Nes5 = 50, Nes6 = Ne. The

probability densities of the fixed point masses are estimated

parameters, for a total of five parameters.

Demographic model

Following Keightley and Eyre-Walker (2007), we also incor-

porate a simple demographic model of a step change from

population size N1 to population size N2 at some time t in the

past. N1 is fixed at 100, the parameter t is estimated relative

to N2, and the parameter N2 is estimated relative to N1 (i.e.,

the magnitude of the size change is estimated). There may

be little information with which to estimate the relative

values of N1 and N2 so we also compute a weighted recent

effective population size Nw,

Nw ¼
N1w1þ N2w2

w1þ w2
; (1)

where w1 ¼ N1ð121=2N2Þ
t and w2 ¼ N2ð12 e2t=ð2N2ÞÞ

(Eyre-Walker and Keightley (2009)). We also incorporate

a parameter f0, which is the proportion of unmutated sites.

Under selective neutrality and stationary equilibrium, 1 2 f0
is proportional to the product of the mutation rate and the

persistence time of a new mutation.

Generation of the expected allele-frequency vector and
computation of likelihood

We assume that at some point in the past, a population of

size N1 was at mutation–selection–drift equilibrium. This

population then experienced a size change (either expansion

or contraction) to size N2 t generations from the present.

Throughout this period, new mutations arise, which are

neutral for the neutral class of sites and deleterious with

selection coefficients s sampled from a probability distribu-

tion f(s) for the selected class. Following Keightley and

Eyre-Walker (2007), we employ Wright–Fisher transition

matrix methods to generate the expected allele frequency

distribution at the present time for a set of parameter values

f0, t, N2, and a given s value, and we store it in vector v(s).

The lognormal, gamma, spike, and step distributions can

potentially have substantial parts of their density at s . 1.

We modeled the contribution of mutations for s . 1 assum-

ing that their frequency in the population goes down in pro-

portion to the expectation at mutation–selection balance,

following Keightley and Eyre-Walker (2007). The expected

mean allele-frequency distribution z is obtained by integrat-

ing over the distribution of selection coefficients for all ele-

ments of v(s),

z ¼

Z

N

0
vðsÞ fhsjQi ds; (2)

where Q represents the parameters of the distribution of

selection coefficients (e.g., a and b for the gamma

distribution).

The numbers of derived alleles in a sample of nT alleles

constitute the SFSs and are stored in vectors q(N) and q(S)

for the selected and neutral sites, respectively. Numbers of

alleles are binomial draws from a diploid population of size

N2. Since we do not distinguish between the derived and

ancestral states, we use only folded SFSs. We fold the SFS

and the allele-frequency vector z as follows:

qi ¼ qi þ qnT2i; for 0# i, nT=2 ð3Þ
zi ¼ zi þ z2N2i; for 1# i# 2N2=2 ð4Þ

Under the assumption that numbers of derived alleles are

binomially distributed, we compute the log likelihood of the

observed allele frequency distributions (i.e., SFSs) for neu-

tral and selected sites as

log L ¼
X

nT=2

i¼0

qilog

0

@

X

N2

j¼0

zjðbhijnT; j=2N2iþ bhnT2 ijnT; j=2N2iÞ

1

A (5)

(Keightley and Eyre-Walker 2007), where bhi|n, pi is the

binomial probability for i derived alleles in a sample of n

alleles with probability of occurrence p. We find the set of

the parameter values that best fits the observed SFSs by

maximizing the sum of the log likelihoods calculated for

the neutral and selected classes of sites.

Likelihood maximization

The parameters to be estimated are f0, N2, t, plus additional

parameters, depending on the selection model implemented

(Table 1). Maximization of the likelihood was done using

a custom likelihood search algorithm for N2, and the SIMPLEX

algorithm (Nelder and Mead 1965) for the remaining

parameters. To increase the speed of the maximization pro-

cedure, we first estimated the demographic parameters N2

and t and the parameter f0 from the neutral SFS. We as-

sumed the maximum likelihood (ML) estimates of N2 and

t when estimating the parameters from the selected SFS.
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We generated starting values for the location parameters

of the spikes and the steps by using a power series,

for spike or step iði ¼ 1 . . .mÞ; Nesi ¼ N
ði=m2rÞ
e ; (6)

where Ne = Nw as calculated by Equation 1 and r is a pseu-

dorandom deviate from a normal distribution with a mean

0 and standard deviation 0.1. This power series was devised

empirically and has several desirable properties: the term

Ne
i/m places the spikes or steps at a reasonable distance from

each other; the last spike or step is placed at Ne, therefore

avoiding generating extremely large Nes values; the pseudo-

random normal deviate r adds noise in the placement of the

spikes/steps.

The starting values for the relative probability densities of

the steps were set to 1/m. As the number of parameters

increases, the possibility of multiple local maxima also

increases. To ensure that the global maximum had been

found, we performed 10 starts of the maximization algo-

rithm for each run, each time using a different seed for

the pseudorandom number generator. We recorded the ML

estimates that gave the highest likelihood in these runs.

Implementation of the model

Our simulations used a forward Wright–Fisher simulator to

generate SFSs and we then used ML to fit demographic and

selection models and estimate the parameters. This was

implemented in a recoded version of the C program DFE-

alpha (Eyre-Walker and Keightley 2009). This version

implements all of the models we describe, can be used to

analyze SFS data sets in a similar way to DFE-alpha, and will

be made available via the authors’ website.

Simulations assuming a constant population size

We simulated SFS data sets assuming a diverse set of

distributions of selection coefficients, including unimodal,

bimodal, and multimodal distributions. We performed

simulations in which we assumed a constant population

size (N1 = N2 = 100). We used 106 neutral and 106 selected

sites and sampled 64 alleles. Parameter f0 was set to 0.9. We

also compared simulations in which we assumed different

numbers of sequenced alleles (8, 16, 32, 64, 128, and 256),

while assuming a set number of sites (106). For each simu-

lated data set, we performed 100 replicate simulations.

Simulations assuming variable population size

We modeled population size changes as step changes from

an initial population of size N1 = 100 at stationary equilib-

rium. Time is expressed in units of N1. We simulated two

demographic histories: a population expansion and a bottle-

neck. The simulated expansion was a step change to size N2

(N2/N1 = 3.1), at time t2/N1 = 1. The simulated bottleneck

was a reduction in population size N2/N1 = 0.72 at time t2/

N1 = 1.1 and a subsequent expansion with a step change in

size N3/N1 = 3.8 at time t3/N1 = 0.11. The parameters for

the two simulated demographic scenarios were chosen to

match the inferred histories of real populations. The simu-

lated expansion matches that inferred for a population of

wild mice (Halligan et al. 2010) and for the American pop-

ulation of humans with African ancestry (Boyko et al. 2008).

The bottleneck scenario matches that inferred for the Amer-

ican population of humans with European ancestry (Boyko

et al. 2008). For these simulations we assumed a gamma

DFE with a = 0.05 and b = 0.5. For each simulated data

set we used 106 neutral and 106 selected sites, sampled 64

alleles, and performed 20 replicate simulations.

Simulations with linkage

We used C++ program SLiM, developed by Philip Messer

and available at http://www.stanford.edu/�messer/software.

html to perform simulations with linkage (Messer 2013).

We simulated 1-Mbp-long chromosomes. Each chromo-

some had 20 loci. Each locus consisted of 10 exons of

length 100 bp each alternating with 1-kbp introns. The loci

were at a distance of 40 kbp from each other. We used

exonic sites and the first 100 bp of introns as selected

and neutral sites respectively. We simulated a population

of size N = 100 for 10N generations to reach stationary

equilibrium and sampled 64 chromosomes every 2N gen-

erations for 100N generations to obtain polymorphism data

for a total of 106 selected and 106 neutral sites. We as-

sumed a mutation rate 4Nem = 1% and simulated various

levels of linkage between sites by assuming recombination

rates (4Ner) varying between 1025 and 1. We performed

three types of simulations, varying the properties of the

DFE for selected sites: First, we assumed a gamma DFE

(a = 0.05, b = 0.5), second we assumed that 97% of sites

were under negative selection (gamma DFE; a = 0.05, b =

0.5) and 3% were under positive selection (single spike

DFE; Nes1 = 10), and third we assumed a bimodal DFE

consisting of two spikes of selection coefficients (Nes1 =

0, Nes2 = 10, p1 = 0.2). We performed 20 replicate runs

for each simulation type.

Evaluation of model performance

We are interested in knowing how well the mean effect

(Nes), the mean fixation probability of a new deleterious

mutation relative to a neutral mutation (�u), and the propor-

tion of mutations falling into five Nes categories (0.0–0.1,

0.1–1.0, 1.0–10.0, 10.0–100.0, .100.0) are estimated.

Nes and �u are important quantities for several questions,

Table 1 The selection models investigated in this study

DFE Model No. Parameters Parameters

Lognormal 2 m, s (location, scale)

Gamma 2 a, b (scale, shape)

Beta 2 k1, k2 (shape 1, shape 2)

Spike 2m 2 1 For i (i = 1. . .m), Nesi
For i (i = 1. . .m 2 1), pi

Step 2m 2 1 For i (i = 1. . .m) Nesi
For i (i = 1. . .m 2 1), pi

Six-fixed spikes 5 For i (i = 1. . .5), pi
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including inferring the proportion of mutations fixed by

positive selection and the rate of adaptive relative to neu-

tral evolution (i.e., a and va, respectively; Eyre-Walker and

Keightley 2009; Gossmann et al. 2010). Nes was calculated

by taking the arithmetic average of the selection coeffi-

cients over the range of s between 0 and 100 (i.e., the

Nes range was between 0 and 104, for Ne = 100). �u was

calculated by integrating over the DFE, as in Eyre-Walker

and Keightley (2009),

�u¼

Z

N

0
2Neu ðNe; sÞ f hsjQids; (7)

where u (Ne, s), is the fixation probability of a new delete-

rious mutation (Fisher 1930; Kimura 1957, 1962).

To assess the accuracy in recovering the properties (X) of

the simulated distributions, we compared estimates (Xi) vs.

true values (Xtrue). For �Nes and �u, we calculated the relative

error as

rel:error ðXÞ¼
Xi2Xtrue

Xtrue
: (8)

We compared the goodness of fit between models by

comparing their likelihoods and by comparing Akaike in-

formation criterion (AIC) scores. The AIC score penalizes

parameter-rich models as

AIC¼2k2 2logðLÞ; (9)

where k is the number of parameters in the model, and L is

the maximum likelihood for the estimated model. We con-

sidered an AIC difference .2 as significant when comparing

models. For the spike/step models we increased the number

of fitted spike/steps until an improvement of ,2 AIC units

was obtained.

Drosophila and house mouse data sets

We analyzed polymorphism data for protein-coding genes of

D. melanogaster and M. m. castaneus using the six

approaches described above. We also fitted a simple demo-

graphic model of a step change in population size. For D.

melanogaster, we analyzed a data set of 17 genomes from

individuals originating in East Africa (haploid Rwanda lines

from the Drosophila Population Genomics Project (DPGP;

release v. 2.0, http://www.dpgp.org/dpgp2/DPGP2.html;

Pool et al. 2012). The data set was compiled as in Campos

et al. (2012), but we did not use a minimum quality cut-off.

It included polymorphism data for 8367 autosomal genes

orthologous between D. melanogaster and D. yakuba. For

M. m. castaneus, we used a data set of 20 genomes from

individuals sampled in northwest India (Halligan et al.

2010; D.L. Halligan, A. Kousathanas, R.W. Ness, H. Li, B.

Harr, L. Eory, T. M. Keane, D. J. Adams, P. D. Keightley,

unpublished data). The data set included polymorphism

data for 18,671 autosomal genes orthologous between

M. m. castaneus and rat. CpG dinucleotides have substantially

higher mutation rates in mammals (Arndt et al. 2003) and

their frequencies differ between coding and noncoding DNA.

Therefore for M. m. castaneus, we restricted the analysis to

non-CpG-prone sites (sites not preceded by C or followed by

G). To calculate a and va we used the divergences at non-

synonymous and synonymous sites between D. melanogaster

and D. yakuba and between M. m. castaneus and rat, as

follows,

a ¼
dN2 dS�u

dN
; (10)

va¼
dN2 dS�u

dS
; (11)

where dN and dS are the nucleotide divergences between the

focal species and the outgroup at nonsynonymous and syn-

onymous sites, respectively.

Results

We simulated SFS data sets, choosing the parameters of the

simulated distributions to create three different scenarios for

their complexity (i.e., unimodality, bimodality, and multimo-

dality). We also aimed at generating distributions that were

biologically plausible. We then examined the performance

of several models incorporating parametric or nonpara-

metric distributions. We considered four main criteria for

evaluating the performance of the tested models: the log-

likelihood score, the accuracy in estimating the mean effect

of a new mutation (Nes), the accuracy in estimating the

average fixation probability of a new mutation (�u), and

the accuracy in estimating the proportion of mutations in

five Nes ranges. Estimates for the parameters of each of

the six tested models for each simulation set (SIM1, SIM2,

SIM3) are shown in Supporting Information, Table S1.

A gamma distribution simulated (SIM1)

To approximate a realistic scenario for protein-coding loci,

where current information suggests a leptokurtic DFE and

most sites under strong negative selection, we simulated

a gamma DFE with scale a = 0.05 and shape b = 0.5 (SIM1;

Figure 1). As expected, the gamma model gave the best fit to

the data, accurately estimating Nes (SIM1; Table 2). The

lognormal model performed poorly, overestimating Nes

and underestimating �u, while the beta model gave a good

fit (DAIC from the best-fitting model was 20.5) and accu-

rately estimated Nes and �u (SIM1; Figure 2, A and B, re-

spectively). Based on their AIC scores, the best-fitting

variable spike and variable steps models were the two-spike

and two-step models, respectively (SIM1; Table 2), and

these models fitted only slightly worse than the gamma

model. However they did not recover Nes and �u as accu-

rately as the gamma (SIM1; Figure 2, A and B, respectively).

All models tested performed well in accurately recovering

the proportions of mutations in the Nes ranges we examined
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(Figure 3). However, the lognormal and all the nonparamet-

ric models did not succeed in accurately assigning the pro-

portions of mutations in the Nes ranges 0.0–0.1 and 0.1–1.0,

presumably because there is little information to discrimi-

nate between these categories. In contrast, the gamma and

beta models performed almost perfectly in assigning the

proportions of mutations to these categories.

A bimodal beta distribution simulated (SIM2)

We then investigated a beta distribution with shape param-

eters k1 = 0.2 and k2 = 0.1 and scaled to the Nes interval

[0, 100] (SIM2; Figure 1). For this distribution, �10% of

selected sites are under weak negative selection (Nes , 1),

another 10% are under moderately strong negative selection

(Nes = 1–10), and the remaining 80% are under very strong

negative selection (Nes. 10). Such a bimodal distribution is

intended to model protein-coding loci where amino-acid

changing mutations are either neutral or strongly deleteri-

ous, with relatively few mutations of intermediate effect. As

expected, the beta model had the best AIC score (SIM2;

Table 2), recovering Nes and �u accurately (SIM2; Figure 2,

A and B, respectively). The unimodal lognormal and gamma

models fitted the data very poorly (DAIC from beta =

2597.2 for the lognormal and 289.9 for the gamma,

SIM2; Table 2). Nes was grossly overestimated by the log-

normal and gamma models (SIM2; Figure 2A). However, �u

was estimated relatively accurately by these models (SIM2;

Figure 2B). The estimate for Nes can be heavily influenced

by a long tail in the fitted distribution whereas �u is mostly

affected by effects in the Nes range 0–1. Therefore, the low

accuracy of Nes estimates from the lognormal and gamma

models presumably reflects a bad fit to the “strong effects”

part of the distribution (i.e., Nes. 10), but there is a reason-

ably good fit to the “nearly neutral effects” part of the dis-

tribution (i.e., 0 , Nes , 1). The best-fitting three-spike and

two-step models and the fixed six-spike model fitted almost

as well as the beta distribution (SIM2; Table 2). These non-

parametric models accurately estimated Nes and �u (SIM2;

Figure 2, A and B, respectively). We observed that the log-

normal, gamma, and nonparametric models assigned sub-

stantial proportions of mutations into the Nes .100 range

(Figure 3), although the simulated distribution had a near-

zero density in this range. Presumably, there is little infor-

mation with which to precisely estimate the upper limit of

the simulated distribution.

We also examined the performance of the models when

varying the locations of the modes of a bimodal DFE. We

investigated distributions with two classes of effects (two

spike): The first class of mutations was assumed to be

neutral with Nes1 = 0, and we varied the selection strength

and probability density associated with the second class

(Nes2 and p2, respectively). We then fitted the gamma and

the three-step models to these distributions and compared

their performance. In Figure 4A we show the DlogL between

the three-step and gamma models for different combina-

tions of values for Nes2 and p2. We found that for two-spike

distributions, where Nes2 $ 10 and p2 $ 0.4, the three-step

model significantly outperformed the gamma model (Figure

4A). Additionally, we examined the performance of the

Figure 1 The simulated DFEs. For SIM1, we simulated a gamma DFE with

scale a = 0.05 and shape b = 0.5. For SIM2, we simulated a beta DFE with

shape parameters k1 = 0.2 and k2 = 0.1 scaled to the Nes interval [0, 100].

For SIM3, the DFE was composed of three selection coefficients, Nes1 = 0,

Nes2 = 5, Nes3 = 50, with probability densities p1 = 0.2, p2 = 0.6, p3 = 0.2.

Table 2 Goodness-of-fit statistics for the models tested for each

simulation set

Simulation Model DlogL DAIC

SIM1 (gamma) Lognormal 213.9 227.8

Gamma 20.02 0.0

Beta 20.3 20.5

Best spike (2) 21.5 24.9

Best step (2) 0.0 22.0

Six-fixed spikes 20.6 27.1

SIM2 (bimodal beta) Lognormal 2300.0 2597.2

Gamma 246.4 289.9

Beta 21.4 0.0

Best spike (3) 0.0 23.1

Best step (2) 21.3 21.8

Six-fixed spikes 23.5 210.2

SIM3 (three-spike multimodal) Lognormal 229.5 253.0

Gamma 26.9 27.8

Beta 28.2 210.4

Best spike (3) 0.0 0.0

Best step (3) 20.7 21.3

Six-fixed spikes 20.6 21.3

The statistics reported are the mean log-likelihood and the mean AIC score

difference from the highest scoring model over 100 simulation replicates. A

sequencing effort of 64 alleles and 106 neutral and selected sites were assumed.

Only results for the best-fitting spike and step model, based on the AIC criterion, are

shown.

1202 A. Kousathanas and P. D. Keightley



models in estimating Nes and �u. We found that the gamma

model overestimated Nes when Nes2 $ 10 and underesti-

mated �u for almost all parameter combinations of Nes2 and

p2 (Figure 4, B and C, respectively), while the three-step

model overestimated Nes and underestimated �u when Nes2
, 10 (Figure 4, B and C, respectively).

A three-spike multimodal distribution simulated (SIM3)

To examine a case in which the true DFE is more complex,

we simulated a DFE comprising three selection coefficients,

Nes1 = 0, Nes2 = 5, Nes3 = 50, with probability densities

p1 = 0.2, p2 = 0.6, p3 = 0.2, respectively (SIM3; Figure 1).

The choice of parameters was mainly based on generating

three sufficiently distinct modes. As expected, a three-spike

model gave the best fit according to the AIC criterion (SIM3;

Table 2). The other nonparametric models fitted almost

equally well (DAIC was 21.3 for both the three-step model

and the fixed six-spike model, SIM3; Table 2). However, the

lognormal, gamma and beta models gave a poorer fit than

the nonparametric models (DAIC was 253, 27.8, and

210.4 for the lognormal, gamma, and beta models, respec-

tively, SIM3; Table 2). However, we did not observe large

differences in the accuracy of estimating Nes and �u between

the models tested (SIM3; Figure 2, A and B, respectively).

The lognormal, best spike, best step, and fixed six-spike

models slightly overestimated Nes, whereas the gamma

and beta models slightly underestimated Nes (SIM3; Figure

2A). All models tested slightly underestimated �u (SIM3;

Figure 2B).

The effect of increasing the allele sequencing effort

The primary goal of this section was to examine whether the

general trends in the performance of the six models tested

hold for different allele sequencing efforts. We compared

the performance of the models for 8, 16, 32, 64, 128, and

256 alleles sequenced. For the gamma distribution (SIM1),

increasing the sequencing effort led to more accurate

estimates of Nes for all models (SIM1; Figure S1A). Accuracy

of estimating �u improved only marginally (SIM1; Figure

S1B). For the beta distribution (SIM2), increasing the allele

sequencing effort increased the accuracy of estimating Nes

(SIM2; Figure S1A), but the accuracy of estimating �u did not

increase for the spike, step, and fixed six-spike models and

surprisingly decreased for the lognormal and gamma models

(SIM2; Figure S1B). This decrease can be explained if we

consider that the overall fit of the gamma and lognormal

models improves as the number of alleles sequenced is in-

creased, but the fit of the models to the Nes range 0–1 wor-

sens (the good fit of the models to the Nes range 0–1 is crucial

for an accurate estimate of �u). For the three-spike multimodal

distribution (SIM3), we observed that the parametric lognor-

mal, gamma, and beta models showed no improvement in

accuracy for estimating Nes and �u when increasing the num-

ber of alleles sequenced (SIM3; Figure S1A and Figure S1B,

respectively). The spike, step, and fixed six-spikes models at

low sequencing efforts (8–32 alleles) had an inferior perfor-

mance compared to the parametric models (SIM3; Figure

S1A and Figure S1B). However, as the number of alleles

sequenced was increased to 64 or greater, the performance

of these models became superior to the parametric models

(SIM3; Figure S1A and Figure S1B).

The effect of incorporating a population size change

We then examined whether population size changes can

affect the performance of the nonparametric relative to the

parametric models by simulating two population histories:

an expansion and a bottleneck. The expansion was a three-

fold step change in population size. The bottleneck was

a long-lasting 30% reduction in population size, followed by

a short-lived fourfold step expansion. For the selected sites,

we assumed a gamma DFE with scale a = 0.05 and shape

Figure 2 Summary statistics for the models tested for each simulation

set. (A) Mean estimates of the mean effect of a new mutation (Nes) and

(B) the probability of fixation of a new mutation (�u). Error bars are the 5th

and 95th percentiles of estimates over 100 simulation replicates. The

horizontal lines represent the simulated values. Only results for the

best-fitting spike and step model, according to the AIC criterion, are

shown. The y-axis is log scaled for panel A.
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b = 0.5 (as for SIM1). Since our method can incorporate

a model of a step change in population size, we fitted this

model to the neutral data for both simulated histories. For

the expansion scenario, the demographic parameters of the

step change were accurately estimated and the performance

of the different selection models was similar to SIM1 (Table

S2). For the bottleneck scenario, the two-epoch demo-

graphic model appeared to mostly capture the second

change in population size (Table S2). However, the non-

parametric two-spike and two-step selection models fitted

the data better than the parametric models (Table S2).

Therefore, a long-lasting bottleneck followed by rapid ex-

pansion can produce a signal in the data that is not fully

accounted for by the fitted two-step demographic scenario

and can cause the spike and step models to overfit the data

and produce spurious evidence for multimodality. Other

population histories such as a bottleneck followed by long-

lasting recovery or expansion gave similar results to the two-

step expansion scenario (result not shown).

The effect of linkage and selection

In our simulations we have assumed that sites are unlinked,

but genomes of real organisms can exhibit various amounts

of linkage. We performed simulations assuming a range of

recombination rates between sites to examine how linkage

can affect the performance of the three-step model in

detecting a bimodal DFE. This performance is assessed by

a significantly better fit of the three-step model than the

gamma model.

First, we investigated whether background selection alone

could produce a spurious signature of a bimodal DFE by

simulating a gamma DFE with a = 0.05 and b = 0.5. We

observed a better fit of the three-step model than the gamma

model for high levels of linkage (Figure S1C, top). However,

when we fitted a demographic model of a step change to the

neutral sites, a procedure that has been suggested to control

for the effects of linkage (Messer and Petrov 2012), the three-

step and gamma models fitted the data equally well at all

levels of linkage (Figure S1C, bottom).

Second, we examined whether positive selection could

produce a signature of a bimodal DFE. We simulated

a gamma DFE with a = 0.05 and b = 0.5 for negatively

selected mutations and a single spike for positively selected

mutations with selection strength Nesa=10 and probability

density pa = 0.03, which is similar to what has been

observed for protein-coding genes in D. melanogaster

(Schneider et al. 2011). We observed very similar results

to those we obtained by assuming only negative selection

(Figure S1D). Therefore fitting a demographic model to the

neutral sites is essential for controlling the effects of linkage

in producing spurious evidence of a bimodal DFE.

Third, we investigated whether linkage could affect our

power to detect a multimodal DFE with the nonparametric

steps model. We simulated a bimodal two-spike DFE with

Nes1 = 0, Nes2 = 10 with probability densities p1 = 0.2, p2 =

0.8, respectively. We found that strong linkage can reduce

the DlogL between three-step and gamma models (Figure

S1E, top). The results were similar when we also fitted a

demographic model of a step change to the neutral sites

(Figure S1E, bottom). Therefore, a true bimodal DFE would

be harder to detect in genomic regions that exhibit strong

linkage.

Analysis of protein polymorphism data sets from
D. melanogaster and M. m. castaneus

To account for demographic effects on our inferences of

selection we fitted a step change in population size to

synonymous sites. The step-change model inferred a popula-

tion expansion for both D. melanogaster and M. m. castaneus

(Table S3) and fitted very well to the data (Figure S2). We

then fitted the lognormal, gamma, beta, variable spike, vari-

able step, and fixed six-spike models to nonsynonymous

sites. For each data set, we computed DlogL, DAIC scores,

the proportions of mutations falling into four Nes ranges (0–1,

1–10, 10–100, .100), Nes, and �u (Table 3).

For D. melanogaster, we found that the best-fitting model

according to the AIC citerion was the lognormal model, the

gamma model having a slightly worse fit (DAIC from the

lognormal was25.1 units; Table 3). However, the estimated

proportion of mutations in the examined Nes ranges, Nes and
�u, were very similar between these two models (Table 3).

All models estimate that �2–7% of new mutations are

Figure 3 The mean estimated proportions of mutations in

five Nes ranges for SIM1, SIM2, and SIM3. We assumed

a sequencing effort of 64 alleles and 106 neutral and se-

lected sites. Error bars are the 5th and 95th percentiles of

estimates over 100 simulation replicates.
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nearly neutral (Nes 0–1), a further �4–20% are moderately

to strongly deleterious (Nes 1–100), and �80–90% are very

strongly deleterious (Nes .100). The beta and six-fixed

spike models gave a substantially poorer fit than the lognor-

mal model (DAIC to lognormal was 2187 units; Table 3).

The main discernible difference was a �10 times lower es-

timated Nes for the beta and fixed six-spikes models than the

lognormal model. The beta and fixed six-spike models do

not allow selection strength Nes. Ne and their poor fit may

be a consequence of a substantial proportion of mutational

effects lying in that range.

For M. m. castaneus, the best-fitting model according

to the AIC criterion was the three-spike model (Table 3).

The estimated parameter values were Nes1 = 2.3 · 10212,

Nes2 = 16.4, Nes3 = 1056, with probability densities p1 =

0.19, p2 = 0.12, p3 = 0.69, respectively (Table S3). The

fixed six-spike, two-step, and beta models fitted only slightly

worse than the three-spike model, while the lognormal and

gamma models had substantially worse fits (Table 3). The

parameter estimates of the three-spike model together with

the good fit of the beta model support a bimodal DFE in

M. m. castaneus. The DFE is inferred to have a peak at near

neutrality (Nes 0–1) of density �20%, and another peak at

very strongly deleterious to lethal effects (Nes . 100) with

density �70% (Table 3). Intermediate effects (Nes 1–100)

are inferred to have a density of �10% (Table 3).

The average fixation probability of a new deleterious

mutation (�u) is an important quantity, since it can be used to

estimate the fraction of adaptive substitutions between two

species (Eyre-Walker and Keightley 2009). We calculated a

and va (Equations 10 and 11) by using the estimated �u for

each model (Table 3). For D. melanogaster, we obtained

values of a in the range 0.47–0.7 and va 0.063–0.1 from

the different models (Table 3). For M. m. castaneus, the

lognormal and the gamma models gave slightly lower esti-

mates for �u and therefore higher estimates for a and

va (0.30 and 0.070, respectively; Table 3) than the best-

fitting three-spike model (0.20 and 0.047, respectively;

Table 3).

Discussion

In this study, we have examined the performance of several

models incorporating parametric and nonparametric distri-

butions for inferring the properties of the DFE. Since the

true DFE is of unknown complexity and can have multiple

modes, our purpose was to examine the performance of the

different models when the true DFE was unimodal, bimodal,

or multimodal. We investigated parametric distributions,

including the unimodal lognormal and gamma distributions,

which are widely used to model the DFE, and the beta

distribution, which can also take a bimodal shape. We also

examined the performance of custom nonparametric mod-

els, including discretized distributions, where the selec-

tion coefficients are modeled as point masses, or uniform

distributions, that are either variable or fixed. Spike or step

models with two or more classes of effects performed almost

as well as the gamma model for cases in which the true DFE

was a gamma distribution. When the true DFE was a bimodal

beta distribution, we found that the lognormal and gamma

models fitted poorly and produced inaccurate estimates of

Nes, �u, and the density in several Nes ranges, most notably

mutations with Nes . 100. When we simulated a more com-

plex DFE, the biases affecting estimates of Nes and �u from

the lognormal and gamma models were not as pronounced.

Accuracy in estimating Nes and �u seems to depend mostly on

the density of the extreme tails of the DFE, irrespectively of

its complexity. In our simulations, we frequently observed

that a particular model could have a good overall fit, but

perform relatively poorly for parts of the DFE that are crucial

for estimating Nes or �u. For example, we consistently ob-

served that �u was not estimated with high accuracy if the

models fitted were different from that simulated. Presum-

ably, the SFS contains limited information about mutations

with very small selective effects in the Nes range 0–1

Figure 4 The performance of the gamma and three-step models when

fitted to bimodal DFEs. We simulated two-spike DFEs with one spike fixed

at Nes1 = 0 and we varied the selection strength (Nes2) and probability

density (p2) of the second spike. (A) DlogL between the three-step and

gamma models fitted to the simulated DFEs as a function of Nes2 and p2.

We also compared the % rel. error in estimating (B) Nes and (C) �u. Positive

and negative values of % rel. error signify overestimation and underesti-

mation of these parameters, respectively.
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implying that estimation of �u strongly depends on the prop-

erties of the distribution assumed. Since �u can be used for

calculating the proportion of adaptive substitutions (a) and

the rate of adaptive evolution (va), underestimation of �u

would lead to overestimation of a and va (and vice versa).

When we examined a series of bimodal DFEs in which we

varied the locations and densities of the two modes of the

DFE, we observed substantial underestimation of �u by the

gamma model for cases where one mode of the DFE was at

Nes = 0 with density ,30% and the other mode was at

a weakly to moderately deleterious effect with density

.70%. Therefore, if the true DFE is bimodal, underestima-

tion of �u by the gamma model would be expected for ge-

nomic regions in which most of the sites are under

selection, such as protein-coding genes or conserved non-

coding elements, but not for genomic regions in which

most of the sites are evolving neutrally such as UTRs and

introns.

We also applied the parametric and nonparametric

models to infer the DFE for amino acid-changing mutations

in D. melanogaster and the house mouse M. m. castaneus,

based on data from several thousand autosomal protein-

coding genes. In D. melanogaster, we found that the log-

normal model gave the best fit to the data, a result that is

consistent with a previous study (Loewe and Charlesworth

2006). The estimate for Nes was 1360 by the best-fitting

lognormal model. This estimate is similar to estimates

obtained from a smaller data set of Shapiro et al. (2007)

analyzed by Keightley and Eyre-Walker (2007). If we as-

sume that the DFE for amino acid-changing mutations in

Drosophila is lognormal and that Ne is of the order 0.7 ·

106 (Halligan et al. 2010), then the mean selection coeffi-

cient of new deleterious amino-acid changing mutations

for D. melanogaster is of the order 2 · 1023. We also esti-

mate that a and va are 0.62 and 0.082, respectively. Re-

assuringly, the choice of the distribution to model the

DFE does not strongly affect �u and consequently a and

va. Regardless of the model assumed, a . 0.47 and va .

0.063, supporting the presence of highly effective positive

selection in D. melanogaster, as several other researchers

have inferred (Sella et al. 2009).

In M. m. castaneus, we found that a three-spike model

gave the best fit to the SFS. The beta distribution also fitted

almost as well as the three-step model, while the lognormal

and gamma models gave substantially poorer fits. These

observations suggest that the DFE for new deleterious

amino-acid changing mutations in M. m. castaneus is bi-

modal, with 20% of the distribution’s density attributable

to weakly deleterious mutations (Nes 0–1) and 70% to very

strongly deleterious mutations (Nes . 100). We also

obtained estimates for a and va, of 0.20 and 0.046, respec-

tively. We observed differences among the estimates of a

and va between different models, the lognormal and gamma

models producing higher estimates than the best-fitting

three-spike and beta models. Underestimation of �u by the

gamma and lognormal models was observed in simulations

in which the true DFE was a bimodal beta of similar prop-

erties to the inferred DFE for M. m. castaneus. It seems likely

that fitting a lognormal or a gamma distribution to the DFE

leads to overestimation of a and va. Halligan et al. (2010),

who fitted a gamma distribution to a small gene sample

from M. m. castaneus, obtained estimates for a larger (a =

0.37 for non-CpG-prone sites and using rat as outgroup)

than those obtained in the present study.

There are some potential caveats to our study. First, our

models do not incorporate genetic linkage in the inference

method. We investigated whether linkage and background

or/and positive selection can affect inferences from the

models tested and found that under moderate linkage,

spurious evidence for multimodality can be produced

(assessed by a better fit of spike/step models to data than

unimodal distributions). We can account for the effects of

linkage, however, by fitting a simple demographic model to

the neutral class of sites (as is also suggested by Messer and

Table 3 Results from the analysis of protein-coding loci in D. melanogaster and M. m. castaneus

Species Model D log L DAIC

Nes

Nes �u a va[0-1) [1-10) [10-100) $100

D. melanogaster Lognormal 20.8 0.0 0.044 0.064 0.11 0.78 1359.2 0.050 0.62 0.082

Gamma 23.3 25.1 0.049 0.055 0.12 0.78 1624.1 0.054 0.59 0.079

Beta 294.2 2187.0 0.064 0.025 0.043 0.87 94.6 0.066 0.50 0.067

Best spike (3) 0.0 24.5 0.063 0.00 0.10 0.84 275.2 0.063 0.52 0.069

Best step (2) 23.2 27.0 0.023 0.097 0.058 0.82 289.4 0.039 0.70 0.10

six-fixed spikes 272.3 2144.6 0.070 0.00 0.048 0.88 96.8 0.070 0.47 0.063

M. m. castaneus Lognormal 223.9 241.8 0.17 0.052 0.061 0.72 1298.9 0.16 0.30 0.070

Gamma 221.2 236.4 0.17 0.050 0.065 0.71 1840.1 0.16 0.29 0.069

Beta 24.4 22.9 0.18 0.016 0.022 0.78 141.2 0.18 0.22 0.052

Best spike (3) 0.0 0.0 0.19 0.00 0.12 0.69 755.4 0.19 0.20 0.047

Best step (2) 22.8 21.6 0.18 0.0098 0.10 0.71 237.4 0.19 0.20 0.047

Six-fixed spikes 22.9 25.8 0.19 0.0053 0.02 0.78 142.6 0.19 0.20 0.046

Log-likelihood and AIC score differences from the highest scoring model, estimated proportion of mutations falling into four Nes ranges, estimated mean effects of a new

mutation (Nes), estimated mean probability of fixation of a new mutation (�u), and estimates of a and va are shown. Only results for the best-fitting spike and step models,

based on the AIC criterion, are shown.
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Petrov 2012). Second, our two-epoch demographic model is

not sufficient for more complex demographic histories, such

as bottlenecks. Assuming a more realistic population history

of a long-lasting bottleneck followed by a rapid expansion,

we found that the spike/step models can overfit the data,

producing spurious evidence for multimodality of the DFE.

Therefore, when inferring the DFE using spike/step models

it is necessary to fit a three-epoch model to data from pop-

ulations that have experienced bottlenecks. A three-epoch

model can be incorporated into the inference procedure of

our method, but due to computational limitations it was not

feasible to investigate its performance in simulations. How-

ever, a three-epoch model fitted only slightly better to the

folded synonymous SFS for D. melanogaster andM. m. castaneus

than a two-epoch model (DlogL between the two-epoch and

three-epoch model was 3 and 7, respectively; result not

shown). Therefore, we do not expect a substantial effect

of the demographic history on our inferences of selection

in these populations. Third, the fact that we infer a bimodal

DFE forM. m. castaneus does not necessarily rule out a more

complex DFE. It appears that there is limited information in

the SFS, and our simulations indicate that at best three

modes can be inferred, even for very large data sets. It is

likely that the precise shape of the DFE cannot accurately

be determined based on SFS data alone, as has been shown

for the demographic history of a population (Myers et al.

2008).

In conclusion, we have shown that nonparametric dis-

cretized models, such as the spike and step models, can

perform as well or better than parametric distributions, such

as the gamma. They produce accurate estimates of the

important parameters, notably Nes and �u, and increasing the

numbers of alleles sequenced will increase their perfor-

mance. These models can also help in determining whether

the DFE has multiple modes. We note that we have exam-

ined only one particular case of each type of distribution

(unimodal, bimodal, multimodal) and we do not consider

the particular simulated examples as representatives of all

possible unimodal, bimodal, and multimodal distributions.

However, our results are relevant in showing the limitations

of fitting relatively inflexible distributions, such as the gamma

distribution to the DFE, and illustrate the advantages of using

a more general model such as the spike or step model to infer

the DFE. Fitting the spike or the step model with different

numbers of classes of mutational effects can be informative

about the complexity of the DFE and identifying which Nes

ranges we have little information on.
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Figure S1.   The effect of increasing the allele sequencing effort on the performance of the models tested and the effect of linkage and selection in producing spurious evidence for 

a bimodal DFE. A, B: The effect of increasing the allele sequencing effort. Mean estimates of  % rel. error in estimating (A)         , and (B)      when increasing the number of 

sequenced alleles for SIM1, SIM2 and SIM3. The y axis is log-scaled for panel A. C, D, E: The effect of (C) background and (D) positive selection on producing spurious evidence 

for a bimodal DFE for various levels of linkage. (E) The effect of linkage on the power to detect a bimodal DFE. Panels (C), (D), (E) show ΔlogL between the 3-step and gamma 

model for a range of  recombination rates (4Ner), and upper and lower inset panels contrast the results when fitting a demographic model to the neutral sites (the simulated 

population size is constant). 
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Figure S2.   The observed site frequency spectrum and the expectation generated by assuming a stationary and the best-fitting expansion demographic models for 

D. melanogaster and M. m. castaneus. The expansion model was fitted to the synonymous site data.
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Table S3. The demographic and selection parameter estimates obtained from the analysis of protein-coding loci in D. melanogaster and M. m. 

castaneus. The inferred parameters for the lognormal and beta model are given unscaled by Ne=Nw.

Species

Demography Selection

f0
N2/N1 t/N1 Nw Model μ/a/k1 σ/b/k2 Nes1 Nes2 Nes3 p1 p2 p3 p4 p5

D. melanogaster 2.79 0.11 109.8

Log-normal -2.9 4.9 - -
-

- - - - - 0.85

Gamma 1.6X10-4 0.33 - - - - - - - - 0.85

Beta 0.14 0.023 - - - - - - - - 0.85

Best spike (3) - - 5.6X10-10 5.1 296 0.063 0.10 - - - 0.85

Best step (2) - - 2.4 653 - 0.12 0.88 - - - 0.85

6-fixed spikes - - - - - 0.070 0.00 0.48 0.00 0.085 0.85

M. m. castaneus 2.79 1.48 181.8

Log-normal -6.1 12 - - - - - - - - 0.93

Gamma 2.1X10-7 0.12 - - - - - - - - 0.93

Beta 0.037 0.011 - - - - - - - - 0.93

Best spike (3) - - 2.3X10-12 16.4 1056 0.19 0.12 - - - 0.93

Best step (2) - - 4.8X10-3 585 - 0.18 - - - - 0.93

6-fixed spikes - - - - - 0.19 0.00 5.3X10-3 0.025 0.00 0.93
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