
A comparison of MPCP and MSRP when sharing resources in the Janus

multiple-processor on a chip platform

Paolo Gai, Marco Di Natale, Giuseppe Lipari,

Scuola Superiore Sant’Anna, Pisa, Italy

{pj,marco,lipari}@sssup.it

Alberto Ferrari

PARADES, Roma, Italy

aferrari@parades.rm.cnr.it

Claudio Gabellini, Paolo Marceca

Magneti Marelli Powertrain Div., Bologna, Italy

{marceca,gabellini}@bologna.marelli.it

Abstract

The new generation of embedded systems for automo-

tive applications can take advantage of low-cost multipro-

cessor system-on a chip architectures. The real-time soft-

ware applications running on these systems require real-

time processor scheduling, and also require the manage-

ment of the communication and synchronization of tasks

executing on different processors with limited blocking

time. Conventional real-time technologies, like the Rate

Monotonic scheduling algorithm together with the Multi-

processor Priority Ceiling Protocol (MPCP) can be used

to this purpose. In earlier work, we proposed the Multipro-

cessor Stack Resource Policy (MSRP) for scheduling tasks

and sharing resources in multiprocessor on a chip archi-

tectures. In this paper we present an experimental evalua-

tion that compares the performance of our algorithm with

a solution based on Rate Monotonic and MPCP in the con-

text of the Janus multiple processor architecture. The eval-

uation of the algorithm has been triggered by our ongoing

research in the automotive domain. We report on two sets

of experiments: the first addresses a range of generic task

configurations to see if one of the algorithms can clearly

outperform the other. The results show MSRP to be better

for random task periods but are probably not conclusive.

Later, we focus on a more application-specific (also more

restrictive) architecture design representing a typical auto-

motive application: a power-train controller. In this case,

MSRP clearly performs better. The performance gap be-

tween the two policies can be further increased when con-

sidering that MSRP is much simpler to implement, it has a

lower overhead, and it allows RAM memory optimization.

Keywords: real-time, operating systems, multiproces-

sor, scheduling, system-on-a-chip

1 Introduction

The exponential growth of silicon capacity allows the

proliferation of embedded systems in different application

Figure 1. The Janus Dual Processor system

domains offering unprecedented performance and func-

tionality. In present and future hard real-time automotive

applications, the introduction of multiple-processor-on-a-

chip architectures is seen as a very likely solution [4].

The Janus microntroller (Figure 1), developed by PA-

RADES, ST Microelectronics and Magneti Marelli in the

context of the MADESS1 project, is an example of a

dual-processor platform for power-train applications. Two

32-bit ARM7TDMI processors connected by a crossbar

switch to 4 memory banks and two peripheral buses for

I/O processing (low and high bandwidth) provide twofold

computational power, compared to a single (ARM7TDMI)

processor architecture, at very low increment of the silicon

area, i.e. at comparable system costs. Both CPUs share the

same address space. The main memory is organized in dif-

ferent modules and types: SRAM and FLASH. In architec-

tures with multiple processors, memory access is the most

important bottleneck of the system. Almost any communi-

cation flow is between the memory and other system com-

ponents. To allow correct synchronizations and commu-

nication among tasks allocated to different processors, the

architecture provides hardware support for inter-processor

communication by interrupt inter-processor mechanisms

and for shared memory by atomic test-and-set.

The applications running on the new single-chip plat-

form require predictable (and fast) scheduling algorithms.

1http://www.madess.cnr.it/Summary.htm

1

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

In addition, kernels must fit in a few kbytes of memory,

and, together with the application, they must use the small-

est possible amount of RAM memory. Resource sharing

must be carefully handled and all communication primi-

tives on shared memory must be designed in order to allow

for a limited blocking time.

In previous work [5] we presented the MSRP schedul-

ing and resource sharing protocol, which allows reducing

the amount of RAM memory allocated to the task stacks.

One of the possible drawbacks of the MSRP policy (and

a major concern for the automotive application develop-

ers that cooperate with us in MADESS) is the cost of spin

locking in multiprocessor real-time systems when com-

pared to other policies. In contrast, the multiprocessor pri-

ority ceiling protocol or MPCP, probably the best known

policy for bounding blocking time in a predictably way

in multiprocessor systems, avoids spin-locking, but does

not allow sharing the stack space of tasks. Furthermore,

it requires a non trivial run-time support, which results in

greater overhead when compared to the implementation of

MSRP. In order to settle this dispute, we performed exper-

iments comparing MSRP with MPCP in Janus. The exper-

iments are in two stages. In the first stage, our simulator

evaluates the schedulability of a number of generic task

sets to see if one of the algorithms can clearly outperform

the other. The results are not conclusive, except that (as

expected) MSRP is better when considering few global re-

sources and short critical sections. In the second stage we

focus on a domain-specific example: a task set implement-

ing a power-train controller, which is the representative of

a typical automotive application and our target demonstra-

tor in MADESS. For this case, MSRP clearly outperforms

MPCP, proving the viability of a spin-lock based approach

for sharing resources on the Janus platform.

The structure of the paper is the following: Sections 2

and 3 contain the description of our terminology and refer-

ences to fundamental work in this area. Sections 4 and 5

contain a short introduction to the MPCP and MSRP algo-

rithms with the corresponding schedulability analysis for-

mulas. Section 6 contains a comparison study of the two

methods, discussing their implementation. Section 7 pro-

vides a general introduction to power-train control systems

and introduces the thread architecture of the case study.

Finally, Section 8 contains the experimental results of our

simulations in the general case and in our target automotive

application.

2 Assumptions and terminology

In the paper, we use the terms thread and task inter-

changeably. The assumptions and definitions for the terms

and symbols used in the paper are the following:

Our embedded application consists of a set T =
{τ1, τ2, . . . , τn} of real time tasks to be executed on a set

P = {P1, . . . , Pm} of processors. The subset of tasks as-

signed to processor Pk will be denoted by TPk
⊂ T .

A task τi is a infinite sequence of jobs (or instances)

Ji,j . Every job is characterized by a release time ri,j , an

execution time ci,j , an absolute deadline di,j and a priority

pi

A task can be periodic or sporadic. Without loss of gen-

erality, we use the same symbol θi to indicate the period

or the minimum interarrival time of task τi. In the follow-

ing a task will be characterized by a worst case execution

time Ci = max{ci,j} and a period θi. We assume that the

relative deadline of a task is equal to its period θi: thus,

di,j = ri,j + θi.

Tasks are allowed to access mutually exclusive re-

sources through critical sections. Let R = {ρ1, . . . , ρp}
be the set of shared resources. The k–th critical section of

task τi on resource ρj is denoted by ξj
ik and its maximum

duration is denoted by ωj
ik .

Finally, we suppose that tasks have been statically allo-

cated to Processors and are always executed on the same

processor. Depending on this allocation, resources can be

divided in local and global resources. A critical section

protecting a global resource is called global critical sec-

tion or gcs.

3 Related Work

The uniprocessor Priority Ceiling Protocol or PCP

(see [12]) is one of the best known policies for avoiding

priority inversions and limiting the blocking time in single

processor systems. The PCP policy defines a (static2) ceil-

ing attached to each semaphore (resource ρk) as the max-

imum priority among all tasks that can possibly lock the

semaphore.

ceil(ρk) = max
i

{pi | τi uses ρk}.

and a dynamic system ceiling is defined as

Πs(t) = max[{ceil(ρk) | ρk is currently locked} ∪ {0}].

Job Ji requesting a resource is blocked if its priority

is not higher than the system ceiling. The Priority Ceil-

ing Protocol, which can be used together with the Rate

Monotonic (RM) scheduler [8], ensures that a job can be

blocked only once when accessing a shared resource held

by a lower priority job. This delay is called blocking time

and denoted by Bi. The maximum local blocking time for

each task τi can be calculated as

Bi = max
τj∈T ,∀h

{ωk
jh | pi > pj ∧ pi ≤ ceil(ρk)}. (1)

The schedulability condition for the PCP protocol when

used together with a RM scheduler is:

∀i, 1 ≤ i ≤ n

n∑

k=1

Ck

θk
+

Bi

θi
≤ n(21/n − 1) (2)

2In the case of multi-units resources, the ceiling of each resource is

dynamic as it depends on the current number of free units.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

The Stack Resource Policy was proposed by Baker in

[2] for scheduling a set of real-time tasks on a uniprocessor

system. The SRP is similar to the Priority Ceiling Proto-

col, but it has the additional property that a task is never

blocked once it starts executing. Like PCP it can be used

together with RM or EDF.

According to the SRP, every real-time (periodic and

sporadic) task τi must be assigned a priority pi and a static

preemption level λi, such that: task τi is not allowed to

preempt task τj , unless λi > λj .

The definition of the semaphore ceiling used by SRP is

slightly different from the one used by PCP, since it does

involve preemption levels instead of priorities:

ceil(ρk) = max
i

{λi | τi uses ρk}.

and the SRP scheduling rule states that: “a job is not

allowed to start executing until its priority is the highest

among the active jobs and its preemption level is greater

than the system ceiling”.

The SRP ensures that, once a job is started, it cannot

be blocked until completion; it can only be preempted by

higher priority jobs. However, the execution of a job Ji,k

with the highest priority in the system could still be de-

layed by a lower priority job. In [2] Baker proved that For-

mula 2 can be used for checking the schedulability of tasks

under SRP+RM (or EDF). The maximum blocking time

can be computed in exactly the same way it is computed for

PCP, with the only exception that preemption levels must

be considered instead of priorities.

From an implementation viewpoint, SRP allows tasks

to share a unique stack. In fact, a task never blocks its exe-

cution. The implementation of the SRP is straightforward

as there is no need to implement waiting queues. Further-

more, by disabling (some) preemption [11], the require-

ments for stack space can be reduced. Our MSRP algo-

rithm extends this idea to dynamic scheduling and multi-

processor systems.

The Multiprocessor Priority Ceiling Protocol (MPCP)

has been proposed by Rajkumar in [10] for scheduling

a set of real-time tasks with shared resource on a multi-

processor. It extends the Priority Ceiling Protocol [12] for

global resources. Since this policy is the term of compar-

ison for our MSRP policy we will spend some extra time

discussing its features.

4 The MPCP Multiprocessor Priority Ceil-

ing Protocol

If tasks block on semaphores protecting global re-

sources, the concept of blocking needs to include also re-

mote blocking (when a job has to wait for the execution of a

task of any priority assigned to another processor.) MPCP

extends the priority ceiling protocol to multiprocessor sys-

tems with the assumption that tasks are statically bound to

processors and scheduled according to the rate monotonic

policy.

The goal of MPCP is to bound the remote blocking du-

ration of a job as a function of the duration of critical sec-

tions of other jobs and not as a function of the duration

of non-critical code. As a direct consequence, it is neces-

sary that global critical sections are assigned a ceiling that

is higher than the priority of any other task in the system.

If pH is the highest priority among all tasks, a priority of

pH + 1 + maxi{pi | τi uses ρk} is the priority ceiling

for the semaphore protecting the global resource ρk. Other

important design choices of MPCP are the following:

• jobs are suspended when they try to access a locked

gcs;

• when a higher priority task is blocked on a global crit-

ical section local tasks can be executed and may even

try a lock on local or global critical sections;

• when a global resource is released the task waiting on

top of the semaphore list is awakened and inherits the

priority of the global critical section.

One very important consequence of letting lower prior-

ity local tasks execute and possibly inherit the priority of

global critical sections is the possibility of priority inver-

sion occurring while a high priority task is blocked on a

gcs. Other assumptions are the following: local critical

sections do not make nested access to global resources and

vice versa, furthermore, nested accesses to global critical

sections are prohibited.

MPCP allows for a bounded blocking time and a for-

mula exists for checking the schedulability of real-time

tasks. The formula is an adaptation of Formula 2 (to be

evaluated for each processor) with the only difference that

the blocking factor Bi must account for local and global

priority inversions. In order to simplify the formulation of

the five factors that add up to form the factor Bi the fol-

lowing additional definitions are introduced.

Task τi can access local (i.e. allocated on the same pro-

cessor) or global resources. The number of global critical

sections executed by τi is nG
i . NLi,j is the number of jobs

with a lower priority than Ji on its processor. {J ′
(i)r

} is

the set of jobs on processor Pr with gcs having priority

higher than global critical sections that can directly block

Ji. NHi,r,j is the number of global critical sections of

job Jj ∈ {J ′
(i)r

} with higher priority than a global criti-

cal section on processor Pr, which can directly block Ji.

{nGSi,j} is the set of global semaphores locked by both Ji

and Jj . Finally, NCi,j is the number of global critical sec-

tions entered by Jj and guarded by elements of {nGSi,j}.

The blocking time for a job Ji on processor Pj consists

of up to five different factors:

Bi = Bi1 + Bi2 + Bi3 + Bi4 + Bi5

where

• Bi1 = nG
i ωlocal

i (where ωlocal
i is the longest critical

section accessed by jobs with a priority lower than Ji

executing on the same processor), since each time Ji

needs a global semaphore may suspend, letting lower

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

priority jobs execute on its processor. These low pri-

ority jobs can lock local semaphores and block Ji

when it resumes its execution.

• Bi2 = nG
i ωglobal

j (where ωglobal
j is the longest global

critical section accessed by jobs with a priority lower

than Ji executing on other processor) when job Ji

tries to access a global critical section and finds it is

accessed by a lower priority job on another processor.

• Bi3 = NCi,j⌈Ti/Tj⌉ω
global
j for each higher priority

job executing on a processor different from Pi and

requesting the same global semaphore as Ji.

• Bi4 = NHi,r,j⌈Ti/Tj⌉ω
global
j for higher priority

global critical sections, which can preempt the global

critical sections of lower priority jobs directly block-

ing Ji.

• Bi5 = min(nG
i + 1, nG

k)ωglobal
j each time Ji tries to

access a global critical section it can suspend letting

lower priority jobs execute on its processor. These

jobs can lock or queue on global semaphores and

eventually execute at a priority higher than Pi and pre-

empt it when it executes non global code.

5 Multiprocessor SRP

The MSRP policy provides a solution to the resource

sharing as well as the task allocation problem. Since

EDF+SRP cannot be directly applied to multiprocessor

systems, we proposed an extension of these protocols. This

solution allows tasks to use local resources under the SRP

policy and to access global resources with a predictable

blocking time without interfering with the local execution

order. This mechanism, when used in conjunction with

preemption thresholds, and the creation of non–preemptive

task groups [11] [5] allows to perform time guarantees

minimizing the requirement for RAM space. According

to our MSRP policy, if a task tries to access a global re-

source and the resource is already locked by some other

task on another processor, the task performs a busy wait

(also called spin lock). The spin lock time should be re-

duced as much as possible (the resource should be freed as

soon as possible). For this reason, the tasks become non-

preemptable when executing a critical section on a global

resource. The MSRP algorithm works as follows:

• For local resources, the algorithm is the same as the

SRP algorithm. Tasks are allowed to access local re-

source through nested critical sections (it is not possi-

ble to nest global critical sections).

• When a task τi, allocated to processor Pk ac-

cesses a global resource ρj , the task becomes non–

preemptable. Then, the task checks if the resource is

free: in this case, it locks the resource and executes

the critical section. Otherwise, the task is inserted in

a FCFS queue on the global resource, and then per-

forms a busy wait.

• When a task τi, allocated to processor Pk, releases

a global resource ρj , the algorithm checks the corre-

sponding FCFS queue, and, in case some other task τj

is waiting, it grants access to the resource, otherwise

the resource is unlocked. The task becomes again pre-

emptable.

The spin lock time that every task allocated to processor

Pk needs to spend for accessing a global resource ρj ∈ R
is bounded from above by:

spin(ρj , Pk) =
∑

p∈{P−Pk}

max
τi∈Tp, ∀h

ωj
ih.

Basically, the spin lock time increments the duration

ωj
ih of every global critical section ξj

ih, and, consequently,

the worst case execution time Ci of τi. Moreover, it also

increments the blocking time of the tasks allocated to the

same processor with a preemption level greater than λi.

We define the actual worst case computation time C′
i for

task τi as the worst case computation time plus the total

spin lock time:

C′
i = Ci +

∑

ξj

ih

spin(ρj, Pk)

MSRP maintains the same basic properties of the SRP,

that is, once a job starts executing it cannot be blocked,

but only preempted by higher priority jobs and a job can

experience a blocking time at most equal to the duration of

one critical section (plus the spin lock time, if the resource

is global) of a task with lower preemption level.

It is noteworthy that the execution of all the tasks al-

located on a processor is perfectly nested (because once

a task starts executing it cannot be blocked), therefore all

tasks can share the same stack.

The blocking time for a task can be divided into block-

ing time due to local and global resources.

Bi = max(Blocal
i , Bglobal

i)

where Blocal
i and Bglobal

i are defined as:

Blocal
i = max

j,h,k
{ωk

jh | (τj ∈ TPi
) ∧ (ρk is local to Pi) ∧

(λi > λj) ∧ (λi ≤ ceil(ρk))}

Bglobal
i = max

j,h,k
{ωk

jh + spin(ρk, Pi) | (τj ∈ TPi
) ∧

(ρk is global) ∧ (λi > λj)}
Suppose that tasks on processor Pk are ordered by de-

creasing preemption level. The schedulability test is as fol-

lows:

∀ Pk ∈ P TPk
= {τ1, . . . , τnk

} ∀i = 1, . . . , nk

i∑

l=1

C′
l

θl
+

Bi

θi
≤ 1 (3)

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

6 Comparing MSRP with MPCP

The blocking factors Bi1 , . . . Bi5 of MPCP are the re-

sult of a worst case analysis and can be reduced by care-

fully examining the task set at hand. Nonetheless the guar-

antee formula is clearly extremely complicated. Consider

also that PCP requires keeping track of local and global

priority ceilings and the previous formula holds if the pe-

riod enforcing technique (described in [10]) is used.

If, on the other hand, MSRP is used, we can expect to

waste more local processor time due to the use of spin

locks when trying to lock global resources. The guaran-

tee formula of MSRP is simpler since we do not have to

account for the events that cause the blocking factors Bi1

and Bi5 which are the consequence of suspending a task

when trying to access a locked critical section.

At first sight, it would appear that, whenever global

critical sections are sufficiently short, the MSRP approach

would perform better (besides being much simpler to im-

plement). On the other hand, MPCP should be better when

global critical sections grow larger. We performed a first

set of experiments trying to determine where this boundary

lies and in what conditions should designers expect MSRP

to perform adequately. Following the results of these ex-

periments, we focused our analysis on a power-train appli-

cation: a typical case study from the automotive domain.

6.1 Implementation notes

An implementation of the MPCP protocol can be basi-

cally divided in two parts [10]: the implementation of a

local priority ceiling protocol and the implementation of

the global inter–processor synchronization.

The local part of the protocol implementation can eas-

ily be done using a priority ordered Task queue, where the

highest priority task in the queue is the running task. More-

over, a list of locked semaphores (ordered by ceiling) has

to be maintained to allow the implementation of the inher-

itance of the priority.

The global part of the protocol subsumes the existence

of a shared data structure that records the state of a global

mutex. In particular, an ordered queue of the tasks that are

blocked on the global resource has to be implemented. The

low-level access to that data structure has to be done in mu-

tual exclusion, and that is usually done using a spin-lock

approach (the duration of the spin lock is not accounted

into the guarantee equations, since it is bounded by the

maximum time needed to handle the internal data struc-

ture) or using an inter-processor interrupt. Moreover, to

guarantee a bounded blocking time the Period Enforcer

technique must be implemented.

When using SRP there is no need to implement

semaphores and queues for blocked tasks, and the blocking

time experienced by each task can be predictably bound.

Furthermore, the SRP allows multiple tasks to share a sin-

gle stack. For these reasons, the SRP can be implemented

with a small overhead and memory occupation. The imple-

mentation of MSRP on the Janus platform has been simpli-

fied by taking advantage of the fact that there are only two

processors contending for the use of global resources. In

particular, only one processor at a time can be blocked on

a global resource, so FCFS queues are not needed for wait-

ing tasks. Moreover, implementing a spin-lock mechanism

on Janus only requires a negligible amount of code. Since

all memory is shared between the two processors, a single

memory location can be used to synchronize all tasks using

the swpb ARM instruction.

7 The Power-train Control Application

7.1 Introduction

The goal of power-train control systems is to offer ap-

propriate driving performance (e.g. driveability, comfort,

safety) while minimizing fuel consumption and pollutant

emissions. In an engine management system, the fuel in-

jection and air intake are controlled to produce the de-

sired mix to be transformed, by the combustion process,

in torque and emissions. The combustion process takes

place in the cylinders and the starting time is controlled

by the sparks generated from the spark plugs. The pro-

duced torque is then applied to the power-train, which is

controlled by the gear selection and clutch position. The

final result is the force applied, through the wheels, to the

entire vehicle. Driveability is an informal measure of how

favorably this force is perceived by the driver under his/her

action. The control strategy goal is achieved by means

of several control inputs such as throttle position, fuel in-

jection, spark ignition, gear selection and clutch position.

Fuel injection, spark ignition and part of the gear-box con-

trol are angle-based, i.e. they must be synchronized with

the engine position3 or drive-line angle. The other con-

trol variables do not have these synchronization constraints

and are called time based. To compute the engine position,

the engine has two sensors (the crankshaft and cam-shaft

toothed wheel sensors) providing two angular references

used for injection and ignition synchronization. Synchro-

nization is essential for timing the opening of fuel injectors

and the ignition of the spark plugs. The supplied torque

and the emitted pollutants depend crucially on the accu-

racy of these operations.

7.2 Task architecture

In order to evaluate the performance of the resource

sharing algorithms for our target application, we need a

model view representing the thread architecture. The view

must define the typical abstractions used in schedulability

3For engine position we mean both the angular position of the

crankshaft and the working phase (i.e. intake, compression, expansion

or exhaust) of each cylinder.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

1

_

Z

INC
sum_out

count_out
RESET

−=

LIMIT

code implementation of the functional block

Thread

output from functional blockinput to functional block

Figure 2. A thread contains the implementa-

tion of several functional blocks

analysis, such as the real-time threads, each characterized

by its activation mode (periodic or sporadic), and its tim-

ing characteristics (such as the WCET) and the shared re-

sources used by the threads, with the execution times of the

methods called upon them.

An extremely short introduction to a typical automotive

software development process can help understanding the

nature of the application threads and the relationships be-

tween them and the set of shared resources. The threads

running under the control of the RTOS are the result of a

software development process, which starts from the def-

inition of a high level model (usually a functional model

obtained from a tool like Simulink) and continues with

the automatic production of software code implementing

the functional blocks defined in the model. The code im-

plementing the functional blocks is statically scheduled in

the context of a thread (see figure 2). As a result, each

thread performs many read and write accesses to the in-

put and output variables or devices defined by the function

blocks implemented in it. These sets of input and output

variables/devices are possibly implemented as shared re-

sources and the resulting graph of use relationships among

tasks and resources is quite densely connected, with each

task accessing many resources.

Unfortunately, the exact specification of the applica-

tion architecture and its performance/timing data (as im-

plemented in the current version of the controller) are con-

sidered extremely sensitive industrial property. Further-

more, the current implementation is on a single-cpu con-

troller and it is expected that it will change when ported

to the new Janus architecture. Given this restriction, our

analysis had to settle for realistic data on the application

threads and resources, which could be used for measuring

the quality of the algorithms and comparing their perfor-

mance. The model view we analyzed can be considered

a good abstraction of the current implementation and the

starting point for evaluating algorithms and solutions (on

the worst-case side) for the upcoming Janus implementa-

tion.

Based on the analysis of the current implementation and

based on the number and complexity of the function points

in the new implementation, we considered from 10 to 20

periodic tasks and from 2 to 6 aperiodic tasks with peri-

ods ranging from 1 ms to about 100 ms (given the depen-

dency from specification requirements, such as the maxi-

mum rpm of the engine, the rate requirements should be

considered quite reliable data). Tasks are divided into 3

classes:

high rate: from 1 ms to 5 ms.

medium rate: from 5 to 20 ms.

low rate: from 50 to 100 ms.

Tasks are distributed among the three classes in this

way: 50% of the tasks belong to the medium rate type, the

other types account for 25% of the tasks each. The proces-

sors are quite heavily utilized, utilization ratios above 70%

should be expected for each processor. The fraction of the

processor utilization required by each class is the follow-

ing: 50% of the processor time is used to serve high rate

tasks, 30% is allocated to the medium rate class, and the

last 20% will be used to execute the low rate class. As for

resources, tasks share both physical and logical resources.

The Janus physical resources shared by tasks are the I/O

channels for Analog to Digital (A/D) conversion and the

serial ports that are used for communication with the out-

side systems. The logical resources consist of memory

buffers for communication. Both kind of resources are pro-

tected by priority ceiling (MSRP or MPCP) semaphores.

Access to the shared I/O channels can be characterized

as follows: the serial bus is expected to work at high speeds

(the target rate is 500 kb/s) transmitting one byte at a time,

corresponding to about 50 µs of required access time. The

serial communication will be used only once for each task.

Two serial ports (UARTs) are implemented in Janus. The

A/D conversion device can be used multiple times, from

5 up to a maximum of 10 times for each task. The A/D

access time is dominated by the setup time, resulting in

critical sections of about 5 µs.

Tasks are expected to communicate through shared

memory resources, which are of two types: switched (no-

wait) buffers and one-position mailboxes. Resources of

the first type do not actually need semaphores, since the

pointer swapping instruction is provided as an atomic in-

struction by the ARM processors and only one writer task

is expected for these resources. As for the second type of

resources, tasks are expected to cooperate by exchanging

information on their internal state as a set of shared vari-

ables. These sets consist of 20 to 50 sets, each one contain-

ing between 10 and 300 variables, which must be written

and read atomically, in order to keep the state consistent.

Each variable is implemented using a 16 or 32 bit data type.

These shared memory requirements actually represent

a worst case approximation and in no case will the

overall memory allocated to shared variables exceed an

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

architecture-specific bound of 16 KBytes. Write opera-

tions are expected to affect all the variables in the data set,

and read operations only address a subset (uniformly dis-

tributed between 10% and 100%) of the variables in the

set. Each task is expected to perform from 3 up to 20 read

accesses and from 2 to 8 write accesses to the sets of vari-

ables. Finally, in order to ease the schedulability of the

task set, a large percentage of the resources accessed by

high rate tasks is implemented by using switched buffers

(when allowed by the communication semantics).

8 Experimental results

8.1 Generic task sets

In the first set of experiments we compare the perfor-

mance of the MSRP and MPCP algorithms on a range of

task configurations (random load) mapped on the 2 Janus

processors.

The experiments consider a set of 6 to 10 tasks statically

allocated to each CPU. Depending on the experiments, task

periods are chosen randomly between 1 and 100 or by se-

lecting appropriate harmonic values. Harmonic periods are

generated in the following way: the period of the first is 1;

the period of the next task is given by the period of the pre-

vious task multiplied by a random factor between 1 and 4

(ratio 1 has the 30% of probability, ratios 2,3,4 share the

remaining 70%).

If U is the system utilization, defined as U = Σici/θi,

the total load on each CPU ranges from Umin and Umax,

where Umin ranges from 0.025 and 0.925 with steps of

0.025, and Umax ranges from Umin+0.025 to 0.95 with

steps of 0.025. The number of local resources is always 6

for each processor, plus 6 global resources. The number of

critical sections accessed by each task is a random value

chosen in the intervals (0,2), (1,4), (2,6) depending on the

experiment. Tasks spend a percentage of their computation

time into critical sections. The fraction of execution time

that is spent in a critical section (local or global) ranges

between Cmin and Cmax, where Cmin and Cmax belong

to the set {0.0, 0.5, 0.10, 0.15, 0.2}, and Cmax is always

greater than Cmin. For each task set we consider a set of

101 possible configurations, obtained considering that the

time spent in a critical section is allocated for a percent-

age x to local critical sections, and for a percentage (1-x)

to global critical sections, with x ranging from 0 to 1 with

steps of 0.01. On each configuration we check if the MSRP

and the MPCP tests can guarantee the task set as schedula-

ble (more than 520 million configurations were tried).

The first set of experiments is performed on task sets

where periods are randomly chosen. The graphs show

the percentage of tasks sets that can be guaranteed to be

schedulable. It is easy to see how the MSRP policy per-

forms better than MPCP mainly because of the higher uti-

lization bound of EDF when compared to Rate Monotonic.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f
s
c
h
e
d
u
la

b
le

 s
o
lu

ti
o
n
s

Maximum utilization factor for each CPU

Boundary between MSRP and MPCP, random periods, 2 CPUs

MSRP − 0% local
MSRP − 25% local
MSRP − 50% local
MSRP −75% local

MSRP − 100% local
MPCP − 0% local

MPCP − 25% local
MPCP − 50% local
MPCP − 75% local

MPCP − 100% local

Figure 3. Percentage of schedulable solu-

tions, random periods, variable percentage
of local resource utilization.

For higher utilizations the guarantee rate decreases, most

notably for the MPCP solution, where it finally approaches

a hyperbolic bound for higher values (the hyperbolic bound

for rate monotonic scheduling defined in [3] is used).

In general, in all our experiments on random task peri-

ods, MSRP always performed better. Even if this is mostly

due to the use of EDF as a task scheduling policy, it is our

opinion that this advantage should not be easily dismissed.

A comparison which does not give an a priori advantage

to MSRP because of the higher schedulability bound of

EDF can be obtained by selecting task sets where periods

are harmonic, therefore having a utilization bound of 1 for

the Rate Monotonic policy. The results for this case (Fig-

ure 4) show that there is no algorithm performing better on

the whole scale of the spectrum (for all the possible per-

centages of local resources). As one should expect MPCP

performs better for a higher percentage of global resources

while MSRP is better if a greater percentage of local re-

sources is simulated.

The MPCP curves are always between the minimum

and the maximum curves for MSRP. This implies the exis-

tence of a crossing point which identifies the percentage of

local access to resources that, for each U separates the zone

where MPCP performs better from the range where MSRP

guarantees an higher percentage of schedulable sets.

To better highlight these regions it is useful to plot the

data with a different X axis variable: the percentage of lo-

cal resource utilization. For example, in Figure 5 MSRP

outperforms MPCP for high local resource usage, that is

when at least 40% of the resource access time is on local

resources (the upper right region in Figure 5).

It can be noted that, as U increases, the lines decrease

(since the system load is greater, fewer schedulable solu-

tions can be found). Moreover, when the use of global

resources increases (X axis going to 0) there is a point (the

boundary in the figure) where MPCP starts to perform bet-

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f
s
c
h
e
d
u
la

b
le

 s
o
lu

ti
o
n
s

Maximum utilization factor for each CPU

Compartison between MPCP and MSRP with harmonic periods

MSRP − 0% local
MSRP − 50% local

MSRP − 100% local
MPCP − 0% local

MPCP − 50% local
MPCP − 100% local

Figure 4. Percentage of schedulable solu-

tions, harmonic periods, variable percentage

of local resource utilization.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

%
 o

f
s
c
h
e
d
u
la

b
le

 s
o
lu

ti
o
n
s

% of local resources

Boundary between MSRP and MPCP, harmonic periods, 2 CPUs

MSRP/MPCP boundary
MSRP, U=0.275
MSRP, U=0.525
MSRP, U=0.775

MSRP, U=0.0
MPCP, U=0.275
MPCP, U=0.525
MPCP, U=0.775

MPCP, U=0.9

Figure 5. Comparison of MPCP and

MSRP with the performance boundary

(Y=percentage of schedulable solutions,

X=percentage of local critical sections).

ter (which can be explained because the spin locking term

influences not only the blocking time, but also the task

computation time). A continuous spline, interpolating the

crossing points in the figure gives an idea of the boundary

between the areas where the two algorithms perform better.

Experiments clearly show how the area where the

MSRP protocol performs better increases for a higher use

of shared resources. This is a side effect of the reduction of

schedulability caused by a higher use of shared resources.

In case of Figure 6, the lines are not simply splines, but

are the result of comparative experiments for points of the

plane (U, % of local resources).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

%
 o

f
s
c
h

e
d

u
la

b
le

 s
o

lu
ti
o

n
s

% of local resources

Boundary between MSRP and MPCP, harmonic periods, 2 CPU

0-5% CS length
5-10% CS length

10-15% CS length
15-20% CS length

Figure 6. Boundary obtained considering 2

CPUs with various resourse usages.

8.2 The power-train case

The results of our experiments on generic task sets can

hardly be considered conclusive for the harmonic periods

case. In our second set of experiments we focused on our

power-train specifications, to see if more knowledge could

be gained when restricting the application domain.

The task sets used for the evaluation of our power-

train case study were created using the abstract architecture

specification defined in Section 7.

Utilization A set of experiments was performed for dif-

ferent values of the system (2 CPUs) utilization. We con-

sidered utilization values from 1.4 to 1.96 with steps of

0.04. In our graphs, the utilization value is the variable on

the X axis.

Tasks The total number of tasks in each experiment is a

random variable with integer values uniformly distributed

in the interval [12, 26]. Tasks are divided in three sub-

classes according to their rate of execution. We generate

tasks with random periods and with harmonic periods. Pe-

riods have integer values (in msecs). Worst case execution

times are chosen in a way that the utilization of each class

of tasks sums to the desired value for the class. Task al-

location is performed by a simulated annealing algorithm

(described in [5]).

Resources and Critical Sections Physical resources

are modeled as follows. The Janus chip has two serial ports

(UARTs). We assume each serial port is allocated to the

tasks running on one of the CPUs. In this way the serial

port is a resource shared only among local tasks. Resource

index 0 is reserved to the “Serial I/O” channel. The critical

sections that use the UART are assumed as 50 µs long. Re-

source 1 is the “A/D converter”. The critical sections that

use this resource are 5 µs long. The remaining resources

are shared “memory resources”. Given the requirements

of Section 7, each memory resource uses from 20 to 1200

bytes of memory. For our target (ARM-based) Janus plat-

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

form, the maximum length of a critical section is estimated

as 4+ 83−4
1200−20 ∗memorysize µs4. The simulator loop that

generates the resource sets stops at the 16 Kbytes limit and

the critical sections computed in step 4 are accepted until

the total critical section time is lower than the task WCET.

Finally, every critical section accessed by a high rate task

has a 40% probability to be deleted, to account for the fact

that high priority tasks will use switched buffers when pos-

sible in order to reduce their blocking time.

0

0.2

0.4

0.6

0.8

1

1.4 1.5 1.6 1.7 1.8 1.9 2

%
 o

f
s
c
h

e
d

u
la

b
le

 s
o

lu
ti
o

n
s

Total Utilizatio on each CPU

Comparison between MPCP and MSRP with random periods

MSRP
MPCP

Figure 7. Percentage of schedulable task

sets with randomly selected periods on

Janus by MPCP/MSRP.

0

0.2

0.4

0.6

0.8

1

1.4 1.5 1.6 1.7 1.8 1.9 2

%
 o

f
s
c
h

e
d

u
la

b
le

 s
o

lu
ti
o

n
s

Total Utilizatio on each CPU

Comparison between MPCP and MSRP with harmonic periods

MSRP
MPCP

Figure 8. Percentage of schedulable task

sets with harmonic periods on Janus by

MPCP/MSRP.

44 to 83 µs is the expected time to write the data on a 40Mhz Janus

platform.

8.2.1 Results

We ran experiments for increasing processor utilization

factors from 1.4 (approximately 0.7 for each CPU) to 2.0.

First, sets of tasks with random integer periods were tried.

After processing about 6000 task sets generated according

to our specifications, we obtained the results shown in Fig-

ure 7. This time the performance difference between the

two algorithms is striking: not a single task set is found

schedulable with MPCP and the schedulability ratio pro-

vided by MSRP goes down (almost linearly) from about

50% at 1.4 utilization (0.7 for each CPU) to about 0 at 1.98

utilization. In the graph of Figure 7, the MPCP curve is not

visible since it is completely hidden by the X axis. The sit-

uation does not improve significantly for MPCP when the

task periods are forced to be harmonic. The MPCP guar-

antee ratio goes barely up for 1.4 utilization but it is always

below 10%. No schedulable set is found under MPCP

for utilization values higher than 1.7. In contrast, MSRP

continues to deliver an acceptable performance going from

more than 40% of schedulable sets at 1.4 utilization, to vir-

tually no schedulable solution at 1.8/1.9 utilization.

When compared with the generic task graphs tried in

the previous set of experiments, our power-train case study

has at least two striking differences:

• Each critical section is quite short when compared to

the execution time of the tasks. In our power-train

case high rate tasks spend up to 20% of their time

while accessing critical resources, but the time spent

by medium and low rate tasks is significantly lower.

Furthermore, in our test case, the time spent in each

critical section is quite small when compared to our

previous experiments, since tasks perform more ac-

cesses but with shorter execution times. In the context

of the results on the generic task sets this means we

expect our power-train application to be in the range

of quite low resource usage.

• Each task uses many resources and each resource is

accessed by many tasks. In our previous case, tasks

used from 0 up to a maximum of 6 critical sections

each. In the power-train case there is a much more

connected graph of task-resource use relationships. In

turn, this means more pessimism in the evaluation of

the worst case assumptions of MPCP, since the fac-

tors nG
i , NCi,j and NHi,r,j from which the block-

ing factors of MPCP depend linearly are now signifi-

cantly higher. On the other side, the blocking factors

of MSRP depend only on the worst case length of in-

dividual critical sections.

Since we expect both characteristics to be quite com-

mon for automotive applications developed according to

the guidelines described in Section 7 we expect MSRP to

retain a significant advantage over MPCP even under sig-

nificant changes in the number of task and/or resources in

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

the final implementation.

9 Conclusions and Future work

Using spin-lock for accessing mutual exclusive re-

sources in real-time multi-processor systems can possibly

lead to a non-schedulable system, because the worst case

execution time of a task is increased while keeping the pro-

cessor idle. When we were faced with the problem of de-

signing a concurrency control protocol for the multipro-

cessor Janus platform, our goal was to obtain a simple and

effective algorithm that allows extending the SRP proto-

col and therefore, permits to share the stack among all the

tasks that are allocated to one processor. As a solution, we

proposed a spin-lock mechanism for accessing global re-

sources. We expected an advantage in terms of implemen-

tation complexity and a disadvantage in terms of schedula-

bility.

After performing an extensive set of simulations, we

discovered that the spin-lock mechanism is not necessar-

ily a disadvantage, but performs even better (in terms of

schedulability guarantees) for given application contexts.

Our simulations show that no algorithm outperforms the

other on the whole spectrum of the possible task sets.

Which one is the best in terms of the schedulability bound

depends on the characteristics of the task set: when ac-

cess to local resources is clearly dominating with respect

to the use of global critical sections, and when the critical

sections are short, MSRP presents a better schedulability

bound than MPCP.

A second set of experiments, performed on a power-

train case study, clearly showed how MSRP can guarantee

a higher percentage of task sets when compared to MPCP.

Finally, even in the cases in which MPCP is better than

MRSP, it should be considered that MSRP is very simple

to implement and has a lower overhead than MPCP. In the

Janus case, simplicity and memory optimization were the

primary goals.

Regarding other possible approaches to resource shar-

ing, an interesting possibility is to use lock-free algorithms.

Lock-free approaches to real-time scheduling were pro-

posed by Anderson, Ramamurthy and Jeffay in [1]. In

this approach, a task can execute a critical section more

than once, because of the possible conflicts during access.

However, when considering periodic real-time tasks, the

number of retries is bounded. Intuitively, these approaches

can be used especially for short critical sections. However,

a deeper study is needed.

References

[1] J. Anderson, S. Ramamurthy, and K. Jeffay, Real-

Time Computing with Lock-Free Shared Objects

ACM Transactions on Computer Systems, Vol-

ume 15, Number 2, pp. 134-165, May 1997.

[2] T.P. Baker. Stack-based scheduling of real-time

processes. Journal of Real-Time Systems, 3, 1991.

[3] Enrico Bini and Giorgio Buttazzo and Giuseppe

Buttazzo. A Hyperbolic Bound for the Rate

Monotonic Algorithm. Proceedings of the 13th

IEEE Euromicro Conference on Real-Time Sys-

tems,2001

[4] A. Ferrari, S. Garue, M Peri, S. Pezzini,

L.Valsecchi, F. Andretta, and W. Nesci. The de-

sign and implementation of a dual-core platform

for power-train systems. In Convergence 2000,

Detroit (MI), USA, October 2000.

[5] Paolo Gai and Giuseppe Lipari and Marco Di Na-

tale. Minimizing Memory Utilization of Real-

Time Task Sets in Single and Multi-Processor

Systems-on-a-chip. Proceedings of Real-Time

Systems Symposium, 2001

[6] R.L. Graham. Bounds on the performance of

scheduling algorithms, chapter 5. Coffman Jr. E.

G. (ed.) Computer and JobShop Scheduling The-

ory, Wiley, New Yorj, 1976.

[7] J. Y. T. Leung and J. Whitehead. On the complex-

ity of fixed-priority scheduling of periodic, real-

time tasks. Performance Evaluation, 2:237–250,

1982.

[8] C.L. Liu and J.W. Layland. Scheduling algo-

rithms for multiprogramming in a hard-real-time

environment. Journal of the Association for Com-

puting Machinery, 20(1), 1973.

[9] Yingfeng Oh and Sang H. Son. Allocating fixed-

priority periodic tasks on multiprocessor systems.

Journal on Real Time Systems, 9, 1995.

[10] R. Rajkumar. Synchronization in multiple proces-

sor systems. In Synchronization in Real-Time Sys-

tems: A Priority Inheritance Approach. Kluwer

Academic Publishers, 1991.

[11] Manas Saksena and Yun Wang. Scalable real-

time system design using preemption thresholds.

In Proceedings of the Real Time Systems Sympo-

sium, December 2000.

[12] Lui Sha, Ragunathan Rajkumar, and John P.

Lehoczky. Priority inheritance protocols: An ap-

proach to real-time synchronization. IEEE trans-

action on computers, 39(9), September 1990.

[13] K. Tindell, A. Burns, and A. Wellings. Allocating

real-time tasks (an np-hard problem made easy).

Real-Time Systems Journal, 1992.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

