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A Comparison of mRNA Sequencing 
with Random Primed and 
3′-Directed Libraries
Yuguang Xiong  1, Magali Soumillon2,10, Jie Wu3,4, Jens Hansen1, Bin Hu1, Johan G. C. van 

Hasselt  1, Gomathi Jayaraman1, Ryan Lim3,4, Mehdi Bouhaddou1, Loren Ornelas5,6,  

Jim Bochicchio2, Lindsay Lenaeus5,6, Jennifer Stocksdale4, Jaehee Shim1, Emilda Gomez5,6, 

Dhruv Sareen  5,6,7, Clive Svendsen5,6,7, Leslie M. Thompson3,4,8, Milind Mahajan9,  

Ravi Iyengar1, Eric A. Sobie1, Evren U. Azeloglu  1 & Marc R. Birtwistle1,11

Creating a cDNA library for deep mRNA sequencing (mRNAseq) is generally done by random priming, 

creating multiple sequencing fragments along each transcript. A 3′-end-focused library approach 

cannot detect differential splicing, but has potentially higher throughput at a lower cost, along with the 
ability to improve quantification by using transcript molecule counting with unique molecular identifiers 
(UMI) that correct PCR bias. Here, we compare an implementation of such a 3′-digital gene expression 

(3′-DGE) approach with “conventional” random primed mRNAseq. Given our particular datasets on 

cultured human cardiomyocyte cell lines, we find that, while conventional mRNAseq detects ~15% 
more genes and needs ~500,000 fewer reads per sample for equivalent statistical power, the resulting 
differentially expressed genes, biological conclusions, and gene signatures are highly concordant 
between two techniques. We also find good quantitative agreement at the level of individual genes 
between two techniques for both read counts and fold changes between given conditions. We conclude 

that, for high-throughput applications, the potential cost savings associated with 3′-DGE approach 

are likely a reasonable tradeoff for modest reduction in sensitivity and inability to observe alternative 
splicing, and should enable many larger scale studies focusing on not only differential expression 
analysis, but also quantitative transcriptome profiling.

Massively parallel sequencing of mRNA, or mRNAseq, was first introduced in 20081–3, and since has rap-
idly become the preferred method for whole transcriptome measurements4–11, culminating recently with the 
announcement by Illumina of the discontinuation of the Human Expression Array BeadChip (HumanHT-12 
v4 as of 9 Dec 2016). �e procedure consists of two basic steps. First is library preparation, which consists of 
converting mRNA isolated from samples into cDNA that is compatible with the deep sequencing platform. Next 
is the sequencing itself, which o�en consists of paired-end protocols on the Illumina HiSeq platform to generate 
millions of reads per sample. �e resulting quanti�cation of transcript levels comes from counting the reads 
aligned to each transcript, followed with normalizing by transcript length (since # of reads depends on transcript 
length due to random priming), and the total number of reads (sequencing depth)5,11. Analysis of alternative 
splicing is improved with paired-end sequencing compared to single-end sequencing. �is is because paired-end 
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sequencing puts strong constraints on the distance between reads with respect to the reference transcriptome, 
giving better discrimination amongst known splice isoforms2,5.

Although the data resulting from mRNAseq is o�en considered superior to that obtained by the former tran-
scriptome measurement standard, the microarray, the cost per sample still precludes widespread high-throughput 
application. A primary component of this cost is the library preparation. �us, reduction in library preparation 
cost is expected to pay large returns for ability to increase mRNAseq throughput.

Another current issue with mRNAseq data is the biases introduced by PCR during library preparation. 
Because every sequence has a potentially di�erent propensity to be ampli�ed during PCR, the resulting quantita-
tive representation of transcripts in the sequencing library is non-linearly distorted from the original abundance 
in ways that are di�cult to predict. One way that has been shown to correct for this bias is to tag every tran-
script molecule with a unique random nucleotide sequence prior to ampli�cation12–14. Such sequences are termed 
unique molecular identi�ers (UMIs). UMIs allow removal of PCR bias by counting only the reads for a gene that 
have di�erent UMI sequences, and ignoring those that have the same UMI sequence, since they came from the 
same original transcript molecule and thus are PCR duplicates. For this reason, such quanti�cation approaches 
are also o�en referred to as transcript counting or digital gene expression (DGE). Prior work has shown that UMI 
counting is the only type of ampli�cation correction that improves statistical properties of the data, including var-
iance, power and false discovery rate15. �ese are important reasons why UMI-based DGE is a method of choice 
for single cell mRNA sequencing16, where ampli�cation a�er sample pooling (as is done in this manuscript) 
seems to improve statistical properties15.

Here, we demonstrate the use of a library preparation method that takes advantage of 3′-end creation of 
cDNA (poly-T priming) and incorporates UMI-based quanti�cation, but in our particular case, signi�cantly 
reduces the cost of library preparation and thus the per sample cost. Because it is not yet clear to what extent the 
results from this 3′-DGE library preparation method overlap with the current gold-standard of random primed 
conventional mRNA sequencing, we performed a comprehensive comparison of data obtained by both meth-
ods, from the same RNA samples. For our samples, we �nd that 3′-DGE has only about ~15% lower sensitivity 
than conventional random primed mRNAseq, good quantitative agreement, and high overlap in ranked lists of 
di�erentially expressed genes. We conclude that the 3′-DGE approach used here is likely to be a viable alterna-
tive to conventional random-primed mRNAseq for high-throughput applications, particularly when looking for 
di�erentially expressed genes between treatment conditions, as is a common goal for transcriptomic studies. 
�is is also relevant for more simple expression pro�ling which is becoming more commonplace in single-cell 
mRNAseq17–20 or tissue-level examinations21–23. Such single-cell mRNAseq applications of 3′-DGE are also rele-
vant for distinguishing between cell types within a tissue or population, which based on the results of this study, 
we expect to be broadly covered. We also �nd that 3′-DGE can identify most, if not all, relevant mRNA species 
as compared to conventional random primed mRNAseq, so long as low copy number transcripts are able to be 
reverse transcribed.

Results and Discussion
3′-Digital Gene Expression Versus Conventional mRNA Sequencing. Both conventional and 
3′-DGE mRNAseq consist of (i) library preparation, (ii) sequencing, (iii) alignment to a reference genome and 
(iv) quanti�cation; but there are di�erences between the two approaches in each of these four main steps (Fig. 1 
illustrates some of these). For conventional library preparation, following isolation of mRNA from total RNA 
(in our case with oligo dT beads—see Methods), cDNA is typically synthesized via random priming of ther-
mally-sheared mRNA. In 3′-DGE, cDNA is generated via 3′-directed oligo dT priming, during which unique 
molecular identi�ers (UMI) are incorporated (for quanti�cation purposes—see below), and strand-speci�city is 
preserved. For conventional sequencing, single-end or paired-end constant read length is used (we used 100 bp 
single-end in this paper). In 3′-DGE, paired-end is required. At least 16 bp are needed on the �rst read to capture 
UMI and sample barcode data. We used 46 bp on the second read to acquire transcript-speci�c sequence data. 
Focus on the 3′ end of the transcript coupled with lack of transcript-speci�c information on both reads precludes 
identi�cation of alternative splicing for 3′-DGE. For conventional alignment, a the comprehensive reference 
genomeis used since sequenced fragments are randomly distributed. In 3′-DGE, an mRNA RefSeq transcriptome 
is used (see Methods). Because of this, there are slight di�erences in the gene lists obtained from each alignment 
(Table S1), but a large majority of protein-coding genes (22,811) are shared between the approaches. For conven-
tional quanti�cation, the total number of uniquely aligned reads to a particular gene is used, termed read counts. 
Read counts are o�en divided by the average transcript length and read depth (units of reads per kilobase of 
transcript length per million mapped reads—RPKM). In 3′-DGE, the total number of uniquely aligned reads to 
particular genes is available, but is only an intermediate to the �nal quanti�cation by UMI counts for each gene. 
�is UMI count metric corrects for PCR bias by removing reads that align to the same genomic region and share 
the same UMI sequence (this strongly suggests they arose from the same original transcript molecule).

To gain a thorough understanding of the practical di�erences between data obtained by 3′-DGE and con-
ventional mRNAseq, we isolated RNA from 16 PromoCell primary cardiomyocyte –like cultures treated with 
either DMSO vehicle control (eight biological replicates), sorafenib (four biological replicates) or sunitinib (four 
biological replicates) for 48 hours. �ese experiments were part of a larger signature generation project in our 
DToxS LINCS center focused on cellular signatures for cardiotoxicity of kinase inhibitors (www.dtoxs.org and 
www.lincsproject.org). We expected, based on our prior data, that sorafenib would induce large changes in gene 
expression, whereas sunitinib would induce negligible changes in gene expression, providing positive and nega-
tive control test cases for di�erential expression analysis. �e 16 RNA samples were analyzed for quality, and then 
split and sent to either the conventional or 3′-DGE mRNAseq pipeline for library preparation, sequencing, align-
ment and quanti�cation (see Methods and Fig. S1). �e average read depth for conventional was 5.9 × 106 reads/

http://www.dtoxs.org
http://www.lincsproject.org
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sample, and for 3′-DGE was 3.8 × 106 reads/sample. Read depth was also consistent across samples (Fig. S2), and 
overall read count distribution was similar for the two techniques (Fig. S3).

Fidelity of Sequence Alignments for 3′-DGE. Because sequence information in 3′-DGE comes from 
a restricted region of the exome that may have reduced sequence entropy amongst genes, we �rst investigated 
the �delity of sequence alignments. For each gene with at least four read counts (summed across all samples), 
we quanti�ed the proportion of reads that align only to that gene, and looked at the frequency distribution of 
this proportion across genes (Fig. 2). �e distribution is highly skewed towards proportions >0.95, indicating 
most genes are quanti�ed by reads that align only to that single gene. �is proportion is less than 0.10 for a small 
number of genes (738 out of 14,574; gene names are in Table S2). �us, these 738 genes are not able to be reliably 
quanti�ed without further assumptions and considerations. �e reads associated with these unquanti�able genes 
account for most such degenerately-aligned reads (>50%). We conclude from these data that despite the fact that 
reads are 3′-end-focused, a large and su�cient majority can be reliably mapped to individual genes with high 
�delity. �is feature may be facilitated by the strand-speci�city of the 3′-DGE library preparation method. From 
this point forward we only consider read counts that are reliably aligned to a single gene.

Sensitivity to Detect Gene Expression as a Function of Read Depth. We wanted to determine the 
sensitivity of the two techniques to detect expression of the 22,811 genes shared between the reference sequence 
databases. To do this we employed a read removal approach, where each sample’s dataset was progressively down-
sized (Fig. 3a and Figs. S4,S5). Read counts were removed from each gene with probability proportional to that 
gene’s overall representation in the dataset, and expression of a gene was considered detected with four or greater 

Figure 1. Schematic of Library Construction Di�erences between Conventional and 3′-DGE mRNA 
Sequencing. BC: Barcode; UMI: Unique Molecular Identi�er.
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Figure 2. Fidelity of Sequence Alignments in Conventional (Conv) and 3′-end Digital Gene Expression (3′-
DGE) Method. For each of the ~14,000 genes with greater than four counts (summed across all 16 samples) 
measured by conventional method and 3′-DGE method, the proportion of reads aligned to only that one gene 
was calculated. �is proportion is close to 1 for most genes, indicating reliable quanti�cation.

Figure 3. Sensitivity of Gene Detection by Conventional (Conv) and 3′-end Digital Gene Expression (3′-DGE) 
mRNA Sequencing Methods. (a) Gene-wise reads are removed from every sample in a probability proportional 
to the abundance of the gene in a sample, to generate a set of the number of identi�ed genes over a range of 
simulated read depths. �e curves for individual replicate samples are shown with the thinner points, showing 
in general low variability. �e average is shown with the solid line. (b) Each replicate from both mRNAseq 
technologies were downsampled via read removal to a common read depth (2.8 million reads per sample), and 
the di�erences in identi�ed genes were analyzed. Most genes identi�ed in conventional but not 3′-DGE were 
shared across treatment conditions, and likewise for those identi�ed by 3′-DGE but not conventional. Speci�c 
gene names are listed in Tables S3,S4.
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reads (see Methods). We veri�ed that this stochastic nature of read removal introduced negligible variability into 
our results (Fig. S6).

In all treatment cases, we observed a hyperbolic dependency between read depth and number of detected 
genes. We parameterized these relationships with a Michaelis-Menten model to quantify di�erences between 
the techniques (Table 1). We found that the estimated parameter values were consistent across samples for each 
measurement type. �e Vmax parameter indicates that on average conventional mRNAseq detects approximately 
15% (~2000) more genes. �e genes that were di�erentially detected by conventional were very consistent across 
treatments, and were greater in number than those di�erentially detected by 3′-DGE as expected (Fig. 3b). �e 
overall fraction of genes identi�ed by only conventional or 3′-DGE was small, indicating good concordance 
between the techniques (>104 vs. <103). �e Km parameter indicates that on average conventional mRNAseq is 
slightly more sensitive; however, at read depths even far below typical levels (106/sample), both techniques detect 
~95% of the maximum possible.

Given that we cannot (or did not) observe a particular set of genes for a given technique, what is the loss of 
power to detect enrichment of gene ontology terms? We answered this question both on the level of what is possi-
ble to observe with conventional or 3′-DGE (Table S7), or what we did observe in our particular dataset (Fig. S9). 
We �nd there are very few biological processes that go from above to below 80% power for detection. Olfactory 
and other sensory processes, some histone regulatory processes and some mitochondrial processes are harder to 
identify with 3′-DGE, with other processes showing less loss of power, which to some extent are addressable with 
increased sequencing depth.

We conclude that conventional mRNAseq detects the expression of approximately 15% more genes (~13,000 
vs. ~11,000), but both techniques saturate in terms of detecting new genes at greater than 2-3 million reads/
sample. We stress however that these results are speci�c to our particular experimental system (human primary 
cardiomyocyte cell lines), the reference library and technical apparatus, which can alter the sequencing depth 
that is needed to reach saturation of detection. While prior work has suggested detection saturates at much higher 
depth that includes non-coding sequences which we do not consider here; coding sequences tend to saturate 
much more quickly24. It should be noted here that the 3′-DGE method was designed to be compatible with very 
little total RNA extract (e.g. single cell RNAseq), and also undergoes fewer PCR cycles (10 vs. 15) in our protocols, 
so this may contribute to the di�erences observed here. In addition, detection is strongly distinct from statistical 
power, so 2-3 million reads/sample may not be su�cient to detect di�erential expression of lowly expressed genes 
between two conditions, despite being detected. Di�erential expression and power also depend strongly on the 
number of biological replicates, the number of which we use (eight for controls and four for samples), is close to 
ideal as studied previously25.

Quantitative Comparison Between the Techniques. We next wanted to do a quantitative compari-
son of gene-by-gene expression for matched samples and treatment conditions. �e �rst step in doing so is to 
normalize read depth amongst all the samples. To do that, we used the read removal process as above to down-
sample each dataset to the lowest common read depth, which was ~2.8 million reads per sample. Correlation 
amongst replicates within the same technique was very high (Fig. 4a), but the resulting x-y scatterplots of conven-
tional read counts vs. DGE read counts yielded poor correlation (Fig. 4b). We reasoned that this poor correlation 
could be due to the fact that conventional read counts depend strongly on transcript length, whereas in principle, 
those from 3′-DGE do not. When we normalized conventional read counts by transcript length, the correlation 
improved signi�cantly (Fig. 4c). We observed similar agreement on the level of individual sample-to-sample 
correlations (Fig. S7). We conclude that the two techniques show reasonable quantitative agreement with one 
another.

We also used such scatter plot analysis to yield insight into potential biases in detection for each technique 
(Fig. 4d). We �rst took the average read count values for each gene across all 16 samples, with the thinking that 
strong biases should largely be sample independent. As a simple and conservative approach, we drew lines parallel 
to x = y that �ank the typical variance in the data, and identi�ed points falling outside of this range (Fig. 4d). We 
identi�ed a small relative number of such genes—165 for 3′-DGE and 98 for conventional (Tables S5,S6). �ese 
genes should be interpreted with caution when appearing as di�erentially expressed in downstream analyses.

Differential Expression Analysis. �e typical endpoint of an mRNA sequencing experiment is testing 
for statistical signi�cance of di�erential expression between two or more conditions. �ere are many so�ware 
packages available for doing this; here we used EdgeR26 (see Methods for speci�c so�ware settings). Speci�cally, 
we compared DMSO vehicle-treated control (CTRL) to either sunitinib (SUN) or sorafenib (SOR) treatment. 

Technology Treatment Km (reads) Vmax (genes)

Conv CTRL 49,719 12,905

Conv SOR 45,441 13,202

Conv SUN 50,902 13,099

3′-DGE CTRL 75,277 11,117

3′-DGE SOR 60,979 10,884

3′-DGE SUN 70,673 11,006

Table 1. �e Best-Fit Parameter Values of a Michaelis-Menten Model to the Average Curves in Fig. 3a. �e 
function drm in the R package drc, using the �t function mm, was used.
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A typical de�nition of a “di�erentially expressed gene” is that which has a false discovery rate (FDR) of lower 
than 0.1 (Fig. 5a). Both conventional and 3′-DGE data show that sunitinib causes very few genes to be di�er-
entially expressed, whereas sorafenib causes di�erential expression of several thousand genes (Fig. 5a). For the 
3,136 sorafenib-associated gene expression changes identi�ed by both conventional and 3′-DGE, there is a strong 
correlation between the p-values for di�erential expression (Fig. 5b). However, there are another ~3,600 genes 
identi�ed as di�erentially expressed by conventional that are not found by 3′-DGE. �e reason for this is a simple 
statistical power argument due to UMI counting versus read counting. While using UMI counts as the quanti�-
cation metric in principal improves precision due to removal of PCR bias15, at the same time, it reduces e�ective 

Figure 4. Quantitative Comparison between Conventional (Conv) and 3′-end Digital Gene Expression 
(3′-DGE) mRNA Sequencing Methods. (a) Correlations of the replicate samples from the Conv read counts 
and 3′-DGE read counts show that the replicate samples obtained by the same method correlate well with 
each other under each condition. Control (CTRL), Sorafenib (SOR), Sunitinib (SUN). Pearson correlation is 
used. (b,c) Quantitative gene-wise comparison between Conv read counts and 3′-DGE UMI counts. Datasets 
are downsampled to a common read depth of 2.8 million reads, and then gene-by-gene comparisons are 
made via scatter plots. To generate a reduced UMI count dataset, upon removal of a read count, UMI counts 
were removed with probability proportional to the ratio between UMI counts and read counts for that gene 
(accounting for PCR bias). Density of points in scatter plots is indicated by depth of color. Inset text box shows 
Pearson correlation. In all plots, data are scaled so units are comparable. (b) Scatterplots of UMI counts for 3′-
DGE versus read counts for conventional, without normalization by average transcript length. �ere is a general 
trend of agreement but correlation is low for quantitative agreement. (c) Scatterplots of UMI counts for 3′-DGE 
versus transcript length-normalized read counts for conventional. Quantitative agreement is signi�cantly 
improved upon this normalization. (d) Potential biases of 3′-DGE or Conv techniques. We averaged data 
from all 16 read depth-normalized samples and de�ned lines that �ank the typical variance in the data to 
identify genes that have evidence of bias in quanti�cation. Genes falling outside of this range are reported in 
Tables S5,S6.
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Figure 5. Di�erential Gene Expression Analysis between Conventional (Conv) and 3′-end Digital Gene 
Expression (3′-DGE) mRNA Sequencing Methods. (a) Control (CTRL) data are compared Sorafenib (SOR) 
or Sunitinib (SUN) to identify di�erentially expressed genes (DEGs) using EdgeR for both Conv and 3′-
DGE datasets. A gene is de�ned as di�erentially expressed using a false discovery rate (FDR) cuto� of 0.1. 
(b) Comparison of statistical signi�cance for the 3,136 shared di�erentially expressed genes (DEGs) from 
Sorafenib-treated samples in 3′-DGE and Conv methods with FDR <0.1. �e negative base-10 logarithm of the 
p-value for di�erential expression is plotted for each technique, with depth of color indicating density of points. 
Pearson’s correlation coe�cient is indicated with the inset text. (c) Identi�cation of Di�erential Expression as 
a Function of Read Depth. �e number of di�erentially expressed genes (DEGs, FDR < 0.1) was quanti�ed 
a�er progressive downsampling of UMI counts from 3′-DGE datasets or read counts from conventional 
(Conv) datasets (for Sorafenib vs. CTRL). (d) Comparison of statistical signi�cance for all genes identi�ed 
from SOR-treated samples and SUN-treated samples by two methods. �e negative base-10 logarithm of the 
p-value for di�erential expression is plotted for each technique, with depth of color indicating density of points. 
�e Pearson correlation coe�cient is calculated for each treatment. (e) Comparison of fold change for all 
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read depth and therefore statistical power. Prior work, however, has shown that if total read depth is normal-
ized to UMI counts (as opposed to read counts), UMI counts do provide improved statistical power and lower 
false discovery rate15. To address the di�erence in statistical power with our data, we progressively downsampled 
counts in the two datasets, and then evaluated the number of DEGs (Fig. 5c). Here, counts refers to UMI counts 
in the case of 3′-DGE, and read counts in the case of conventional RNASeq We found that one needs ~200,000 
more counts per sample with 3′-DGE to achieve a similar number of DEGs. Since on average in our data, ~2-3 
read counts gives one UMI count, we estimate that one needs ~500,000 more reads per sample with 3′-DGE to 
equalize statistical power (as measured by the number of DEGs).

An alternative way of analyzing di�erential expression is to forgo strict FDR cuto�s and instead analyze trends 
visible from all 10,121 genes with de�ned p-values for di�erential expression. An expected cone-shape that falls 
along the x = y line is observed as statistical signi�cance varies from weak to strong, consistent with the above 
hypothesis and further suggestive of concordance between the techniques (Fig. 5d). �is concordance is also 
evident from the strong agreement between the log2-fold changes for di�erential expression from each technique 
(Fig. 5e). �is strongly suggests the biological conclusions drawn from either technique will be concordant. Lastly, 
we ranked the entire list of 22,811 genes for each mRNAseq technique and drug, and then analyzed their overlap 
via the rank-rank hypergeometric test27 (Fig. 5f,g). Each spot in the heatmap represents the relative statistical 
signi�cance of overlap between the genes in the ranked list up to that point, starting from the top le� corner, via 
Fisher’s exact test. To distinguish between up and down regulation, we signed the p-value accordingly, placing 
down-regulated genes with high statistical signi�cance at the bottom of the list (Fig. 5f). As expected, the ranked 
lists for sorafenib-treated samples from conventional and 3′-DGE show agreement that is more statistically sig-
ni�cant than that of the sunitinib-treated samples (indicated by the red color down the diagonal). Likewise, cross 
comparison between treatments and sequencing type also yield less agreement as expected. We conclude that 
conventional and 3′-DGE mRNAseq techniques generate highly similar signatures of gene expression for both 
up and down-regulated genes.

Comparison of 3′-DGE and Conventional with An Independent Dataset. Can we expect the agree-
ment between 3′-DGE and conventional mRNAseq results to be similar for other datasets? We attempted to 
answer this question by taking a similar experimental design approach with a di�erent set of RNA, this time 
from induced pluripotent stem cell (iPSC) lines created from control individuals or those that had a mutation 
for and clinical presentation of spinal muscular atrophy (SMA), where slightly di�erent random primed library 
preparation and sequencing approaches were employed (see Methods). SMA is a childhood early onset motor 
neuron disease28,29 where symptoms can be observed as early as 3 months or up to 2-3 years of age. �e disease 
is typically caused by mutations in the SMN1 (Survival Motor Neuron 1) gene, however disease severity varies 
based on numbers of copies of the related SMN2 gene. As SMN genes control critical RNA biogenesis processes 
during early development29, we anticipate di�erential gene expression changes even at the iPSC stage without 
subsequent di�erentiation. For these analyses, two SMA subject clonal lines and three control lines, with varying 
numbers of growth replicates, were compared. Growth and disease replicates were combined for comparisons to 
generate the di�erentially expressed gene lists conventional mRNAseq and 3′DGEs. While this is not a traditional 
replicate approach for di�erential expression analysis, the mixed basis of the samples would only serve to increase 
sample-to-sample variability, and thus conclusions about consistency of di�erential expression can be considered 
as a lower bound that would only improve with other replication designs.

First, we analyzed sensitivity to detect gene expression as a function of read depth. We observed similar results 
as before, with conventional having higher sensitivity, detecting ~15% more genes (Fig. 6a), albeit now with both 
techniques having a higher level of overall detection as compared to the previous dataset. �is could be due to 
di�erent RNA preparation techniques used (TRIzol vs. Qiagen RNAeasy). We observed signi�cant correlation 
between counts on a gene-by-gene level that again was greatly improved by normalizing conventional data by 
transcript lengths (Figs 6b,c and S8). Because of the statistical power properties associated with UMI count-
ing discussed above, it is not appropriate to look at strict FDR cuto�s to analyze the number of di�erentially 
expressed genes. Alternatively, we analyzed statistical signi�cance (Fig. 6d) and log2 fold changes (Fig. 6e) for 
di�erential expression and found they were correlated well, and also similarly as before with sorafenib-treated 
samples. �is leads to the resulting ranked gene signatures of di�erential expression again being highly concord-
ant between the two techniques (Fig. 6f). �us, we conclude that agreement reported here between 3′-DGE and 
conventional approaches is likely to be seen across many sample types, as well as across variations of conventional 
random primed methods.

genes identi�ed from SOR-treated samples and SUN-treated samples by two methods. �e log base two fold-
change is plotted for each technique, with depth of color indicating density of points. �e Pearson correlation 
coe�cient is calculated for each treatment. (f,g) Rank-rank Hypergeometric tests for consistency of di�erential 
expression ranking and gene expression signatures. (f) All genes for which a p-value for di�erential expression 
was calculated were �rst sorted into up or down regulated genes (as compared to CTRL), and then ranked by 
statistical signi�cance. �e probability of overlap between two di�erent such rank lists was calculated with 
Fisher’s Exact Test (aka hypergeometric test), and visualized with a heatmap, for all combinations of list cuto�s. 
(g) Pairwise comparisons of SUN- and SOR-treated data for 3′-DGE and conventional. SOR-treated samples 
show much higher relative statistical signi�cance, as expected, because only SOR induced large changes in gene 
expression. Note the di�erence in p-value scales across the three panels, which indicate the relative statistical 
signi�cance of the results.
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Methods
Cell Culture and RNA Isolation. We used a commercially available cell line to compare the two sequencing 
methods. Detailed SOPs for culture and RNA isolation are available on our website (www.dtoxs.org) as DToxS 
SOP CE – 1.0: PromoCell Cardiomyocyte Subculture, DToxS SOP CE – 2.0: PromoCell Cardiomyocyte Plating 
for Drug Test, DToxS SOP CE – 4.0: Drug Treatment and Cell Lysis, and DToxS SOP A – 1.0: Total RNA Isolation.

Briefly, primary adult human cardiomyocytes (PromoCell, Heidelberg, Germany; Cat: C-12810, Lot: 
3042901.2) were subcultured according to manufacturer’s instructions using antibiotic-free myocyte growth 
medium (PromoCell, Cat: C-22170) supplemented with a mix of 5% fetal calf serum, 0.5 ng/ml EGF, 2 ng/ml 
FGF, and 5 µg/ml recombinant human insulin (PromoCell, Cat: C-39275). We di�erentiated fully con�uent cells 

Figure 6. Comparison between Conventional (Conv) and 3′-end Digital Gene Expression (3′-DGE) mRNA 
Sequencing Methods with an Independent Dataset. (a) Sensitivity of gene detection by two methods. Gene-
wise reads are removed from every sample in a probability proportional to the abundance of the gene in a 
sample, to generate a set of the number of identi�ed genes over a range of simulated read depths. �e curves 
for individual replicate samples are shown with the thinner points, showing in general low variability. �e 
average is shown with the solid line. (b,c) Quantitative gene-wise comparison between two methods. Density 
of points in scatter plots is indicated by depth of color. Inset text box shows Pearson correlation. In all plots, 
data are scaled so units are comparable. B. Scatterplots of UMI counts for DToxS’ 3′-DGE versus read counts 
for NeuroLINCS’ conventional, without normalization by average transcript length. CTRL or SMA refer to the 
genetic status of the iPS cells (see Methods). (c) Scatterplots of UMI counts for DToxS’ 3′-DGE versus transcript 
length-normalized read counts for NeuroLINCS’ conventional. (d,e) Comparison of statistical signi�cance (d) 
or fold-change (e) for all genes identi�ed from SMA samples by DToxS’ 3′-DGE method and NeuroLINCS’ 
Conv method. (d) �e negative base-10 logarithm of the p-value for di�erential expression is plotted for each 
technique, with depth of color indicating density of points. (e) �e log base two fold-change is plotted for each 
technique, with depth of color indicating density of points. (f) Rank-rank Hypergeometric tests for consistency 
of di�erential expression ranking and gene expression signatures. All genes for which a p-value for di�erential 
expression was calculated were �rst sorted into up or down regulated genes (as compared to CTRL), and then 
ranked by statistical signi�cance. �e probability of overlap between two di�erent such rank lists was calculated 
with Fisher’s Exact Test (aka hypergeometric test), and visualized with a heatmap, for all combinations of list 
cuto�s. Shown here are lists from SMA vs. control for 3′-DGE and conventional.

http://www.dtoxs.org
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for four weeks under serum starvation and treated cells with DMSO vehicle (Control, CTRL), 2.5 µM sorafenib 
(SOR), or 0.1 µM sunitinib (SUN) for 48 hours. Total RNA was extracted using TRIzol (Life Technologies, Cat: 
15596018). RNA concentration was measured by Qubit 3.0 �uorometric quantitation using the high sensitivity 
RNA kit (Life Technologies, Cat: Q32852), and RNA quality was assessed by Fragment Analyzer using high sen-
sitivity RNA analysis kit (Advanced Analytical Technologies, Cat: DNF-472). Only the RNA samples that have 
passed the quality control step with RNA integrity number (RIN) score of 7.0 or above were used. 200 ng of RNA 
for all samples were then transferred onto a skirted 96-well PCR plate (Eppendorf, Cat: 951020401) at a normal-
ized concentration of 10 ng/µL.

3′-DGE Library Preparation. �e RNA-seq libraries were prepared according to the Single Cell RNA 
Barcoding and Sequencing method originally developed for single cell RNA-seq (SCRB-seq; ref.30) and adapted to 
extracted total RNA. Brie�y, Poly(A)+ mRNA from extracted total RNA were converted to cDNA decorated with 
universal adapters, sample-speci�c barcodes and unique molecular identi�ers (UMIs) using a template-switching 
reverse transcriptase. Decorated cDNA from multiple samples were then pooled, ampli�ed (10 PCR cycles) and 
prepared for multiplexed sequencing using a modi�ed transposon-based fragmentation approach that enriched 
for 3′ ends and preserved strand information. A detailed SOP is available at www.dtoxs.org (DToxS SOP A – 6.0: 
High-throughput mRNA Seq Library Construction for 3′ Digital Gene Expression (DGE)).

Conventional Random Primed Library Preparation. Conventional sequencing libraries were prepared 
using 200 ng of total RNA and the TruSeq RNA Library Prep Kit (Illumina, Cat: RS-122-2001) per manufactur-
er’s instructions, with mRNA was enriched via poly-A-selection using oligoDT beads. RNA was then thermally 
fragmented and converted to cDNA, adenylated for adaptor ligation and PCR ampli�ed (15 cycles). Prior to 
sequencing, quality and concentration of the cDNA library was con�rmed using Agilent Bioanalyzer and Qubit 
�uorometric quantitation.

Sequencing using Illumina HiSeq Platform. Both the random primed and 3′-DGE libraries were 
sequenced using the Illumina HiSeq. 2500 platform. cDNA libraries were loaded onto Illumina �owcells using 
the Illumina c-Bot, and conventional libraries were sequenced with 100 nucleotide paired-end reads per manu-
facturer’s instruction, whereas 3′-DGE used a custom paired end protocol with 26 bp on the �rst read, and 46 on 
the second. Detailed SOPs for the 3′-DGE sequencing are available on www.dtoxs.org as described above.

iPSC Cell Culture, RNA Isolation and Conventional Sequencing with iPSC Data. Human iPSCs 
were generated using episomal reprogramming and validated using quality control methods, including Pluritest, 
G-band karyotype analysis and Short Tandem Repeat identity test assays as described previously29. iPSCs were 
maintained in 6-well tissue culture plates coated with Corning Growth Factor Reduced Matrigel Matrix (Cat # 
354230). iPSCs were passaged every 7 days or when the cultures reached 80–90% con�uency using the StemPro 
EZPassaging Tool (Life Technologies, Cat # 23181010). To prepare cells for cell pellets, each iPSC line was seeded 
into two 6-well plates at a 1:6 dilution and allowed to reach ~80% con�uency (approximately 1.5 to 2 ×106 cells 
per well). On the day of collection, any visible spontaneous di�erentiation was removed using a pipette tip. �e 
spent media was then aspirated and the cells were rinsed with chilled PBS. 1 ml of chilled PBS was added to 
each well and the cells were li�ed gently from the plate using a Corning cell scraper (Cat # CC3010). Two wells 
from each plate were pooled together into a chilled 15 ml conical and labeled as replicate #1. �is was repeated 
until three replicates were collected per sample. Each replicate was then evenly distributed into 5 chilled 0.5 ml 
Eppendorf tubes. �e Eppendorf tubes were labeled with the cell line name, passage number, collection date and 
replicate number. Cells were then pelleted by centrifuging each sample for 5 minutes at 1000 rpm. �e PBS was 
aspirated and the cell pellets were then �ash frozen by brie�y submerging each tube in liquid nitrogen. �e sam-
ples were sent for RNA preps and sequencing. Full details relating to Control and SMA cell lines are also available 
at http://lincsportal.ccs.miami.edu/dcic-portal/.

Total RNA were isolated using the Qiagen RNeasy Kit and QIAshredder. RNA QC were analyzed on the Agilent 
2100 Bioanalyzer which indicated that all RIN values were 10. RNA-Seq libraries were made with 1 ug of RNA using 
the Illumina non-stranded TruSeq mRNA v2 protocol. Libraries were quanti�ed using the KAPA library quant kit and 
sequenced on the HiSeq. 2500 using 100 cycles across three lanes to obtain paired-end reads 100 base pairs in length.

Defining and Alignment to Reference Genome. For the conventional method, we obtained the RefSeq 
genome sequence �le (hg19) from the UCSC website (http://hgdownload.cse.ucsc.edu/downloads.html#human). 
We created the gene annotation �le by downloading a list of RefSeq genes from Table Browser (http://genome.
ucsc.edu/cgi-bin/hgTables) and then converting it to the GTF format using genePredToGtf (http://hgdownload.
cse.ucsc.edu/admin/exe). For 3′-DGE, we mapped the reads using BWA on the mRNA RefSeq FASTA �les down-
loaded from UCSC hg19 (RefSeq) for which we trimmed the homopolymers of A occasionally present at the end 
of the full mRNA transcripts. �ere are a common set of 22,081 genes which we used as a basis of comparison 
between the two techniques throughout the manuscript (Table S1). We used STAR (Dobin et al. 2013) with the 
default parameter settings to align the conventional mRNAseq data (PromoCell cardiomyocytes) to the refer-
ence described above, and then counted the number of the sequence fragments uniquely aligned to each gene 
by the featureCounts program from a sequence alignment suite Subread using the UCSC reference gene anno-
tation. For 3′-DGE data, a custom python script is used (available upon request and from GEO). First, reads are 
aligned using BWA, and counts of speci�cally or non-speci�cally aligned reads (i.e., aligning to one or more than 
one gene with high con�dence) are calculated. Next, the number of distinct unique molecular identi�er (UMI) 
sequences embedded in those aligned reads are counted, giving the UMI counts.

http://www.dtoxs.org
http://www.dtoxs.org
http://lincsportal.ccs.miami.edu/dcic-portal/
http://hgdownload.cse.ucsc.edu/downloads.html#human
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
http://hgdownload.cse.ucsc.edu/admin/exe
http://hgdownload.cse.ucsc.edu/admin/exe
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We compared alignment of 3′-DGE data using both annotations, and found good correlation on the level of 
read counts (Fig. S10). �ere are two classes of di�erences we observed. First, there are a group of 67 genes that 
are highly expressed in both, but are consistently more readily aligned to using the mRNA RefSeq annotation 
(new Supplementary Table S8). �ese genes cause on average ~500,000 more read counts per sample (Fig. S11). 
Second, there are a group of 32 genes that are lowly to moderately expressed, but are not readily aligned to in the 
mRNA RefSeq annotation (see Supplementary Table S9). Both sets of genes should be interpreted with caution 
when using the 3′-DGE approach.

Computational Downsampling of Sequencing Depth. To compare datasets on an equivalent sequenc-
ing depth basis, we computationally removed read counts with an iterative algorithm (Figs S4,S5). First, all genes 
with very low expression are removed (<4 read counts). �en, a particular gene is randomly selected with prob-
ability proportional to its count representation amongst all genes, and a read is removed from this gene. We 
removed UMI counts from the selected gene probabilistically, according to the ratio of UMI counts to read counts 
(always less than one, and a gene-speci�c estimate of PCR bias). �e process is repeated using probabilities esti-
mated at the �rst iteration until all read counts are removed. We performed the process 16 times for each sample 
to ensure the stochastic nature of removal did not a�ect our results (Fig. S6).

Differential power to identify specific biological processes. To determine the ability of the di�erent 
mRNAseq methods to identify particular biological processes in the GO biological process ontology, we conducted 
a power analysis. We assumed the enrichment analysis was conducted using a Fisher’s exact test and the comprehen-
sive GO Biological Processes ontology (5192 processes). �e power calculation function for the Fisher’s exact test 
in the statmod R package was used for this purpose. A signi�cance criterion of 0.05 was used. We focused on two 
cases. First, we speci�cally focused on genes uniquely associated with the UCSC (4270 genes) and the Broad refer-
ence (1084 genes). For both reference gene lists we determined the processes that were associated with a power > 0.8 
while the remaining reference gene list had a power < 0.8 (Table S7). It should be noted that this approach can be 
considered conservative, because the genes that were shared between the two references were not taken into account 
in this analysis. Second, we speci�cally focused on genes that were detected across the cardiomyocyte data for each 
technique. For each individual sample that was sequenced using both methods, we determined the number of genes 
for which a count > 0 was obtained, i.e. that could be detected using both the conventional or 3′-DGE method. A�er 
calculating the power to detect a biological process we calculated the mean power to detect each of the biological 
processes in the GO Biological Processes database, for each of the two methods, looking for power loss (Fig. S9).

Data Normalization. For conventional data, we divided read counts by the average transcript length. �ese 
lengths were obtained from http://genome.ucsc.edu/cgi-bin/hgTables, by summing the length of all exons in a 
transcript into a transcript length, and then averaging this transcript length across all transcripts of each gene.

Differential Expression Analysis. We performed di�erential expression analysis for the cardiomyocyte 
data with edgeR26 starting with tables of counts for any technique. Di�erential expression analysis consists of 
the following steps within edgeR: normalization by trimmed mean of M-values31, empirical Bayes estimation of 
sample dispersion32, and exact test for negative-binomial sample comparison33. A detailed standard operating 
procedure (SOP) document is available at www.dtoxs.org, and all code is available upon request.

Rank-rank hypergeometric test. The significance of the overlap between two lists of differentially 
expressed genes (DEGs) was calculated using the rank-rank hypergeometric test27. First, for all genes, we cal-
culated the negative log10 of the p-value for di�erential expression (−log10p), and multiplied by negative one if a 
gene was downregulated. Genes were ranked by signed −log10p, placing the most signi�cantly up-regulated genes 
at the top and the most signi�cantly down-regulated genes at the bottom of the list. �e number of overlapping 
genes of the top x genes of one list and the top y genes of the other was counted at every 10th x-y combination, 
and Fisher’s exact test was used to calculate signi�cance of the overlap. If the overlap was greater than expected 
the right-tailed Fisher’s Exact test was used, otherwise the le�-tailed Fisher’s exact test was used. �e resulting 
heatmap of p-values from Fisher’s Exact text was visualized with the MATLAB function imagesc.

Data Access. All the read counts datasets used in this study can be accessed at the DToxS website (https://
martip03.u.hpc.mssm.edu/xiong_paper/mRNAseq-Counts-Datasets.R20170117.html), and are also deposited on 
GEO (GSE98432—see README text �les in the SubSeries pages for detailed information). In the Conv group 
of the NeuroLINCS-DGE-Conv datasets, the read counts table is adapted from the level-3 normalized data-
set (Dataset ID: LDS-1355, http://lincsportal.ccs.miami.edu/datasets/#/view/LDS-1356), by extracting the read 
counts of a common set of genes shared between the datasets from both sequencing methods.
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