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ABSTRACT 
 

A combined models was developed and applied to synthetic and ambient PM datasets in our prior works. In this study, 
multiple combined models, including the PCA/MLR-CMB, Unmix-CMB and PMF-CMB models, were developed and 
employed to analyzed the synthetic datasets, in order to understand 1) the accuracies of the predictions by multiple 
combined models; 2) the effect of Fpeak-rotation on the predictions of the PMF-CMB model; and 3) the relationship 
between the extracted mixed source profiles (in the first stage) and the final predictions. 50 predictions based on different 
combined model solutions were obtained and compared with the synthetic datasets. The average absolute errors (AAE), 
cluster analysis (CA), and PCA plots were applied to evaluate the precision of the predictions. These statistical methods 
showed that the predictions of the PCA/MLR-CMB and PMF-CMB model (with Fpeaks from 0 to 1.0) were satisfactory, 
those of the Unmix-CMB model were instable (some of them closely approached the synthetic values, while other them 
deviated from them). Additionally, it was found that the final source contributions had good correlation with their marker 
concentrations (obtained in the first stage), suggesting that the extracted profiles of the mixed sources can determine the 
final predictions of combined models. 
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INTRODUCTION 
 

Particulate matter (PM10 and PM2.5) is the important 
pollutant in urban air ambient (Shen et al., 2010; Kong et al., 
2011; Zheng et al., 2013). Long-term exposure to particulate 
matter air pollution can result in increased risk of human 
mortality (Ozkaynak and Thurston, 1987; Russell, 2009; Yan 
et al., 2009; Tie et al., 2009; Habre et al., 2011; Shen et al., 
2011; Cheng et al., 2012; Amodio et al., 201; Vernile et al., 
2013). In order to reduce the PM pollution, understanding the 
potential source categories and their contributions (source 
apportionment) is necessary (Zheng et al., 2005). The result 
of source apportionment can provide the scientific supporting 
for air quality management decisions. 

Receptor models, the useful tools for source apportionment, 
utilize the chemical composition of receptors for identification 
and apportionment of sources of PM in the atmosphere  
 
 
 
* Corresponding author.  

Tel.: +8602223503397 
E-mail address: tianyingze@hotmail.com (Y.Z. Tian); 
kevinwangwei@nankai.edu.cn (W. Wang) 

(Zheng et al., 2007; Ke et al., 2008; Kong et al., 2010; 
Pant and Harrison, 2012). Among several receptor models, 
two main classes of models have been employed widely 
over the world (Hopke, 2003; Andriani et al., 2011; Pant 
and Harrison, 2012). That is, i) Chemical Mass Balance 
(CMB) model and ii) multivariate factor analysis models 
(including Principal Component Analysis/ Multiple Linear 
Regression (PCA/MLR), UNMIX, and Positive Matrix 
Factorization (PMF)). The first class of models need both 
the input data of receptor and the source profiles; while the 
later class of models extracts source profiles and their 
contributions over sets of receptor samples (Hopke, 2003). 
The detailed introductions of the principle and applications 
for CMB, PCA/MLR, Unmix and PMF models have been 
presented in literature (Watson, 1984; Paatero and Tapper, 
1994; Lee et al., 1999; Watson and Chow, 2001; Song et 
al., 2006; Chen et al., 2007; Zheng et al., 2007; Begum et 
al., 2010; Harrison et al., 2011; Gugamsetty et al., 2012) and 
our prior publications (Shi et al., 2011; Zhang et al., 2011; 
Shi et al., 2012; Wang et al., 2012; Zhang et al., 2012). 

The strengths and weaknesses for the two classes of 
receptor models have been summarized in literature (Hopke, 
2003; Pant and Harrison, 2012). Multicollinearity, arising 
when two different sources have similar profiles, often 
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disturbs the predictions of the two classes of receptor 
models. For CMB model, near collinear sources can result 
in incorrect source contributions. While for multivariate 
factor analysis models, near collinear sources will be 
extracted in one factor, due to their similar signatures. In 
this case, a factor that contains two or more sources is 
usually indentified as a mixed source. 

To resolve the multicollinearity, the Factor analysis-CMB 
combined models were developed in our prior studies (Shi 
et al., 20091; Zeng et al., 2010; Shi et al., 201). The 
combined model was tested, and acceptable results were 
obtained, using synthetic datasets with collinearity (Shi et 
al., 2009, 2011). The methodology has been quoted in a 
review paper on source apportionment methods by Pant 
and Harrison (Pant and Harrison, 2012) and involved in 
source apportionment works for air pollution in some cities 
(Shi et al., 2009; Zeng et al., 2010; Shi et al., 2011). In our 
prior works (Shi et al., 2009; Zeng et al., 2010; Shi et al., 
2011), the factor analysis (PCA/MLR and PMF) and CMB 
model were combined together for source apportionment. 
On the first stage, the mixed source (containing near 
collinear sources) was extracted by the PMF or PCA/MLR 
models; and on the second stage the mixed source is treated 
as a new receptor and be apportioned by CMB model. For 
instance, Shi et al. (2009) applied PCA/MLR-CMB model 
and PMF-CMB model to the sources of PM10 in 
Zhengzhou city. On the first stage, PMF and PCA/MLR 
were respectively employed to identify the sources of PM10 
in Zhengzhou city. Similar sources were obtained from two 
models, including the mixed source, vehicle exhaust, residual 
oil and secondary sulfate. Then on the second stage, the 
mixed source was applied as a secondary receptor and was 
introduced into CMB model, and soil dust, coal combustion 
and cement dust were identified. Although similar source 
categories were obtained by PCA/MLR-CMB and PMF-
CMB, the slightly different source contributions were 
obtained (Shi et al., 2009). So, the accuracy of the 
predictions from different combined models needs to be 
compared. However, the test for combined models is still 
very limited. 

For assessing the predictions from different combined 
models, some issues should be focused on: (1) PCA/ 
MLR-CMB, PMF-CMB and Unmix-CMB usually obtain 
different results for the same input dataset set (Shi et al., 
2009). So, how are the accuracies of the predictions by 
different combined models? (2) The extracted profiles by 
PMF can be rotated by setting Fpeak (Paatero et al., 2004). 
So, how is the effect of Fpeak-rotation on the prediction of 
PMF-CMB model? (3) The profile of mixed source which 
is extracted on the first stage can determine the final results of 
the combined model on the second step. So, how is the 
relationship between the mixed source profiles and the 
final predictions? 

In this work, three kinds of combined models 
(PCA/MLR-CMB, Unmix-CMB and PMF-CMB) were 
employed to analyze synthetic datasets in order to quantify 
the contribution of the source to the synthetic datasets and 
to understand accuracies of the predictions by multiple 
combined models. For this purpose, five synthetic datasets 

were developed firstly. Then, PMF-CMB model solutions 
were performed by setting a set of different Fpeak values, 
to study the impacts of Fpeak-rotation on the prediction of 
PMF-CMB model. The predictions would be compared with 
the synthetic contributions to estimate the accuracy of the 
results by multiple combined models. Next, the variety of 
extracted profiles (on the first stage) and final predictions 
of PMF-CMB with different Fpeaks were discussed, to 
analyze the theoretical causes for different predictions. 
Finally, the correlations between final predicted source 
contributions and the estimated concentrations of marker 
species in the mixed source (extracted on the first stage) 
were analyzed. The findings in this work can provide useful 
information for the application of multiple combined models. 
 
METHODS 
 
Principle of Combined Model 

As described in our prior studies (Shi et al., 2009; Zeng 
et al., 2010; Shi et al., 2011), the combined model mainly 
contains two stages. 

For the first stage, the PM receptor dataset was introduced 
into the factor analysis model (PCA/MLR, Unmix or PMF). 
The factor profiles and contributions can be calculated, as 
follows: 
 
X(n×m) = G(n×p)F(p×m) + E(n×m) (1) 
 
where, n is the number of samples; m is the number of the 
chemical components; p is the number of the extracted 
factors; X(n×m) is the matrix of ambient concentrations with 
m species and n samples; F is the profile matrix for 
extracted factors (sources) with m species and p factors, G 
is the contributions matrix for extracted factors (sources) 
with n samples and p factors and E is the residual matrix 
with m species and n samples. 

The extracted factors by the factor analysis model can 
be identified as different source categories, basing on the 
marker species. Pant and Harrison have summarized some 
commonly source profiles and their key marker species 
(Pant and Harrison, 2012). For the extracted factors, if one 
factor can be identified as one source category, it is 
referred to as an extracted simplex source; whereas if it 
contains two or more source categories, it is referred to as 
an extracted mixed source. The sources included in the 
mixed source can be called sub-sources. 

For the second stage, the mixed source was treated as a 
new receptor. The profile and its uncertainty were 
calculated on the first stage, according to our prior studies 
(Shi et al., 2009; Zeng et al., 2010; Shi et al., 2011). Then, 
according to the mixed source profile as well as the emission 
inventory of the monitory area, the categories of the sub-
sources can be identified, and the sub-sources profiles 
should be measured in the studied area. Next, the profiles 
of new receptor (mixed source extracted on the first stage) 
and the sub-source were introduced into the CMB model. 
And the contributions of the sub-sources to the new receptor 
would be calculated by CMB model, as follows (US EPA, 
2004): 
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where, k is the number of the sub-sources; S(k×1) is the 
vector of the estimated source contributions of k sub-
sources; C(m×1) is the profile of new receptor (mixed source 
in stage 1); F(m×k) profile matrix of k sub-sources; and Ve is 
the effective variance matrix. 

Finally, the contributions of the simplex sources obtained 
on the first stage, as well as the contributions of the sub-
sources predicted on the second stage were the final results 
of combined model. 

In this work, the PCA/MLR-CMB, PMF-CMB and 
Unmix-CMB models were developed and tested. The SPSS 
16.0, PMF2, EPA Unmix 6.0 and EPA CMB 8.2 softwares 
were employed. 
 
Development of the Synthetic Receptor Datasets 

In order to compare the results of different combined 
models, five synthetic receptor datasets (Datasets A to E) 
were developed. The synthetic receptor datasets were 
generated by the actual primary profiles and secondary 
sources. For each synthetic receptor dataset, seven actual 
PM10 source categories were included: resuspended dust 
(RD), soil dust, coal combustion, cement dust, vehicle 
exhaust, secondary sulfate and secondary nitrate. The actual 
primary source profiles were obtained in five different 
cities in China (see Tables S1–S5 in Supplementary Material), 
and reported in our prior studies (Bi et al., 2007). For each 
source profile, 24 species were included (Table S6). 

The construction of the synthetic datasets referred to the 
relative literature and our prior works (Brinkman et al., 
2006; Shi et al., 2011). An n × m matrix (n is the number 
of samples and m is the number of chemical species) of 
concentrations (µg/m3) X was developed as follows: 
 
X(n×m) = G(n×p)F(p×m) + E(n×m) (3) 
 
where p is the number of the sources; the X(n×m) ,G(n×p) and 
F(p×m) appear in similar role as ambient concentrations 
matrix, profile matrix and contributions matrix, respectively. 
While E(n×m) is the noise matrix. 

In this work, a dataset with 80 samples was constructed, 
simulating an 80-days sample campaign. Similar to the 
references (Brinkman et al., 2006; Shi et al., 2011), the 
Gn×p values were subjectively varied to reflect differences 
in the source emission patterns and the influence of 
metrological conditions. In this way, an 80 × 24 synthetic 
receptor dataset was obtained (80 samples and 24 chemical 
species). The synthetic source contributions to the synthetic 
receptor dataset and their standard deviations are shown in 

Table 1. In addition to the seven source categories above, 80 
daily contributions of noise (unknown sources) were added 
into the synthetic dataset. The method of noise generation 
was referred to our prior study (Shi et al., 2011). In order 
to generate the noise, firstly, 80 profiles were simulated by 
MATLAB; next, the contributions (µg/m3) of noise for 80 
days were simulated by MATLAB, with a normal distribution 
that the average contributions and standard deviations were 
30.51 ± 11.53. Thus, the species concentrations for each 
noise were obtained as: 
 
cij = gi × fij 

 
where, cij is the concentration (µg/m3) of jth species in ith 
noise; gi is the simulated contributions (µg/m3) of ith noise 
in ith sample; fij is the simulated fractions (g/g) of jth species in 
profile of ith noise. The mean value and its standard deviation 
for 80 contributions of noise were presented in Table 1. 

So, for constructing the five synthetic datasets, the five 
different F (source profiles) matrices were employed. To 
conveniently compare the results from different models, 
the same G (source contributions) matrices were applied in 
the five synthetic datasets. And the synthetic datasets were 
calculated according to Eq. (3). 

 
RESULT AND DISCUSSION 
 
Source Apportionment by Combined Models, A Case of 
Synthetic Dataset A 

In this section, the Dataset A was analyzed by the 
multiple combined models firstly, and then the results of 
combined models (estimated source contributions) will be 
compared to the synthetic contributions. Secondly, all the 
five synthetic datasets were studied, and the results will be 
discussed. 
 
PCA/MLR-CMB Model 
(1) PCA/MLR Stage (The First Stage) 

The Dataset A was introduced into PCA/MLR-CMB 
model, firstly. Six factors (with eigenvalue greater than 1) 
were extracted after varimax rotation, accounting for 78% 
of the total variance. The relatively lower value of explained 
variability by interpretable factors might related to high 
noise introduced in the synthetic database. The loadings of 
six factors were listed in Table S6. 

The first factor (31.84% of the variance) highly related 
to the species including Al, Si, Ca, Ti. These species are 
used as markers of crustal sources (Han et al., 2009; Shi et 
al., 2011; Pant and Harrision, 2012). TC also presented 
relatively higher weighting in this factor. So, this factor

 

Table 1. The synthetic contributions of seven sources (µg/m3) (mean ± sd). 

Sources Synthetic contributions Sources Synthetic contributions 
RD 50.15 ± 19.03 vehicle 40.00 ± 15.88 
soil 29.94 ± 12.65 secondary sulfate 20.00 ± 7.74 

coal combustion 39.87 ± 16.22 secondary nitrate 10.00 ± 4.83 
cement 20.01 ± 8.25 noise 30.00 ± 11.34 

Total PM mass 239.96 ± 57.47   
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might be a mixed source (called mixed source 1), including 
RD, soil dust, coal combustion and cement sources. 

The secondary factor (11.86% of the variance) is explained 
by TC, which is the marker of vehicle exhaust (Bhave et 
al., 2007; Ke et al., 2008; Robles et al., 2008). Hence factor 
2 can be identified as vehicle exhaust emission source. 

The fourth factor (8.32% of the variance) got high loadings 
of NH4

+, SO4
2– and NO3

–. So this factor might be a mixed 
source (called mixed source 2) which contained secondary 
sulfate and nitrate sources (Ho et al., 2006; Ke et al., 2008; 
Pant and Harrision, 2012). 

The other three factors got high loadings for the species 
such as Na, Co, Cu, etc. In this study, these factors might 
be noises. 

Next, the predicted profiles (µg/m3) and contributions of 
extracted sources were estimated and shown in Table S7. 
And the estimated contributions of extracted factors were 
compared with the simulated values, as shown in Fig. S1. 
 
(2) CMB Stage (The Secondary Stage) 

In this stage, the mixed sources 1 and 2 (in Table S7) 
were treated as receptors and introduced into CMB model. 

For mixed source 1, the values of the receptor 
concentrations were listed in Table S7; the standard 
deviations for concentrations were calculated according to 
our priori works (Shi et al., 2009, 2011). The concentrations 
and their standard deviations for mixed source 1, as well as 
the source profiles (including RD, soil dust, coal combustion 
and cement) were introduced into EPACMB 8.2 model, to 
estimate the source contributions. After converging, the 
predicted contributions of four sources were obtained and 
then shown in Fig. 1. In this stage, the performance indices 

met the requirements of the CMB model: χ2 was 0.00, R2 
was 1.00 and the percentage of mass (PM) accounted for 
was 100.75%. 

Similarly, the concentrations and standard deviations for 
mix source 2, as well as the source profiles (including 
secondary sulfate and nitrate) were introduced into EPACMB 
8.2 model. The calculated contributions of secondary sulfate 
and nitrate were also described in Fig. 1. The performance 
indices of results also met the requirements (χ2: 0.00, R2: 
1.00 and PM: 100.75%). 
 
Unmix-CMB Model 

The sources identified by Unmix model were similar to 
those by PCA/MLR model, as shown in Table S8. The first 
factor got high level of Al, Si, Ca, etc., so this factor might 
be the mix source (called mixed source 1), including RD, 
soil dust, coal combustion and cement. The fifth factor 
which was characterized by TC, NH4

+, SO4
2– and NO3

–, 
can be identified as a mixed source (called mixed source 2), 
containing the vehicle exhaust, secondary sulfate and nitrate. 
The contributions of the two mixed sources were listed in 
Table S8, as well. Also, the comparison of contributions of 
extracted factors and true values is described in Fig. S2. 

On the CMB stage, the mixed source 1 and 2 were 
treated as the receptor and introduced into EPACMB8.2 
model. The estimated source contributions of Unmix-CMB 
model were described in Fig. 1. For the two mixed sources, 
the performance indices of results were also in the range of 
the requirement. 

 
PMF-CMB Model 

Three factors were extracted by PMF model, as presented
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Fig. 1. Source contributions of synthetic and predicted values, for multiply combined models, the case of synthetic Dataset A. 
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in Table S9. The equation recommended in User’s Guide 
for PMF2 by Paatero (2007) was used to calculate the 
"uncertainties", which is calculated as follows: std-dev(xij) 
is = 5% of xij plus two units of the least significant digit 
reported for xij, where xij the jth specie concentration in the 
ith sample. In this case, the Fpeak was set as 0. Factor 1 can 
be identified as the mix sources including RD, soil dust, 
coal combustion and cement; and factor 2 can be associated 
to the mix sources including vehicle, secondary sulfate and 
nitrate sources. Fig. S3 illuminates the regression plots 
between the estimated contributions of extracted factors and 
true values and the final results of PMF-CMB model were 
presented in Fig. 1. Additionally, the calculated uncertainties 
for some tracers in the associated mixed sources for final 
result of Dataset A were listed in Table S10. 

Additionally, in order to understand the impact of the 
Fpeak-rotation on the final results of PMF-CMB model, 
different Fpeak values were tested. In this work, the values of 
–1.0, –0.2, 0, 0.2, 0.6, 1, 1.5 and 2 were set, the estimated 
contributions of extracted factors and true values were 
compared in Figs. S4–S10, the Q values for corresponding 
Fpeak were showed in Fig. S11 and the results of PMF-
CMB model for these Fpeak were shown in Fig. 1. 
Additionally, the synthetic dataset had been analyzed by 
the single CMB model. However, ill estimated source 
contributions had been obtained by the model, due to the 
high collinearity. 
 
Comparison of Multiply Combined Models 

In Fig. 1, source apportionment results of are presented. 
In order to compare these different results, relative error 
(RE) and average absolute error (AAE) (Javitz et al., 1988) 
were employed. The calculations of RE and AAE are 
described as follows: 
 
REj = (Ej – Tj)/Tj × 100 (4) 
 
where, Ej is the predicted contribution (µg/m3) of jth source; 
Tj is the synthetic contribution (µg/m3) of jth source. So, if 
REj was positive value, it indicates that the predicted 
contribution of jth source was overestimated; oppositely, 
negative value means the underestimated contribution by 

the combined model. The REj can reflect the discriminate 
of predicted and synthetic contributions for jth source 
category. 
 

1

1
( / ) 100

n

r j j j
j

AAE E T T
n 

     (5) 

 
where, n is the number of the source categories (in this 
study, n = 7). As the estimated source contributions are 
more close to the true source contributions, the values of 
AAE become smaller. The AAET used here to quantify the 
total difference between predicted and synthetic 
contributions for all seven source categories. 

The RE and AAET values for multiply combined models 
are presented in Table 2. It can be found that most of the 
REs were in the range of –50% to 50% and AAET were 
from 9.22% to 35.89%. Javitz et al. (1988) suggested that 
AAET less than 50% would represent acceptable precision. 
In this work, PCA/MLR-CMB, Unmix-CMB, and PMF-
CMB (Fpeak = 0, 0.2, 0.6, 1.0, 1.5, 2) got relative low 
AAET values, ranging from 9.22% to 19.38%. It suggests 
that the multiple combined models could get reasonable 
precisions. And basing on the AAET values, the predicted 
concentrations obtained by PMF-CMB model (Fpeak = 
0.2) got the most accurate predictions, with AAET = 9.22%; 
followed by PCA/MLR-CMB model (AAET = 11.86%) and 
Unmix model (AAET = 16.32%). 
 
The Impaction of Fpeak-rotation to Final Results 

According to Fig. 1 and Table 2, the PMF-CMB model 
got different results for multiply Fpeak values. In our prior 
studies (Shi et al., 2009; Zeng et al., 2010; Shi et al., 
2011), it suggests that the final results of combined model 
are mostly influenced by the profile of the mixed source 
which extracted by the model on the first stage. 

The predicted concentrations of marker species for 
extracted factors (obtained by PMF-CMB model for 
different Fpeaks, as well as PCA/MLR and Unmix models) 
and synthetic values were compared in Fig. 2. The synthetic 
values of mixed sources total values by adding each source 
that was included in mixed source. It can be found that the 
marker species concentrations were relative lower than the

 

Table 2. RE and AAET values for multiply combined models, the case of synthetic Dataset A. 

 
RE 

AAET 
RD soil coal cement vehicle SS a SN b 

PCA/MLR-CMB 6.87 –15.36 –3.78 –22.09 3.33 –2.70 28.91 11.86 
Unmix-CMB –9.97 –7.53 –19.35 –33.01 13.10 –12.04 19.22 16.32 

PMF-CMB (Fpeak -1.0) –21.59 –27.45 –2.21 –48.91 –33.96 –59.18 –57.91 35.89 
PMF-CMB (Fpeak -0.2) 6.02 –53.17 –10.45 –41.73 1.10 –38.44 –44.20 27.87 
PMF-CMB (Fpeak -0) –0.43 –18.22 2.46 –37.49 –5.17 –32.26 –39.62 19.38 
PMF-CMB (Fpeak 0.2) 0.98 11.19 10.32 –2.61 –4.33 –9.73 –25.41 9.22 
PMF-CMB (Fpeak 0.6) 9.05 –11.94 28.11 2.68 –4.68 3.91 –17.85 11.17 
PMF-CMB (Fpeak 1.0) 1.33 31.80 19.57 4.18 2.31 0.80 –12.94 10.42 
PMF-CMB (Fpeak 1.5) 9.17 27.42 13.03 8.58 18.05 –5.12 –16.07 13.92 
PMF-CMB (Fpeak 2.0) 7.44 30.64 11.26 8.48 23.47 –11.89 –19.56 16.11 

a SS: secondary sulfate. 
b SN: secondary nitrate. 
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Fig. 2. Species contributions of synthetic and predicted values, for multiply combined models, the case of synthetic 
Dataset A. 

(a) Mixed source 1 (including RD, Soil, Coal and Cement).  
The synthetic concentration of species is calculated as follow:  

 
4

1
ij ik kj

k

C S f


   

 
where sik is the synthetic contributions of kth source (RD, Soil, Coal and Cement) for ith day; fkj is the fraction of jth species 
in kth source profile. 

(b) Mixed source 2 (including vehicle, secondary sulfate and nitrate).  
The synthetic concentration of species is calculated as follow:  

 
3

1
ij ik kj

k

C S f


   

 
where sik is the synthetic contributions of kth source (vehicle, secondary sulfate and nitrate) for ith day; fkj is the fraction of 
jth species in kth source profile. 

 

synthetic ones when the Fpeaks were setting as negative 
values. Along with the Fpeaks increasing, the predicated 

concentrations became higher (close or beyond the synthetic 
values). The changes of the predicted concentrations of 
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species markers were influenced by the selected different 
Fpeaks. That is, positive Fpeak values can “sharpen” the 
profile matrix and negative Fpeak values “smear” the profile 
matrix (Paatero, 2004; USEPA, 2008). 

Combining the results of Fig. 2 and Table 2, we can 
conclude that: when the predicted concentration of the 
marker species was below the synthetic one, the source 
contribution usually was underestimated (RE got negative 
value in Table 2) on the CMB-stage; on the contrary, the 
overestimated source contribution (RE got positive value 
in Table 2) was usually because of the high concentration 
of marker species. The further discussion of the relationship 
between the final results of combined models and the 
concentrations of marker species (obtained on the first 
stage) will be presented later. 

Additionally, the estimated contributions of extracted 
factors by different models in stage 1 can also influence 
the final results of the combined models. According to 
Figs. S1–S10, the slope and Pearson’s r values changed 
largely for the different models. Summary, the results with 
good slope and Pearson’s r values in stage 1 often obtained 
well final results for the combined models. 
 
Source Apportionment for Five Synthetic Datasets 

In this section, the other four synthetic datasets were 
studied by the multiply combined models, as well. The 
results for the four datasets were illustrated in Figs. S12–
S15. The trends of the results for Dataset B–E were 
somehow similar to that for Dataset A. As shown in Fig. 1 
and Figs. S12–S15, a total of 50 combined model solutions 
were carried out, for the five synthetic datasets. 

Fig. 3 describes the overall results of 50 solutions as 
well as the synthetic contribution, for each source category. 
According to the scatter in the retrieved concentrations, 
most of the predicted contributions were approached the 
synthetic values, suggesting that these results might be 
satisfactory. However, there are some points deviated from 
the synthetic values, indicating the unreasonable results. In 
this work, most of these unreasonable results were obtained 
by the PMF-CMB solutions, with negative or large positive 

(1.5 or 2.0) Fpeak values. The PMF-CMB solutions with 
negative Fpeak usually got low predicted concentrations of 
marker species for factors identified as the mixed source on 
the PMF-stage, resulting in the underestimated contributions 
on the CMB-stage. On the other hand, very large positive 
values of FPEAK may not lead to the desired solution as 
well (Paatero, 2004), due to the excessive overestimation of 
the marker species’ concentrations on the PMF-stage. What’s 
more, the concentrations of all factors are typically slightly 
overestimated according to Fig. 3, because contributions of 
noise were added into the synthetic datasets; and the use of 
positive and negative noise might help to reduce this 
positive bias in the future. 

Addition to Fig. 3, AAEj for jth source category was 
employed to help analyze the total accuracy of the 
predictions. The AAEj was obtained according to the equation 
as follows: 
 

50

1

1
( / 100

50j ij i j ij
i

AAE E T T


      (6) 

 
where Ej is the estimated contribution of jth source for ith 
solution; 50 is the number of the combined model solutions. 

The values of AAEj for 50 solutions are listed in Table 3. 
All the AAEj values were less than 50%, indicating that the 
predictions can be acceptable (Javitz et al., 1988). 

What’s more, as discussed above, PMF-CMB solutions 
with negative and large positive (1.5 and 2.0) Fpeaks got 
relative bad predictions. So, AAEj values were calculated 
again, only containing 30 solutions (excluding the PMF-CMB 
solutions with negative and large positive (1.5 and 2.0) 
Fpeaks): 
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1
( / 100

30j ij i j ij
i

AAE E T T
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     (7) 

 
AAEjs for 30 solutions are shown in Table 3 as well. The 
AAEjs for 30 solutions were relative lower than those for 
50 solutions, suggesting that the results of these solutions 
might be more accuracy. 
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Table 3. AAEj values for each source category. 

Sources 
AAE(%) 

a b Group 3 Group 2 Group1 
RD 17.62 15.50 7.76 34.29 11.39 
soil 26.57 19.69 27.86 26.24 27.75 

coal combustion 17.18 12.49 8.70 19.96 22.73 
cement 29.20 24.90 21.36 31.16 35.84 
vehicle 13.60 8.83 7.37 13.73 14.69 

secondary sulfate 27.10 20.62 21.92 31.20 32.88 
secondary nitrate 31.77 27.24 20.25 12.75 40.32 

a for all 50 solutions. 
b for 30 solutions, excluding the PMF-CMB solutions with negative and large positive (1.5 and 2.0) Fpeaks. 

 

Besides, an application of combing the source 
contributions with cluster analysis (CA) was employed to 
analyze the similarity between synthetic contributions and 
predictions for 50 solutions. In this work, the application 
was similar to the process of factor cluster analysis (FCA) 
(Masiol et al., 2012). In the work of Masiol et al. (2012), 
the source contributions were estimated by the PCA/MLR 
model, and then the predicted contributions were used as 
input data for the clustering process using the Ward’s 
hierarchical method and the squared Euclidean distances 
(Masiol et al., 2012). In our study, the predictions obtained 
by the 50 solutions (in Fig. 1, Figs. S12–S15) as well as 
the synthetic values were used as the input data. The 
dendrogram of CA on the source contributions is described 
in Fig. S16 and three groups were discriminated. The 
synthetic values were clustered in group 3, suggesting that 
the predictions in group 3 were the most close to the 
synthetic values. While the predictions in group 1 were the 
most different from the synthetic ones. The AAEs for the 
solutions in different groups were presented in Table 3 and 
show the agreement conclusion of dendrogram. Additionally, 
the input data of CA was also analyzed by PCA to identify the 
similarity between synthetic contributions and 50 predictions. 
Two factors were extracted and the factor scores are plotted 
in Fig. S17. The points which close to the synthetic values 
indicated that these predictions were relative accurate. The 
result of Fig. S17 was also consistent to that of CA 
dendrogram. 

According to Figs. S16 and S17, it can be found that the 
PCA/MLR-CMB solutions can obtain the accurate 
predictions (in group 3). For PMF-CMB model, the solutions 
with Fpeaks from 0 to 1.0 usually got relative desired 
results (mostly in group 3 and 2) while solutions with 
negative or large positive Fpeaks (1.5 or 2.0) often present 
bad predictions (mostly in group 1). Some solutions with 
Fpeaks for 1.5 or 2.0 were clustered in group 2 or 3, 
however, their performance indices on CMB-stage did not 
meet the requirements of the CMB mode. And the accuracy 
of predictions for of Unmix-CMB solutions seems relative 
instable (Either clustered in group 1 or group 3). 

As discussed above, the final predictions of combined 
models might be influenced by the estimated concentrations 
of marker species in the mixed source which obtained on 
the first stage. So in this section, the relationship between 
markers’ concentrations and the predictions were studied. The 

correlation between the estimated markers’ concentrations 
and the predictions for the solutions were shown in Fig. 4. 
Good positive correlations were obtained for the predicted 
source contributions and the concentrations of their markers, 
suggesting that the estimated markers’ concentrations can 
determine the final results of combined models. 

Some duplicate experiments for synthetic dataset tests 
were carried out by the combined models, and similar 
conclusions were obtained. 
 
CNOCLUSION 
 

In this work, PCA/MLR-CMB, Unmix-CMB and PMF-
CMB models were employed to study the synthetic datasets, 
and RE and AAE were employed to assess the precision of 
the results for these multiply combined models. The results 
suggest that the multiple combined models could get 
reasonable precisions. 

Different Fpeaks were set, for the PMF-CMB solutions, 
to investigate the impaction of Fpeak on the rotation. The 
results of PMF-CMB solutions with 0 or positive Fpeaks 
(0–1.0) were relative accurate, while the PMF-CMB solutions 
with negative or large positive Fpeaks often got unsatisfactory 
results, due to the unreasonable extracted profile of mixed 
source on the first stage.  

The predictions of Unmix-CMB solutions were relative 
instable: some of them were close to the synthetic 
contributions, while others were deviated from the synthetic 
values.  

Finally, it can be found that the source contributions 
were good correlated to their markers’ concentrations 
(obtained on the first stage), suggesting that the extracted 
profiles of mixed sources can determine the final results of 
combined models. The findings of this study can provide 
information for application of combined models. Generally, 
the users can use more than one combined models to 
enhance the accuracy of the final results. For the PMF-
CMB and Unmix-CMB combined models, the selection of 
the factor number can determine the final results. Thus, a 
PCA can be employed before the combined models, to 
help gain the information of the factors. Finally, for the 
ambient dataset source apportionment, more information 
beyond the PM concentrations might be needed to help to 
obtain the acceptable result, such as the field surveys, 
emission inventory and source investigation. 
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Fig. 4. The correlation between the estimated markers’ concentrations and the predictions for the solutions. 
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