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Abstract

Background: Multiple imputation (MI) is now widely used to handle missing data in longitudinal studies. Several MI

techniques have been proposed to impute incomplete longitudinal covariates, including standard fully conditional

specification (FCS-Standard) and joint multivariate normal imputation (JM-MVN), which treat repeated

measurements as distinct variables, and various extensions based on generalized linear mixed models. Although

these MI approaches have been implemented in various software packages, there has not been a comprehensive

evaluation of the relative performance of these methods in the context of longitudinal data.

Method: Using both empirical data and a simulation study based on data from the six waves of the Longitudinal

Study of Australian Children (N = 4661), we investigated the performance of a wide range of MI methods available

in standard software packages for investigating the association between child body mass index (BMI) and quality of

life using both a linear regression and a linear mixed-effects model.

Results: In this paper, we have identified and compared 12 different MI methods for imputing missing data in

longitudinal studies. Analysis of simulated data under missing at random (MAR) mechanisms showed that the

generally available MI methods provided less biased estimates with better coverage for the linear regression model

and around half of these methods performed well for the estimation of regression parameters for a linear mixed

model with random intercept. With the observed data, we observed an inverse association between child BMI and

quality of life, with available data as well as multiple imputation.

Conclusion: Both FCS-Standard and JM-MVN performed well for the estimation of regression parameters in both

analysis models. More complex methods that explicitly reflect the longitudinal structure for these analysis models

may only be needed in specific circumstances such as irregularly spaced data.

Keywords: FCS, Joint modelling, MICE, Multiple imputation, Multilevel multiple imputation, Longitudinal missing

data, Linear mixed model

Background
Longitudinal studies, where information on the same

participants is obtained repeatedly over time, are fre-

quently used in clinical and population health research.

Analysis of data obtained from such studies is often im-

peded by the presence of missing data due to item or

visit non-response and loss to follow-up [1, 2].

Commonly used analytic approaches exclude patients or

records with missing data, which may lead to biased esti-

mates and considerable loss of precision [3, 4].

Multiple imputation (MI) has become a very popular

tool for dealing with missing data in recent years [5, 6].

MI involves the generation of multiple copies of the

dataset in each of which missing values are replaced by

imputed values sampled from their posterior predictive

distribution given the observed data. Each completed

dataset is analysed using the statistical model appropri-

ate to the epidemiological question of interest, and the

resulting estimates and standard errors are combined
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using Rubin’s rules [4]. MI methods generally assume

data are missing at random (MAR), which requires that

the probability of data being missing, conditional on ob-

served data, is independent of the missing data.

Two general approaches for imputing missing data in the

presence of multiple incomplete variables are available in

standard computer packages [7–9]: MI based on the joint

posterior distribution of incomplete variables, often referred

to as joint modelling (JM), and fully conditional specifica-

tion (FCS; also known as sequential regression and MI

using chained equations (MICE)) [10–13]. The JM approach

commonly assumes that the incomplete variables follow a

multivariate normal distribution, often referred to as multivari-

ate normal imputation [12]. FCS, on the other hand, imputes

missing values using univariate conditional distributions for

each incomplete variable given all the others, cycling iteratively

through the univariate imputation models [13].

Both of these MI approaches were originally proposed for

cross-sectional data but can be used to impute longitudinal

data collected at equal intervals by considering repeated

measurements of time-dependent variables as distinct vari-

ables [14], denoted as JM-MVN and FCS-Standard, respect-

ively. Although relatively straightforward to implement

using existing software, these methods (i) cannot accom-

modate longitudinal time-dependent covariates that are

measured at irregular time intervals and (ii) may experience

non-convergence due to model over-fitting and/or collin-

earity with large numbers of repeated measurements. Sev-

eral extensions of the standard JM and FCS approaches for

imputing cluster/longitudinal data have been proposed in

the literature over recent years [14–20]. The extensions in-

clude limiting the number of time-dependent variables in

the univariate imputation models within FCS [20]; and speci-

fying imputation models based on the generalized linear

mixed-effects model (GLMM) [14–19]. The GLMM-based

approaches are generally based on more restrictive assump-

tions about modelling the correlation structure than the

JM-MVN and FCS-Standard as these approaches allow for

arbitrary dependence of each variable on other variables. The

GLMM-based approaches also use the observation at a given

time-point as the unit of analysis rather than the individual.

It is unclear how important these differences are in practice

as currently available comparisons of the various MI models

in the literature are limited to a few methods and are in very

specific settings [19, 21–26] and no comprehensive compari-

son of the available methods has been conducted.

In the current paper we present a comprehensive

simulation-based comparison of the MI methods available in

standard software packages for imputation of incomplete

longitudinal data. Specifically, we evaluated estimators of re-

gression coefficients for both a linear regression model and a

linear mixed-effects model (LMM) in the presence of incom-

plete binary and continuous predictors. Our primary aim

was to investigate whether the GLMM-based MI

approaches, which are specifically designed for imputing lon-

gitudinal data, provide more accurate estimates than the

standard MI approaches. We based our simulation study on

a previously conducted analysis exploring the association be-

tween the burden of overweight and quality of life (QoL) in

the Longitudinal Study of Australian Children (LSAC) [27].

Methods

Longitudinal study of Australian children (LSAC) data and

analysis models

LSAC is a nationally representative study that examines the de-

velopment and wellbeing of Australian children. Following re-

cruitment, data have been collected every 2 years (referred to

as waves of data collection) using face-to-face interviews, ques-

tionnaires and direct anthropometric measurements. The study

is ongoing with six waves of data currently available. The de-

tailed study procedure has been described elsewhere [28]. The

simulation study was based on data from the kindergarten (K)

cohort of LSAC (n=4983), who were aged 4–5 years when re-

cruited in 2004. The specific question of interest that we fo-

cused on was motivated by previous research examining

whether the number of overweight occasions in waves 1–

5 of data collection predicts poor QoL at wave 6, adjusted

for child age, sex, English speaking background and family

socio-economic position [27]. In this analysis, the child’s

age-and-gender specific body mass index (BMI z-score) at

each wave was dichotomized into normal weight (includ-

ing underweight) and overweight (including obesity) using

International Obesity Task Force criteria [29].

In our study we slightly modified the original analysis model

to include an additional known predictor of child QoL: family

structure (which also had missing data), reflecting whether the

child was living with a single parent or two parents [30]. Spe-

cifically, we were interested in exploring:

1. the association between the cumulative burden of

overweight from 4 to 5 to 12–13 years (waves 1–5)

and QoL z-scores at age 14–15 years (wave 6), and

2. the cross-sectional association between QoL z-score

and BMI z-score across all 6 waves,

as these two analysis models are of interest to many re-

searchers in longitudinal data settings. Both analyses were

adjusted for sex, English language background and socio-

economic position (all at baseline), age and family structure.

The association between QoL z-score at wave 6 and cu-

mulative burden of overweight (OverWtCat) were ad-

justed for child sex (Sex), English language background

(language) and socio-economic position (SEP), all at base-

line, age at wave 6 and burden of family structure(FamSt-

Cat). OverWtCat and FamStCat both are derived variables

representing cumulative burden of overweight and living

with a single parent, respectively. These variables were de-

rived by counting the total number of waves, from 1 to 5,
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on which the child was overweight or lived with a single

parent (followed by categorization as none, 1, 2, 3–4, or

all five waves), respectively. More precisely, the analysis

model to address (1) was a linear regression model:

QoLzi6 ¼

β0 þ β11IðOverWtCati ¼ 1Þ þ β12IðOverWtCati ¼ 2Þ

þβ13IðOverWtCati ¼ 3Þ þ β14IðOverWtCati ¼ 4Þ

þβ2ageyr6i þ β3Sexi1 þ β4Sexi1 þ β5languagei1

þβ61IðFamStCati ¼ 1Þ þ β62IðFamStCati ¼ 2Þ

þβ63IðFamStCati ¼ 3Þ þ β64IðFamStCati ¼ 4Þ þ εi;

ð1Þ

where i = 1, 2, …, n indexes the participant, QoLz6 is the

QoL z-score at wave 6; ageyr6 represents the age (year)

of the study child at wave 6; Sex, SEP and language rep-

resent sex, socio-economic position and English lan-

guage, respectively measured at wave 1. The residual

error εi was assumed to be normally distributed.

The analysis model to address (2) was a LMM applied

to all 6 waves of data:

QoLzij ¼ γ0 þ γ1BMIzij þ γ2ageyrij þ γ3Sexi1

þ γ4SEPi1 þ γ5languagei1
þ γ6FamStrucij þ u0i þ eij; ð2Þ

where i = 1, 2, …, n and j = 1, 2, …, 6 index participants

and waves respectively, BMIz is the BMI z-score, Fam-

Struc represents whether the child was living with a single

parent or two parents and u0i represents a subject-specific

random intercept. The other variables have the same def-

inition as above. Note that in analysis model (1) only the

QoL z-score data from wave 6 is analysed whereas analysis

model (2) uses all the QoL z-score data.

Both analysis models were susceptible to missing data

when applied to LSAC. Data were missing for BMI

z-score and QoL z-score in all six waves. Family struc-

ture was completely observed for the first wave but had

missing values in the subsequent waves. Age and sex

were fully observed at baseline, but the other baseline

variables had very small amounts of missing information

(SEP 0.2% and English-speaking background, 1.4%). Age

was occasionally missing at the later waves but was com-

pleted by adding the time difference between the wave

and wave 1 to the child’s age at wave 1. To simplify our

example, we excluded cases where QoL z-score was

missing across all 6 waves (given that is the outcome of

interest) and participants with missing socio-economic

position, and/or English language background informa-

tion at wave 1, leaving a total of 4661 participants for

analysis. Except for QoL z-score, most of the missing-

ness observed in our case study was due to dropout

(Additional file 1: Table S1).

MI methods to impute longitudinal data

We have identified the following MI methods avail-

able for imputing longitudinal data in standard soft-

ware packages (see Table 1 for additional details).

1. JM-MVN: Originally implemented in Schafer’s

NORM software [12], this approach utilizes data

augmentation, a form of Markov chain Monte

Carlo algorithm, to impute missing data under

the assumption of (unstructured) multivariate

normality. For longitudinal data, this approach

treats repeated measurements as distinct

variables and imputes all variables in the

imputation model as continuous. The model is

clearly mis-specified for imputing binary and

categorical data, but JM-MVN has been shown

to perform reasonably well even for such vari-

ables, unless they are severely skewed [12, 23,

31].

2. JM-MLMM: Instead of treating repeated

measurements as distinct variables, Schafer and

Yucel (2002) suggested using a joint multivariate

LMM (JM-MLMM) for imputing several

incomplete longitudinal variables [14]. This

approach assumes all the incomplete variables are

continuous with subject-specific random effects to

incorporate dependence within individuals across

time. As with the univariate LMM, this approach

assumes that random effects and measurement er-

rors follow a normal distribution with constant

error-covariance for all individuals.

3. JM-MLMM-LN: Goldstein, Carpenter, Kenward

and Levin. (2009) extended the JM-MLMM

approach to impute a mixture of discrete and

continuous variables [15], by treating discrete

variables to underlying latent normal (LN)

variables that follow a multivariate normal

distribution jointly with the continuous

variables. The latent variable formulation is

attractive because it offers computational advan-

tages by modelling categorical variables within

the established Bayesian estimation procedure for

normally distributed variables and transforms be-

tween the latent variable and the original binary/

categorical variables using a probit model to pro-

vide imputed values on the categorical scale.

4. FCS-Standard: The standard implementation of FCS

includes all the repeated measurements of the time-

varying covariate as predictors in each of the uni-

variate imputation models; we refer to this ap-

proach as FCS-Standard. This method is subject to

convergence problems due to model over-fitting

and/or collinearity when there are a large number

of correlated repeated measures.
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Table 1 Summary of imputation approaches for handling missing data in longitudinal studies available in standard software

MI approaches Method Details Software

Joint modelling (JM)
(Assumes a joint multivariate distribution
between all the variables in the imputation
model)

JM-MVN • Repeated measurements of time-dependent variables are imputed
as distinct variables.

• Assumes a joint multivariate normal distribution for all incomplete
variables.

• Binary variables are imputed as continuous variables.
• Categorical variables can be imputed as a continuous variable or as
a series of dummy variables.

SAS (7), SPSS (42),
Stata (8), Mplus (43)
and R (9)

JM-
MLMM

• Repeated measurements of time-dependent variables are imputed
using hierarchical models.

• All incomplete variables are imputed using a joint multivariate
LMM.

• Binary variables are imputed as continuous variables.
• Categorical variables can be imputed as a continuous variable or as
a series of dummy variables.

• A constant residual error variance is assumed for all individuals.

Mplus,
R package pan [42].

JM-
MLMM-
LN

• Repeated measurements of time-dependent variables are imputed
using hierarchical models.

• All incomplete variables are imputed using a joint multivariate
LMM.

• Binary and categorical incomplete variables are imputed using
latent normal variables.

• Can be fitted assuming either a constant or a subject-specific re-
sidual error variance.

Realcom-impute [43],
R package jomo [16].

Fully conditional specification (FCS)
(Imputes using a univariate conditional
model for each variable with missing data)

FCS-
Standard

• Repeated measurements of time-dependent variables are imputed
as distinct variables.

• Imputes variables using conditional univariate regression models
for each incomplete variable, conditional on the time-dependent
variables at all waves.

SAS, SPSS, Stata,
Mplus and R

FCS -
Twofold

• Repeated measurements of time-dependent variables are imputed
as distinct variables.

• Imputes variables using univariate regression model for each
incomplete variable, conditional on a subset of all time-dependent
variables in the data based on a window period.

• Imputation carried out in a two-step iterative process.

Stata

FCS-
MTW

• Repeated measurements of time-dependent variables are imputed
as distinct variables.

• Imputes variables using univariate regression models for each
incomplete variable, conditional on a subset of all time-dependent
variables in the data based on a window period.

• Imputation carried out in a single step iterative process.

Stata

FCS-
LMM

• Repeated measurements of time-dependent variables are imputed
using hierarchical models.

• Assumes a conditional LMM for each incomplete variable.
• Binary variables are imputed as continuous variables.
• Categorical variables can be imputed as a continuous variable or as
a series of dummy variables.

• A constant residual error variance is assumed for all individuals.

R package mice
(mice.impute.2 l.pan)
[44].

FCS-
LMM-
het

• Repeated measurements of time-dependent variables are imputed
using hierarchical models.

• Assumes a conditional LMM for each incomplete variable.
• Binary and categorical variables are imputed as continuous
variables.

• The model assumes a subject-specific residual error variance.

R package mice
(mice.impute.2 l.norm)
[44].

FCS-
GLMM

• Repeated measurements of time-dependent variables are imputed
using hierarchical models.

• Assumes a conditional GLMM for incomplete binary and categorical
variables.

• A constant residual error variance is assumed for all individuals

R package micemd
[33]

FCS-
MLMM-
LN

• Repeated measurements of time-dependent variables are imputed
using hierarchical models.

• Only a single variable is considered to be missing in a given
iteration and is imputed using a joint LMM similar to JM-MLMM-LN
using imputed values for the other incomplete variables. This

Mplus, R package
micemd
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5. FCS-Twofold: To overcome convergence

problems with FCS-Standard when applied to

longitudinal data, Nevalainen et al. (2009)

proposed the FCS-Twofold method in which the

imputation model for incomplete time-dependent

variables only includes measurements within pre-

specified time blocks (21). This approach incor-

porates nested iterations that cycle both within

and between time blocks. The requirement for

multiple iterations in each time block makes

FCS-Twofold computationally demanding.

6. FCS-MTW: An alternative approach to

FCS-Twofold is to apply the same restriction

("moving time window", MTW) to the

time-dependent covariates in the univariate

models but remove the within-time iterations

from the algorithm.

7. FCS-LMM: Instead of treating repeated

measurements as distinct variables, the FCS-LMM

method uses a multilevel LMM for imputing miss-

ing values in each incomplete time-dependent vari-

able given all the others, cycling iteratively through

the univariate imputation models. This method im-

plements the Gibbs sampler for the linear two-level

model with homogeneous within-subject variances,

which is a special case of a multivariate LMM, using

the same imputation models as JM-MLMM but

with only one variable considered missing at each

iteration.

8. FCS-LMM-het: Van Buuren (2011) extended FCS-

LMM to allow for subject-specific error variances/

heteroscedastic variance [19]. As with FCS-LMM,

in this approach the binary and categorical variables

are imputed as continuous variables.

9. FCS-GLMM: Resche-Rigon and White (2016) pro-

posed an extension of FCS-LMM that imputes both

continuous and binary incomplete variables using

appropriate GLMMs (18). This method uses iden-

tity and logit links to impute missing data in con-

tinuous and binary variables, respectively.

10. FCS-MLMM-LN: Audigier and Resche-Rigon sug-

gested that the JM-MLMM-LN approach could be

modified to impute missing data in an FCS frame-

work where only one variable is considered missing

at a time [33]. At each step, this method treats all

the variables in the imputation model (one incom-

plete and the rest as complete variables) as out-

comes (hence the MLMM nomenclature) and

integrates the likelihood over the missing responses

of the incomplete variable to obtain the observed

data likelihood. Within this specification binary and

categorical incomplete variables are imputed using

latent normal variables as for JM-MLMM-LN.

11. FCS-LMM-LN: Enders, Keller and Levy (2017)

proposed extensions of both FCS-LMM and FCS-

LMM-het that uses a latent normal variable for

imputing incomplete categorical variables [18].

12. FCS-LMM-PMM: In this final extension of

GLMM-based FCS approaches, missing values are

imputed by drawing an observation randomly from

a set of complete cases (donors) having predicted

means close to that of the incomplete mean. The

match is based on predicted values from a linear

mixed effects imputation model that contains both

fixed and random effects.

Although some of the above methods (JM-MLMM-LN,

FCS-LMM-het, FCS-MLMM-LN and FCS-LMM-LN) can

Table 1 Summary of imputation approaches for handling missing data in longitudinal studies available in standard software

(Continued)

MI approaches Method Details Software

process is repeated for all incomplete variables in turn.
• Binary and categorical incomplete variables are imputed using a
latent normal variable.

• Can be fitted using either a constant or a subject-specific residual
error variance.

FCS-
LMM-LN

• Repeated measurements of time-dependent variables are imputed
using hierarchical models.

• Assumes a conditional LMM for incomplete variables.
• Binary and categorical incomplete variables are imputed using a
latent normal variable

• Can be fitted using either a constant or a subject-specific residual
error variance.

Blimp [45]

FCS-
LMM-
PMM

• Repeated measurements of time-dependent variables are imputed
using hierarchical models.

• Imputes incomplete values using a draw from a pool of observed
values who have the closest predicted mean to that of the
incomplete case.

R package miceadds
[46]

The following abbreviations are used to denote different MI methods, e.g., MVN: multivariate normal imputation; MLMM: Multivariate linear mixed-effects model;

MLMM-LN: Multivariate linear mixed-effects model with latent normal variables; LMM: Linear mixed-effects model; PMM-Predicted mean matching; GLMM-

Generalised linear mixed-effects model; MTW – Moving Time Window
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allow the subject-specific error variance to vary across indi-

viduals, doing so may not produce stable results in the case

of LMM with only random intercepts. We therefore consid-

ered homoscedastic error variance for all the methods where

possible (all but FCS-LMM-het).

Simulation study

Data simulation

To compare the behaviour of the regression coeffi-

cient estimators using the above MI approaches, we

generated 1000 datasets, each with eight variables

(age and sex of the child, English language back-

ground, mother’s highest education level (whether

completed year 12), family structure, socio-economic

position of the family, child’s BMI z-scores and QoL

z scores) and 5000 individuals. In each dataset, vari-

ables were simulated in a sequential manner as

follows:

1. Child sex, whether English is the main language

spoken at home (language) and mother’s education

(moedu: whether or not completed year 12) at

baseline were generated using binomial

distributions with probabilities 0.5, 0.9 and 0.6

respectively.

2. Child age (in years) at each wave was generated

according to the following model:

ageyri j ¼
1

12
f48þ ðwave j−1Þ � 24þ ui: þ vi jg ð3Þ

where 48 + ui. = 48 +N(11,1.5), is the distribution of age

(in months) of the participant at the recruitment and vij =

N(0, 2), j = 2,3,...,6, is the random noise in the age distribu-

tion to accommodate the random variation of the age at

interview during follow-up as observed in the LSAC.

3. The family structure variable (FamStruc, whether

the child was living with a single parent or two

parents) in each wave was simulated using the

following logistic mixed-effects model:

logit P FamStrucij ¼ 1
� �� �

¼ −6:9þ 0:15 � ageyrij þ 0:62

� languagei−1:9 �moedui þ ξ0i ð4Þ

where ξoi =N(0,5.5) is the random intercept.

4. The socio-economic position (SEP) at baseline

was generated based on mother education and

family structure at baseline (wave = 1) using the

following model:

SEPi1 ¼ −0:5þ 0:94 �moedui−0:45
� FamStruci1 þ τi ð5Þ

where, τi =N(0,1.2) is the residual error.

5. The main exposure variable of interest, child BMI

z-score was generated based on age, sex and family

structure using the following linear mixed-effects

model:

BMIzij ¼ 0:53þ −0:012ð Þ � ageyrij þ −0:008ð Þ

� sexi1 þ 0:07 � FamStrucij þ φoi þ φij ð6Þ

where φoi =N(0,0.9) is the random intercept and φij =

N (0,0.6) is the residual error.

6. Finally, the outcome, QoL z-score at each wave was

generated using the following linear mixed-effects

model:

QoLzij ¼ −0:04þ 0:05 � sexi1−0:02 � ageyrij
þ −0:12ð Þ � BMIzij þ −0:2ð Þ
� FamStrucij þ 0:20 � languagei1
þ 0:09 � SEPi1 þ ω0i þ ωij ð7Þ

where ω0i~N(0,0.7) and ωij~N(0,0.7).

Note that we used a single linear mixed model (7) to

generate data for both analysis models (1) and (2). Thus,

for analysis model (2), the regression coefficients used in

the data generating model were considered as the true

values. The true values of the regression coefficients for

analysis model (1) were estimated by generating a simu-

lated population of 10 million individuals and fitting the

model of interest. All the parameters in the above data

generating models were estimated from LSAC data to

ensure that the simulated datasets were comparable to a

real data example.

As both analysis models were susceptible to missing

data when applied to LSAC, upon generating the

complete datasets, we set BMI z-scores for all waves and

family structure from waves 2 to 6 to missing according

to the MAR assumption. Specifically, we used the fol-

lowing equation to induce missingness:
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i. Values of BMI z-score at jth wave (j = 1, 2,…,6) were

set to missing dependent on QoL z-score and age at

that wave:

logit P BMIzij ¼ missing
� �� �

¼ θ0 j þ θ1 jageyrij þ θ2 jQoLzij ð8Þ

ii. Similarly, family structure in waves 2 to 6 was set to

missing at a given wave dependent on baseline

family structure and the value of the child QoL z-

score of that wave:

logit P FamStrucij ¼ missing
� �� �

¼ ϑ0 j þ ϑ1 jFamStruci1 þ ϑ2 jQoLzij ð9Þ

The parameters for the above model (θ0, θ1j, θ2j and

ϑ0, ϑ1j, ϑ2j) were chosen based on the LSAC data to en-

sure a similar proportion of missing observations for

each of the variables at each wave as in LSAC. A sum-

mary of the proportions of missing data by wave in both

the LSAC and simulated data is given in Table 2.

We have also provided parameter values for the above

models in the Additional file 1: Table S2, see supplementary

materials. Although in the LSAC data and in many longitu-

dinal studies the outcome variable might also have missing

values, in our simulation study, we considered the outcome

to be fully observed, in order to ensure that the simulated

missing data scenarios satisfied the MAR assumption.

Imputation strategies and comparison of methods

We applied each of the 12 imputation models described

above to both the simulated and LSAC datasets. For

each MI approach, we imputed continuous BMI z-score,

binary family structure variable and QoL z-score (only

in the case study) at each wave. The imputation model

also included age and sex of the child, socio-economic

position and whether English was the main language

spoken at home at Wave 1, and QoL z-score at each of

the 6 waves. For MI methods that impute binary vari-

ables as continuous in the imputation model, we

rounded the imputed values (to either 0 or 1) using

adaptive rounding [31] for analysis model (1), as round-

ing was required to derive the FamStCat variable (i.e.,

the number of waves that the participant lived with a

single parent). However, for analysis model (2) we used

the unrounded values in the analysis as rounding can

introduce bias [11, 34]. Forty imputations were gener-

ated for each approach to limit Monte Carlo (imputa-

tion-related) error for the regression coefficient of

interest to approximately 5% of its standard error. Of

note, for both FCS-MTW and FCS-Twofold method we

used measurements within adjacent time-period in the

imputation model.

Using simulated datasets, we compared the bias,

standard errors (both average of the model based and

empirical standard error) and coverage probability of the

estimated regression coefficients among the 12 imput-

ation approaches, complete data analysis (fully observed

simulated dataset of 5000 observations, before inducing

missingness) and available data analysis (that excludes

patients/records with missing data). The sampling prop-

erties of the estimators are estimated from 1000 simu-

lated datasets.

Results
Simulation results

The sampling distribution of the estimated bias and the

coverage of the regression coefficients for analysis model

(1) across the 1000 simulated datasets are displayed in

Figs. 1 and 2, respectively. A detailed numerical sum-

mary of the estimated bias and standard errors is pro-

vided in Additional file 1: Figure S1. It is clear from Figs.

1 and 2 that analysis based on the available data resulted

in biased estimation of the regression coefficients, and

inadequate coverage probabilities. All the MI approaches

provided similar estimation of the regression coefficients

for fully observed covariates (age at wave 6, sex,

socio-economic position and language). The estimated

coverage probabilities for these covariates were very

Table 2 Comparisons of the missing data proportions in both LSAC and simulated data

Data
collection
wave

Proportion of missing data in BMI z-score Proportion of missing data in FamStruc

Case study Simulation study Case study Simulation study

1 0.06 0.01 0.00 0.00

2 0.08 0.06 0.03 0.06

3 0.09 0.10 0.05 0.08

4 0.14 0.15 0.09 0.10

5 0.19 0.19 0.14 0.15

6 0.30 0.28 0.24 0.24
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close to the nominal value of 0.95. Slightly greater differ-

ences were observed across the imputation methods for re-

gression coefficients associated with incomplete predictors.

The estimated bias in the regression coefficients for the cu-

mulative burden of overweight was similar across all the

methods except perhaps FCS-Twofold, FCS-MTW and

FCS-MLMM-LN. For the cumulative burden of living with

single parents all methods gave similar estimates of the re-

gression coefficients except FCS-Twofold, FCS-MTW, and

FCS-GLMM, which also exhibited some under-coverage.

For analysis model 2 (the LMM), we observed mixed

results across MI methods in performance associated

with incomplete predictors (Figs. 3 and 4). Again, the

available data analysis, FCS-Twofold, FCS-MTW and

FCS-MLMM-LN resulted in biased estimates of the regres-

sion coefficients and under-coverage for both the incomplete

predictors. In addition, FCS-GLMM, FCS-LMM-het and

FCS-LMM-PMM resulted in biased estimation of regression

coefficients and under-coverage for the family structure indi-

cator. All of the MI approaches demonstrated reliable

Fig. 1 Distribution of the bias in the estimated regression coefficients (i.e., mean changes in the QoL z-score associated with each covariate) for

analysis model (1) across the 1000 simulated datasets following complete data, available data and 12 multiple imputation methods. Top and

bottom panel show the distribution of the bias in the estimated regression coefficients for covariates with missing data whereas the middle

panel shows the distribution of the bias associated with fully observed covariate
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estimation of the intra-cluster correlation (Additional file 1:

Figure S1).

The implementation time of all of the 12 methods (imple-

mented on a standard Windows PC intel core i-5, 3.2GHz

processor and 8GB RAM) is summarized in Fig. 5. Briefly,

FCS-Standard, JM-MVN, JM-MLMM, FCS-Twofold,

FCS-MTW, FCS-LMM and FCS-LMM-LN required around

10 s for single imputation when applied to the simulated data,

with FCS-MTW and FCS-LMM-LN taking the least computa-

tional time. Both the standard cross-sectional approaches

(JM-MVN and FCS-Standard) required similar amounts of

computational time. On the contrary, JM-MLMM-LN, FCS-

LMM-PMM, FCS-LMM-het, FCS-GLMM and FCS-

MLMM-LN were more computationally expensive requiring

approximately 10 (for JM-MLMM-LN, FCS-LMM-PMM,

FCS-LMM-het) to 100 (FCS-GLMM and FCS-MLMM-LN)

times longer implementation time compared with the stand-

ard cross-sectional approaches. The latter two methods may

not be feasible in practice because of these long computa-

tional times.

Analysis of LSAC data

Estimated regression coefficients with 95% confidence

intervals (CIs) for the two analysis models applied using

different imputation approaches to the analysis of the

LSAC data are given in Figs. 6 and 7. Both the figures sug-

gest an inverse association between BMI and QoL. For both

analysis models, we observed that FCS-Standard and

JM-MVN resulted in very similar estimates of the regression

coefficients and 95% CIs. The estimated regression coeffi-

cients and corresponding 95% CIs for other methods were

also generally similar, although some variability among the

approaches was observed, especially in some of the results

for FCS-LMM-LN and FCS-LMM-het for analysis models

(1) and (2), respectively.

Discussion

In this paper we evaluated the performance of currently

available MI methods for handling incomplete variables

in longitudinal studies in the context of estimating re-

gression coefficients from a linear regression model

(with a cumulative measure of exposure) and a LMM,

two commonly used models in the analysis of longitu-

dinal data. We found that FCS-Standard and JM-MVN

provided reliable estimates of the regression coefficients

for both analysis models, often with better coverage

probabilities than the GLMM-based methods

(FCS-LMM-het, FCS-GLMM, FCS-MLMM-LN, and

FCS-LMM-PMM). JM-MLMM and FCS-LMM, al-

though mis-specified for imputing binary variables,

Fig. 2 Estimated coverage of the 95% confidence interval for the regression coefficients in analysis model (1), derived from 1000 simulated

datasets. The dotted lines indicate the nominal value of 95%

Huque et al. BMC Medical Research Methodology          (2018) 18:168 Page 9 of 16



resulted in reliable estimation of the regression coeffi-

cients for both analysis models. In addition, JM-

MLMM-LN and FCS-LMM-LN also exhibited great promise.

The FCS-Twofold and FCS-MTW methods produced

slightly more biased and less precise estimates than

FCS-Standard. The observed bias was likely to be because

these approaches limit the variables in the univariate imput-

ation models, thereby potentially throwing away important

information about the missing data. Similar bias in the esti-

mated regression coefficients following FCS-Twofold was

observed by De Silva and colleagues [22], who showed that

this bias can be reduced by relaxing the restriction to include

a wider time window. In our simulations, we observed very

similar results from FCS-Twofold and FCS-MTW, casting

doubt on the need for the nested within- and among-time--

point iterations in the FCS-Twofold approach.

We observed relatively poor performance for several

GLMM-based approaches, namely FCS-LMM-het,

FCS-GLMM, FCS-MLMM-LN and FCS-LMM-PMM. Bias

in the estimated regression coefficients for binary covariates

Fig. 3 Distribution of the bias in the estimated regression coefficients (i.e., mean changes in the QoL z-score associated with each covariate) for

analysis model (2) across the 1000 simulated datasets following complete data, available data and 12 multiple imputation methods. Top, left and

bottom right panels show the distribution of the bias in the estimated regression coefficients for covariates with missing data and all other

panels show the distribution of the bias associated with fully observed covariate
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following FCS-LMM-het was also reported in a previous

simulation study [35]. The poor-performance of FCS-

MLMM-LN might be due to its implementation in the FCS

framework which requires many iterations to converge.

Moreover, this method is computationally demanding, lim-

iting its usefulness in practice. Finally, FCS-LMM-PMM

appeared to perform relatively poorly in our simulation

study, especially for binary incomplete variables. It would

be important to explore the use of this approach in further

datasets as it has been shown that predictive mean match-

ing provides good results in the context of cross-sectional

data [36].

In general, our results suggest that using either

FCS-Standard or JM-MVN produces reliable estimates

of the regression coefficients for incomplete longitudinal

data. These methods are known to be equivalent in the

case of normally distributed covariates [23, 37], but for

incomplete data in both binary and continuous

covariates, the FCS-Standard approach can be more ro-

bust than a mis-specified joint modelling approach [38].

This is because for the joint incomplete binary and con-

tinuous data the FCS-Standard approach produces im-

puted values that are compatible with a restricted

general location joint model. But for many situations,

FCS-Standard may not correspond to a joint model

when the conditional models are mis-specified, poten-

tially resulting in sub-optimal imputation [39]. A de-

tailed study of compatibility in the context of

longitudinal data is beyond the scope of the present

paper but warrants future study.

Both the JM-MVN and FCS-Standard approaches

require study designs with a fixed number of sam-

pling waves and fixed time intervals between succes-

sive waves. Therefore, these methods may not be

appropriate if data are collected in irregular time in-

tervals, and GLMM based approaches should be used.

Fig. 4 Estimated coverage of the 95% confidence interval for the regression coefficients in analysis model (2), derived from 1000 simulated

datasets. The dotted lines indicate the nominal value of 95%

Fig. 5 Average computational time (in seconds) for single imputation for each of the MI methods when applied to a single simulated dataset
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We found that several GLMM-based methods (such

as JM-MLMM, JM-MLMM-LN, FCS-LMM, and

FCS-LMM-LN) are potentially useful alternatives. In

our simulation study we observed that although the

JM-MLMM approaches misspecify the binary variable,

it produces reliable estimates of the regression param-

eters. This method uses the inverse Wishart prior for

modelling the covariance matrices, hence avoiding the

convergence issues of the Gibbs sampler. It also

requires a relatively small amount of computational

time. Comparable estimates of the regression parame-

ters and coverage were obtained from JM-MLMM,

JM-MLMM-LN and FCS-LMM. JM-MLMM-LN ap-

proach avoids misspecification of binary variables by

specifying a latent normal distribution for binary

variables, but this method is more computationally

expensive than JM-MLMM. The suboptimal perform-

ance of the FCS-LMM-het approach compared with

Fig. 6 Estimated regression coefficients and 95% CI for analysis model (1) applying available data and all the approaches to handle missing data

in LSAC
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FCS-LMM might lie with the specification of residual

error variance. The FCS-LMM method assumes a

common residual variance for all individuals while

FCS-LMM-het assumes subject-specific residual vari-

ances which may not be well estimated from

longitudinal data with few repeated measurements.

Moreover, the FCS-LMM-het approach requires all the

variables in the imputation model to have both random

intercepts and slopes, hence is computationally expensive

and may suffer convergence problems. For this reason, its

usefulness in the context of longitudinal data with binary

variables is limited.

The results presented here are consistent with the re-

sults of a number of previous simulation studies. Compar-

able results between JM-MLMM and FCS-LMM were

also obtained by Zhao and Yucel [32]. Our findings are

also consistent with those of Kalaycioglu et al. (2013), who

showed that JM-MLMM produced better results, both in

Fig. 7 Estimated regression coefficients with 95% CI for analysis model (2) applying available data and all the MI approaches to handle missing

data in LSAC
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terms of bias and precision, than FCS-MTW and

FCS-LMM-het, with FCS-LMM-het performing the worst

[35]. Similarly consistent results were reported by

Audigier et al. (2018), who compared FCS-LMM-het,

FCS-GLMM, JM-MLMM-LN methods for imputing in-

complete binary and continuous data in the context of in-

dividual patient data meta-analysis, and found that

JM-MLMM-LN performed better than FCS-LMM-het

and FCS-GLMM [26]. Audigier et al. also considered an

additional “FCS-2stage” method that fits separate imput-

ation models within each cluster and then combines the

results using a multivariate random effects model. They

reported that FCS-2stage performed worse than

FCS-GLMM and FCS-LMM-het when the cluster size

was small. Given that in our study, and often in longitu-

dinal studies, we only had a few waves of data collection,

we did not include this approach in our comparison. Our

results are also consistent with those of Enders et al.

(2016) who showed that JM-MLMM-LN provided better

results than FCS-LMM-het for imputing incomplete

binary data in the context of a LMM with a random

intercept [21].

Although our simulation study was based on a real

dataset and thus has a realistic level of complexity,

it is always difficult to draw general recommenda-

tions from a single simulation study. Further

extensions could be to explore the behaviours of

these MI methods when data are collected at irregu-

lar time intervals, when neither JM-MVN nor the

FCS-Standard will be feasible. In our simulation

study we only considered covariates to be missing

and the outcome to be fully observed. This is be-

cause we restricted our simulation study to MAR

scenarios, in which missingness in the covariate de-

pends only on the outcome of interest and other

(fully observed) covariates in the model. Although it

may be reasonable to include a case where both out-

come and covariates are missing this may introduce

additional complexity with the data being missing

not at random (MNAR). Exploring the sensitivity of

the performance of the MI methods under various

missingness assumptions is beyond the scope of the

present paper. Both our simulations and case study

are based on simplistic imputation models with few

variables. However, in many situations the multiple

imputation method may use high-dimensional data

with a large number of predictors, in such situations

JM-MVN and FCS-Standard may incur convergence

problems. To overcome convergence issues, several

methods, including using principal component ana-

lysis to reduce the dimensionality of the predictors in

the imputation model, have been proposed [40, 41].

However, a full exploration of methods proposed to

address the complexities arising in high-dimensional

data, e.g., appropriate selection of predictors and con-

vergence issues is beyond the scope of the present

paper. Despite the use of a simplistic imputation

model, this study has for the first time provided an

overview and a systematic comparison of a growing

number of approaches to MI with longitudinal data;

as methods continue to develop, further evaluations

will undoubtedly be needed.

Conclusion

In summary, both the cross-sectional MI methods (FCS-

Standard and JM-MVN) and some GLMM-based ap-

proaches (JM-MLMM, JM-MLMM-LN, FCS-LMM and

FCS-LMM-LN) performed well for the estimation of re-

gression parameters in the case of a linear regression

model and LMM. Both approaches have important

strengths and limitations. No single method is appropri-

ate for every situation. As the GLMM-based approaches

are still developing and are generally more complex than

the cross-sectional methods, these may only be needed

in specific circumstances such as irregularly spaced data

or high-dimensional data that create convergence

problems.

Additional file

Additional file 1: Table S1 and S2 contains values of the average

biases, average of the model standard errors and empirical standard

errors under analysis model (1) and (2), respectively over 1000 simulated

datasets. Figure S1 shows the distribution of estimated intra-cluster cor-

relation coefficients for analysis model (2). (DOCX 787 kb)
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