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Laser-induced breakdown spectroscopy has been used to obtain spectral fingerprints from 

live bacterial specimens from thirteen distinct taxonomic bacterial classes representative 

of five bacterial genera.  By taking sums, ratios, and complex ratios of measured atomic 

emission line intensities three unique sets of independent variables (models) were 

constructed to determine which choice of independent variables provided optimal genus-

level classification of unknown specimens utilizing a discriminant function analysis.  A 

model composed of 80 independent variables constructed from simple and complex ratios 

of the measured emission line intensities was found to provide the greatest sensitivity and 

specificity.  This model was then used in a partial least squares discriminant analysis to 

compare the performance of this multivariate technique with a discriminant function 

analysis.  The partial least squares discriminant analysis possessed a higher true positive 

rate, possessed a higher false positive rate, and was more effective at distinguishing 
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between highly similar spectra from closely related bacterial genera.  This suggests it 

may be the preferred multivariate technique in future species-level or strain-level 

classifications. 
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1. Introduction 

 

Since the initial demonstrations of bacterial identification with laser-induced breakdown 

spectroscopy (LIBS) in 2003, significant progress has been made in the use of 

multivariate chemometric analyses to classify unknown bacterial LIBS spectra.[1-4]  

Over the last five years we and others have demonstrated a sensitive and specific 

identification of live bacterial biospecimens utilizing a discriminant function analysis 

(DFA) to classify LIBS spectra.[5-8]  The intensities of strong specific elemental atomic 

emission lines normalized by the total observed spectral power have been utilized as 

independent variables in this multivariate analysis.[9]  The selection of specific spectral 

lines to serve as independent variables in the multivariate analysis is known as variable 

down-selection.[10]  However it is not yet known whether the use of down-selected 

variables or the entire LIBS spectrum provides optimal discrimination and classification 

of unknown LIBS spectra, and this is an ongoing area of investigation.[11,12]  It is also 

not known which multivariate analysis technique, if any, provides superior classification 

given a choice of independent variables, and multiple chemometric algorithms are still 

widely utilized for bacterial identification including principal component analysis (PCA), 

linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), 

neural network (NN) analysis, partial least squares (PLS) regression, and support vector 

machine classification (SVM).[13-18]    

 To investigate these various strategies, we have compared the use of three different 

down-selected variable models consisting of emission intensities, the sum of observed 
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intensities from the elements P, Ca, Mg, Na, and C, and complex ratios of those 

intensities in identical external validation tests.  Variables were down-selected from 

bacterial LIBS spectra obtained from five different genera and 13 distinct taxonomic 

classes of species and strains.[8]  Model performance was quantified by calculating truth 

tables (and the resulting sensitivity and specificity) from the external validation tests.  

Lastly, the down selected variable model which provided the most accurate classification 

was tested in a PLS-DA multivariate analysis to provide a direct comparison with the 

performance of the DFA. 

 

2.  Experimental  

 

2.1. Experimental Setup  

The LIBS apparatus used to obtain the bacterial spectra, as well as our bacterial sample 

preparation and mounting protocols, have been described at length elsewhere.[5,19]  

Briefly, 10 ns 1064 nm infrared laser pulses were used to ablate the bacterial specimens 

mounted on a 0.7% nutrient-free agar substrate in an argon environment.  LIBS emission 

was collected 2 s after the ablation pulse, dispersed in an Échelle spectrograph, and the 

spectra were recorded by an intensified charge-coupled device (ESA3000, LLA 

Instruments, GmbH).  Pulse energies were approximately 10 mJ/pulse and each spectrum 

was averaged from spectra acquired at five sampling locations, each approximately 100 

m in diameter.  Approximately 7500 bacterial cells total were ablated for each 

spectrum.[5]  A representative LIBS spectrum of a bacterial target ablated on an agar 
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substrate in an argon atmosphere is shown in Figure 1.  This spectrum is the averaged 

accumulation of five separate sampling locations.  Five spectra were acquired at each 

sampling location, thus twenty-five laser pulses were used to obtain this spectrum.   

 The bacteria were chosen to represent a fairly wide taxonomic range.  Spectra were 

acquired from representative Gram-negative phenotypes (Escherichia coli and 

Enterobacter cloacae), Gram-positive phenotypes (two species of Staphylococci and two 

species of Streptococci), and the atypical acid-fast Mycobacterium phenotype (three 

strains of Mycobacterium smegmatis).  In total, LIBS spectra from 13 unique bacterial 

strains were obtained in 32 completely distinct experiments (e.g. cultured in different 

media, grown on different days over the course of 18 months, exposed to different 

environmental stresses, etc.)[8]  This is shown in Table 1.   

 The five representative bacterial genera that were tested are listed in the first 

column of Table 1 and the thirteen bacterial taxonomic groups tested (e.g. E. coli strain 

C, E. coli strain HF4714, Staphylococcus aureus, Staphylococcus saprophyticus) are 

listed in column two.  The 32 distinct experiments that were performed yielded the 32 

data sets shown in column three of Table 1.  Each distinct experiment was performed 

with one aliquot of bacteria prepared separately from the others and thus each data set 

represents completely unique experimental data.  For example, data set 6, “E. coli C” 

which would have yielded approximately 20 spectra and data set 12, “E. coli C – 

autoclaved” which would have yielded another 20 spectra, were all obtained from 

aliquots ultimately derived from the same mother strain of bacteria, but tested many 

months apart from each other, grown from completely different cultures each using 

freshly prepared nutrient media, and handled differently.  In this case one of the aliquots 
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was placed in a microbiological autoclave prior to testing to render the sample inactive.  

Also, the LIBS apparatus would have been cycled dozens of times in between the 

acquisition of these data sets (including the cleaning of optics, realignment of beams, 

adjusting of laser pulse energy for use in other experiments, etc.)  This point should be 

emphasized, as the high degree of reproducibility through time evidenced by the 

chemometric classification of these spectra suggests that these results were not very 

sensitive to uncontrollable experimental fluctuations that would be expected in 

measurements taken over such a long period of time and with bacterial specimens 

handled in such disparate ways.  We believe this is an indicator of the highly robust 

nature of the LIBS-based identification method.   

 Twenty to thirty spectra were obtained in approximately thirty minutes in each 

experiment yielding the data sets shown for a total of 669 LIBS spectra.  The number of 

spectra obtained in any one experiment was limited only by the ability to translate the 

laser spot around the approximately 1 cm
2
 bacterial deposition.  Although efforts were 

taken to try to obtain highly similar spectra from each bacterial deposition, no data 

“outliers” were omitted from our data sets and efforts were made to maximize the number 

of spectra from any one bacterial deposition rather than to standardize the number of 

spectra taken.  

 

2.2 Models for Chemometric Analysis (Lines, RM1, and RM2) 

 The three independent variable models that were tested are referred to here as the 

“lines” model, ratio model one (RM1), and ratio model two (RM2).  The lines model was 

the simplest of the three, having been used in all our previous work.  It consisted of the 
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intensities of thirteen strong emission lines normalized by the total spectral power of the 

LIBS spectrum.  The intensity of a line was taken to be the total integrated area under the 

curve of the background-subtracted emission line profile and the total spectral power was 

the sum of the thirteen intensities.  The identities of the thirteen lines are provided in the 

detailed discussion of RM2 below and are shown in the spectrum in Figure 1.  

 RM1 consisted of 24 independent variables, shown in Table 2.  The first five 

variables were the sums of the measured intensities for each element including the sum of 

four phosphorus lines, one carbon line, three magnesium lines, three calcium lines, and 

two sodium lines.  No distinction was made between lines from neutral and singly-

ionized species in these sums.  This strategy was briefly investigated, but was found to 

add little to the analysis.  Aside from the fact that these lines were highly robust and 

exhibited excellent signal-to-noise in the bacterial LIBS spectrum, these five specific 

elements (P, C, Ca, Mg, and Na) are very important to bacterial function and physiology, 

and thus to the LIBS-based identification.  This has been discussed by us in depth 

previously.[9]   

 The remaining nineteen variables were composed of ratios of these sums (ten 

independent variables) and also unique combinations of the summed intensities forming 

complex ratios (nine independent variables).  This approach has been utilized with 

success by Gottfried et al. to discriminate LIBS spectra obtained from explosives 

residues.[14,20]   

 RM2 consisted of 80 independent variables, shown in Table 3.  The first thirteen 

variables were merely the intensities of the thirteen strong emission lines used in the lines 

model (indicated by an asterisk).  These variables are identified by their element symbol 
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and their wavelength in nanometers, as well as a shorthand identifier in parentheses.  The 

remaining 67 variables were simple ratios of these thirteen intensities.  Although complex 

ratios of these variables can be constructed as was done in RM1, this quickly raised the 

total number of independent variables in the model to such a large number that it was 

deemed not practical both for computational reasons and to avoid over-determining the 

data.  It was decided that when the dimensionality of the original data was not reduced 

significantly then the benefits of performing a down-selection were reduced and the more 

appropriate model would be to use the entire spectrum.  This was not done by us due to 

the size of the spectrum (>54,000 channels) and the presence of spectral “gaps” in the 

spectrum due to optical design constraints within the Échelle spectrometer.  Only down-

selected models were investigated. 

 

2.3 Chemometric Analysis Techniques 

 Two multivariate chemometric analysis techniques were compared for 

discrimination between different bacterial genera based on the LIBS emission spectra.  

The two techniques compared in this study were a discriminant function analysis (DFA) 

performed with SPSS v.19 (IBM, Inc.) and a partial least squares discriminant analysis 

(PLS-DA) performed with the PLS_toolbox v6.7.1 running under Matlab v7.6 

(Eigenvector Research, Inc.).  These two analysis techniques were compared using the 

down selected variables in RM2. 

 DFA is a multivariate analysis technique that uses independent variables (atomic 

emission intensities) to calculate a dependant variable (bacterial identity) to classify or 

discriminate between two or more groups.[21]  The independent variables (contained in 
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the model) are used to construct a set of discriminant functions which maximize the 

variance between known data sets in a library.  These discriminant functions are then 

used to calculate discriminant function scores which determine the identity of an 

unknown spectrum.  In our DFA comparison, the library was composed of five genera of 

bacteria, as shown in column one of Table 1.   

 In each test of the DFA all the spectra in each of the 32 data sets (typically 20-30 

spectra per data set) were withheld and classified one-by-one by a DFA library composed 

of the other 31 data sets.  Therefore 32 separate tests needed to be performed.  This is 

known as external validation, because each spectrum was tested against a library where 

no other spectra acquired at the same time or under the same conditions were present.  In 

comparison, a cross-validated test only removes one spectrum at a time from the library 

and will most likely return overly-optimistic results.  Because only one data set existed 

for E. cloacae ATCC 13047, this data set could not be withheld for external testing, but 

the genus remained in the analysis to provide a possible “false positive” result for similar 

bacteria.  Thus each spectrum, with no similar spectra in the training library, was 

classified as belonging to either genus Escherichia, Enterobacter, Staphylococcus, 

Streptococcus, or Mycobacterium in a series of 31 separate tests of the library.  There is 

no “null test” in this analysis, as every unknown spectrum must be assigned to one of 

those five groups.   

 PLS-DA is a multivariate technique that finds the maximum variance between two 

groups.  PLS-DA takes a set of independent variables as determined by our models and 

constructs latent variables to maximize the variance between the two groups.  The latent 

variables are predictor variables which are used to classify each spectrum.  The PLS-DA 
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then calculates a discrimination line (or this can be user-determined) to predict the class 

of each spectrum based on Bayesian statistics by minimizing the number of false 

positives and negatives.[22]  In all of our results, the Bayesian-determined discrimination 

line was utilized for spectral classification.  The identity of unknown spectra was then 

predicted based on this discrimination line in the pre-compiled library.  It is essentially a 

yes or no test where one genus was grouped as the “yes group” and the remaining four 

genera were grouped together as a “no group.”  For example, we could utilize this PLS-

DA to determine if an unknown spectrum belonged to genus Staphylococcus or not.  If it 

classified as “no,” the PLS-DA did not tell us which of the other four genera it most 

closely resembled.  This analysis therefore allowed for a null test.  All unknown samples 

were classified in a PLS-DA test specific for each genus, and if the test group was 

classified as belonging to the “no group” for each model, it remained unknown and was 

not classified as belonging to any genus.  In this test of the PLS-DA, every spectrum in 

the 31 data sets (again excluding E. cloacae) was tested in five different PLS-DA models, 

one for each genus.  Because each of the 31 data sets was withheld from the library in 

turn, this resulted in 155 separate tests being performed.  No preprocessing was used on 

the lines or ratio models in the PLS-DA since the variables had already been down-

selected from the whole spectrum model. 

  

 

3. Results and Discussion 

 

3.1 Model Comparison: Lines, RM1, and RM2 
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 The DFA technique was used to compare the three independent variable models 

described in section 2.2.  The accuracy of classification was reported in the form of truth 

tables which provide true positive and negative results, as well as false positives and 

negatives.  As mentioned earlier, since there was only one set of Enterobacter data no 

external validation could be performed so there are no truth tables for this genus.  Results 

were tabulated for every spectrum, then totaled for each genus.  The truth tables for the 

three models are shown in Table 4. 

 In each of the DFA results, four discriminant functions (DF1 through DF4) were 

constructed to determine the classification of each spectrum.  When using the lines model 

DF1 accounted for approximately 74% of the variance amongst the data as determined by 

averaging over the 31 tests.  DF2 accounted for 20% of the variance in the data on 

average, while DF3 and DF4 played a less-important role (accounting for less than 6% of 

the combined variance).  In these analyses the independent variables C, Mg279, and 

Mg280 played important roles in the construction of both DF1 and DF2 as revealed by 

their structure matrix scores, while all four P lines accounted for much less of the 

variance.  

 When using RM1, DF1 captured less of the variance of the data than in the lines 

model accounting for 71% of the variance.  DF2 accounted for 19% of the variance in the 

data while DF3 and DF4 played a more important role in discriminating between genera 

(approximately 10% of the total variance in the data).  When using RM1, the independent 

variables containing ratios with phosphorus played a much larger role in the construction 

of DF1.  P/(C+Na) and P/C were the variables contributing most significantly to the 

construction of DF1 as determined by the structure matrix.  Since Na plays little to no 
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role in bacterial discrimination (often being a residue from the nutrition medium) these 

two variables are highly similar and in the future it may be possible to eliminate complex 

ratios containing Na such as P/(C+Na).  Calcium ratios such as Ca/(C+Na) were 

significant in the construction of DF1 and DF2.  Truth table results for the RM1 model 

are shown in Table 4. 

 When using RM2, DF1 on average accounted for approximately 68% of the 

variance of the data, DF2 accounted for 18%, DF3 for 9%, and DF4 for 5% of the 

variance of the data.  As expected, when a greater number of independent variables were 

used, the DFA was able to construct more effective discriminant functions (less of the 

variance accounted for by just one function).  DF3 and DF4 played a larger role in 

discriminating between the classes (14% of the variance), when using RM2 than the other 

models, but still constituted a relatively small fraction of the total variance.  The 

independent variables Ca2/C, Ca1/C, and Ca3/C played the largest role in constructing 

DF1 to discriminate between genera, with a large structure matrix value for all 31 tests.  P 

played a much smaller role in the construction of the functions and many of the P lines 

and ratios had low correlations with DF1-DF3.  A graphical representation of the first 

two discriminant function scores of all the spectra in an external-validation DFA 

performed on data set 32 (M. smegmatis strain TA) is shown in Figure 2.  The 

“unknown” bacterial spectra are represented by the “x” symbols and 34 of 34 unknown 

spectra were correctly classified as Mycobacterium, even though the model contained no 

other spectra from strain TA.  Truth table results for RM2 are shown in Table 4. 

 

3.2 Chemometric Technique Comparison: DFA vs. PLS-DA 
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 Based on its performance in the DFA model comparison tests, RM2 was used in a 

comparison of the two analysis techniques of PLS-DA and DFA.  Utilizing RM2, the 

PLS-DA was performed as described in section 2.3 and a truth table of the results is 

shown in Table 5 (with the DFA truth tables for RM2 repeated for ease of comparison).  

A graphical representation of the external-validation PLS-DA performed on data set 32 

(M. smegmatis strain TA) is shown in Figure 3.  Again, the “unknown” bacterial spectra 

are represented by the “x” symbols.  In Fig. 3(a) 34 of 34 unknown spectra were correctly 

classified as Mycobacterium in a “Mycobacterium” test where all other data sets were 

grouped as “non-Mycobacterium.”  In Fig. 3(b) the same 34 spectra were tested in a 

“Streptococcus” test and 34 of 34 were correctly identified as not belonging to genus 

Streptococcus (a true negative).  The 34 spectra were tested against the other genera as 

well (not shown).  In all cases the discrimination line was chosen by the PLS_toolbox to 

minimize the number of false positives and negatives in the library (model), as mentioned 

earlier.  The sensitivity and specificity of each method were calculated and are given on 

the bottom of Table 5.  Sensitivity equals the number of true positives divided by the total 

number of true positives and false negatives times 100% and specificity equals the 

number of true negatives divided by the total number of true negatives and false positives 

times 100%.   

 The 80 independent variables used in RM2 were used in the PLS-DA.  These 80 

down-selected independent variables were further reduced to 20 latent variables (LV’s).  

An investigation of the PLS-DA was conducted to compare the number of LV’s and the 

corresponding rates of true positives and true negatives.  Using a leave-one-out analysis 

performed by the PLS_toolbox, the PLS-DA chose the number of latent variables to be 
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consistently 4 or 5 for all the tests.  Using various data sets of Mycobacterium and 

Escherichia the latent variables were then manually set from 0 to 20 and the number of 

true positives and true negatives respectively were observed and plotted as a function of 

the number of LV’s.  Figure 4 shows the rates of true positives as a function of the 

number of LV’s for data sets 26, 28, and 32 (M. smegmatis strain WT – 90% dilution, M. 

smegmatis strain WT – 50% dilution, and M. smegmatis strain TA).  Data set 26 showed 

that true positives increased up to 14 LV’s, data set 28 showed increased true positives up 

to16 LV’s, and data set 32 showed increased true positives to only 3 LV’s.  Similar 

results were seen for other data sets and the true positives and true negatives were 

maximized for all data sets when at least 20 LV’s were used.  For each test run thereafter 

the number of LV’s was forced to 20 in the PLS-DA.  Ongoing research is being 

conducted to further maximize the number of latent variables while considering the root 

mean squared error of calibration.   

 

 

4. Discussion 

 A comparison of the DFA performed with the three different models consisting of 

lines, RM1, and RM2 showed that RM2 yielded the overall highest true positive and true 

negative rates with true positive rates of 95%, 54%, 95%, and 88% for the four genera 

and true negative rates of 91%, 99%, 99%, and 99%.  Overall the sensitivity was 91.4 ± 

16.4 % and the specificity was 97.5 ± 9.4 %.  The sensitivity and specificity were 

obtained by averaging the results from the 31 tests and the standard deviation is reported 

as the uncertainty.  RM1 performed similarly, but slightly worse than RM2, with RM2 
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offering a noted improvement in the performance of the Staphylococcus and 

Streptococcus tests.  In comparison, the lines model performed worst with true positive 

rates of 90%, 62%, 83%, and 83% for the four genera and true negative rates of 96%, 

97%, 98%, and 98%.  Although many of these true positive rates are similar, it can be 

seen that the rates of false positives and false negatives were reduced substantially by the 

use of RM2.  Having 80 independent variables allowed for more of the variance of the 

data to be expressed resulting in a better statistical classification of the unknown bacterial 

spectra.  It should be mentioned that prior knowledge of which elemental lines 

contributed most significantly to accurate classification when using the lines model 

allowed the construction of appropriate ratios in RM2 which then resulted in the 

improved classification demonstrated by RM2.   

 In the DFA tests it was shown that a DFA was able to effectively classify a sample 

between five different genera.  Lower sensitivity was seen with Staphylococci data sets, 

but this is not indicative of any issues related specifically to Staphylococci or to the 

multivariate techniques.  This was merely a result of there being only two representative 

Staphylococci data sets to include in the analysis, as can be seen in Table 1, with one of 

these data sets being among the earliest experiments performed in the construction of the 

spectral library.  It is believed that the addition of newer and more varied Staphylococci 

spectra will increase the sensitivity and specificity of this genus to values seen in other 

genera.  When the DFA was given an unknown bacterial spectrum using any of the 31 

libraries tested it was able to classify the bacteria as one of the five classes with high 

sensitivity, whereas our PLS-DA was effective in determining if the unknown spectrum 

belonged to a specific class or not.  If information is needed about whether an unknown 
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bacterium is or is not a certain class, PLS-DA is the preferred method (i.e. in an online 

test of beef products searching for spectra consistent with the presence of 

enterohemmorhagic E. coli).  If the bacterial type needs to be known from amongst 

multiple competing possibilities (i.e. in a clinical diagnostic) DFA is probably the 

preferred technique, although it must be said that it is possible to efficiently run a number 

of PLS-DA tests in sequence to arrive at a statistical classification of the unknown 

spectrum.  Therefore both analyses can perform both functions, if necessary.  In our 

classification tests PLS-DA yielded higher sensitivity (93.1%) than the DFA (91.4%) 

with a smaller uncertainty on this value, but possessed lower specificity (90.6%) than the 

DFA (97.5%) with a larger uncertainty.  Importantly, marked improvement was 

demonstrated by the PLS-DA with the problematic Staphylococci data sets.  PLS-DA was 

able to identify more bacteria correctly, possessing a higher true positive rate but 

identified more bacteria incorrectly, possessing a higher false positive rate than the DFA.  

PLS-DA seems to be more effective at distinguishing bacteria from similar genera.  For 

example, M. smegmatis and E. coli are similar in composition and were identified 

incorrectly as each other more commonly in the DFA than in the PLS-DA.  PLS-DA was 

able to statistically find the variance between LIBS spectra from similar bacteria and 

reliably discriminate them.  It may therefore be true that a DFA is more effective in 

genus-level discrimination on bacterial specimens with a wide range of potential 

identities, but discrimination at the species- or strain-level once the genus is accurately 

identified may require the use of PLS-DA.  Work is ongoing to investigate this 

possibility. 
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5. Conclusion 

We have shown that a sensitive and specific genus level classification of LIBS spectra 

from live bacterial specimens can be performed with a DFA or a PLS-DA using several 

different independent variable models.  The three models constructed from down-selected 

independent variables possessed similar sensitivities and specificities when utilized in a 

genus-level five-class DFA, but the model consisting of 80 independent variables 

constructed from the normalized emission intensities of thirteen lines of P, Ca, Mg, Na, 

C, and complex ratios of those intensities performed best.  It possessed a sensitivity of 

91.4% and a specificity of 97.5%.  All results were obtained using external-validation 

tests.  When this model was utilized in a PLS-DA, it possessed a sensitivity of 93.1% and 

a specificity of 90.6%.  The number of latent variables required for efficient classification 

using this model was investigated, and chosen to be 20 in all subsequent tests.   

 It is apparent that both multivariate techniques provide effective classification of 

unknown bacterial LIBS spectra.  From the performance in this five genus classification, 

it is possible that DFA may be an appropriate technique to use when the identity of a 

specimen is completely unknown and genus-level discrimination is required.  More 

precise identification at the species-level or strain-level may be subsequently performed 

with a PLS-DA, which demonstrated improved performance at discriminating highly 

similar spectra.  Ultimately, the sensitivity and specificity of the two techniques were 

similar in this investigation, although they classify based on fundamentally different 

mathematical principles.  Because the same spectral library was efficacious in both 

techniques, it is possible that both analyses could be performed simultaneously on an 

unknown sample to provide an independent verification of specimen identity.  It is likely 
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that computational processing power would easily allow such a verification, as the 

classification of one unknown spectrum against a pre-compiled library model is 

performed rapidly by both techniques.  Such a confirmation will need to be investigated 

in future work. 
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CAPTIONS 

Figure 1. 

A representative LIBS spectrum of a bacterial target ablated in an argon environment at 

atmospheric pressure.  The atomic emission lines used in the bacterial discrimination 

indicated by an “*” in Table 3 are indicated in this spectrum.  Emission features that were 

seen but were unused in the discrimination are indicated with a superscript “u”.    

 

Figure 2. 

The first two discriminant function scores of all the spectra in an external-validation DFA 

utilizing ratio model two (RM2) performed on data set 32 (M. smegmatis strain TA).  The 

“unknown” bacterial spectra are represented by the “x” symbols and 34 of 34 unknown 

spectra were correctly classified as belonging to genus Mycobacterium, even though the 

model contained no other spectra from strain TA.   

 

Figure 3. 

A graphical representation of the external-validation PLS-DA performed on data set 32 

(M. smegmatis strain TA).  The “unknown” bacterial spectra are represented by the “x” 

symbols.  (a) 34 of 34 unknown spectra were correctly classified as Mycobacterium (true 

positives) in a “Mycobacterium” test where all other data sets were grouped as “non-

Mycobacterium.”  (b) 34 of 34 unknown spectra were correctly classified as not 

belonging to genus Streptococcus (true negatives) in a “Streptococcus” test where all 

other data sets were grouped as “non-Streptococcus.”   
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Figure 4. 

Percentage of true positives plotted as a function of the number of LV’s used by PLS-DA 

to predict class.  The PLS-DA model was constructed using Mycobacterium as the “yes 

group” and the remaining genera as the “no group.”  Three representative data sets of 

Mycobacterium were tested for true positives (M. smegmatis strain TA, M. smegmatis 

strain WT – 50% dilution, and M. smegmatis strain WT – 90% dilution).  Rates of true 

positives increased as the number of LV’s increased until approximately 20. 
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Highlights  

 

•Laser-induced breakdown spectroscopy was used to classify bacteria by genus. 

•We examine three different independent variable down selection models. 

•A PLS-DA returned higher rates of true positives than a DFA. 

•A PLS-DA returned higher rates of false positives than a DFA. 

•A PLS-DA was better able to discriminate similar spectra compared to DFA. 

*Highlights (for review)



Table 1  

Identities of the 32 data sets used to construct a spectral library composed of 669 bacterial LIBS 

spectra. 

Genus Bacterial ID Data set 

1: Escherichia 

1: E. coli ATCC 25922 1: E. coli ATCC 25922 

1: E. coli ATCC 25922 2: E. coli ATCC 25922 / E. cloacae (10:1) 

1: E. coli ATCC 25922 3: E. coli ATCC 25922 / E. cloacae (100:1) 

1: E. coli ATCC 25922 4: E. coli ATCC 25922 / E. cloacae (1000:1) 

2: E. coli O157:H7 (EHEC)  5: E. coli O157:H7 

3: E. coli C 6: E. coli C 

3: E. coli C 7: E. coli C - cultured on MacConkey agar 

3: E. coli C 8: E. coli C - starved for 1 day 

3: E. coli C 9: E. coli C - starved for 4 days 

3: E. coli C 10: E. coli C - starved for 6 days 

3: E. coli C 11: E. coli C - starved for 8 days 

3: E. coli C 12: E. coli C - autoclaved 

3: E. coli C 13: E. coli C - UV exposed / killed 

4: E. coli HF4714 14: E. coli HF4714 

5: E. coli Hfr-K12 15: E. coli Hfr-K12 

2: Enterobacter 6: E. cloacae ATCC 13047 16: E. cloacae ATCC 13047 

3: Staphylococcus 
7: S. saprophyticus 17: S. saprophyticus 

8: S. aureus 18: S. aureus 

4: Streptococcus 

9: S. mutans 19: S. mutans 

10: S. viridans 20: S. viridans 

10: S. viridans 21: S. viridans - starved for 1 day 

10: S. viridans 22: S. viridans - starved for 6 days 

10: S. viridans 23: S. viridans - starved for 9 days 

10: S. viridans 24: S. viridans - UV exposed / killed 

10: S. viridans 25: S. viridans - autoclaved 

5: Mycobacterium 

11: M. smegmatis WT 26: M. smegmatis WT – 90% dilution 

11: M. smegmatis WT 27: M. smegmatis WT – 60% dilution 

11: M. smegmatis WT 28: M. smegmatis WT – 50% dilution 

11: M. smegmatis WT 29: M. smegmatis WT 

11: M. smegmatis WT 30: M. smegmatis WT – 100% concentration 

12: M. smegmatis TE 31: M. smegmatis TE 

13: M. smegmatis TA 32: M. smegmatis TA 

Table 1



Table 2 

The twenty-four independent variables used in ratio model one (RM1). 

 
P (sum) Mg/Ca 

C (sum) Mg/Na 

Mg (sum) Ca/Na 

Ca (sum) Ca/(P+Mg) 

Na (sum) Mg/(Ca+P) 

P/C P/(Ca+Mg) 

P/Mg Ca/(C+Na) 

P/Ca Mg/(C+Na) 

P/Na P/(C+Na) 

C/Mg (Ca+P+Mg)/C 

C/Ca (Ca+P+Mg)/Na 

C/Na (Ca+P+Mg)/(C+Na) 

 

Table 2



Table 3 

The 80 independent variables used in ratio model two (RM2). 
P213.618 (p1)* p1/na1 p4/c mg2/na2 

P214.914 (p2)* p1/na2 p4/mg1 mg3/c 

P255.326 (p3)* p2/c p4/mg2 mg3/ca1 

P253.560 (p4)* p2/mg1 p4/mg3 mg3/ca2 

C247.856 (c)* p2/mg2 p4/ca1 mg3/ca3 

Mg279.553 (mg1)* p2/mg3 p4/ca2 mg3/na1 

Mg280.271 (mg2)* p2/ca1 p4/ca3 mg3/na2 

Mg285.213 (mg3)* p2/ca2 p4/na1 ca1/c 

Ca393.361 (ca1)* p2/ca3 p4/na2 ca1/na1 

Ca396.837 (ca2)* p2/na1 mg1/c ca1/na2 

Ca422.666 (ca3)* p2/na2 mg1/ca1 ca2/c 

Na588.995 (na1)* p3/c mg1/ca2 ca2/na1 

Na589.593 (na2)* p3/mg1 mg1/ca3 ca2/na2 

p1/c p3/mg2 mg1/na1 ca3/c 

p1/mg1 p3/mg3 mg1/na2 ca3/na1 

p1/mg2 p3/ca1 mg2/c ca3/na2 

p1/mg3 p3/ca2 mg2/ca1 c/na1 

p1/ca1 p3/ca3 mg2/ca2 c/na2 

p1/ca2 p3/na1 mg2/ca3 mg3/mg1 

p1/ca3 p3/na2 mg2/na1 mg3/mg2 

* Indicates a line used in the “lines” model. 

Table 3



Table 4 

Truth table results for three independent variable models utilized in a genus-level discriminant 

function analysis of bacterial LIBS spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lines Model  Ratio Model 1  Ratio Model 2 

Escherichia TRUE FALSE 
 

Escherichia TRUE FALSE 
 

Escherichia TRUE FALSE 

Positive 89.97% 4.28% 
 

Positive 96.32% 7.95% 
 

Positive 95.65% 9.17% 

Negative 95.72% 10.03% 
 

Negative 92.05% 3.68% 
 

Negative 90.83% 4.35% 

Staphylococcus TRUE FALSE 

 

Staphylococcus TRUE FALSE 

 

Staphylococcus TRUE FALSE 

Positive 62.16% 2.55% 
 

Positive 51.35% 1.70% 
 

Positive 54.05% 0.51% 

Negative 97.45% 37.84% 
 

Negative 98.30% 48.65% 
 

Negative 99.49% 45.95% 

Streptococcus TRUE FALSE 

 

Streptococcus TRUE FALSE 

 

Streptococcus TRUE FALSE 

Positive 83.82% 2.24% 
 

Positive 88.24% 0.41% 
 

Positive 95.59% 1.02% 

Negative 97.76% 16.18% 
 

Negative 99.59% 11.76% 
 

Negative 98.98% 4.41% 

Mycobacterium TRUE FALSE 

 

Mycobacterium TRUE FALSE 

 

Mycobacterium TRUE FALSE 

Positive 89.61% 1.27% 
 

Positive 89.61% 1.06% 
 

Positive 88.31% 1.06% 

Negative 98.73% 10.39% 
 

Negative 98.94% 10.39% 
 

Negative 98.94% 11.69% 

Table 4



Table 5 

Truth table results for two multivariate techniques (DFA and PLS-DA) utilized in a genus-level 

classification of bacterial LIBS spectra. 
 

 DFA: RM2  PLS-DA: RM2 

Escherichia TRUE FALSE 
 

Escherichia TRUE FALSE 

Positive 95.65% 9.17% 
 

Positive 89.63% 15.95% 

Negative 90.83% 4.35% 
 

Negative 84.05% 10.37% 

Staphylococcus TRUE FALSE 

 

Staphylococcus TRUE FALSE 

Positive 54.05% 0.51% 
 

Positive 86.49% 5.85% 

Negative 99.49% 45.95% 
 

Negative 94.15% 13.51% 

Streptococcus TRUE FALSE 

 

Streptococcus TRUE FALSE 

Positive 95.59% 1.02% 
 

Positive 99.26% 13.32% 

Negative 98.98% 4.41% 
 

Negative 88.68% 0.74% 

Mycobacterium TRUE FALSE 

 

Mycobacterium TRUE FALSE 

Positive 88.31% 1.06% 
 

Positive 96.10% 4.08% 

Negative 98.94% 11.69% 
 

Negative 95.92% 3.90% 

Sensitivity    91.4 ± 16.4 %  Sensitivity    93.1 ± 10.3 % 

Specificity    97.5 ± 9.4 %  Specificity    90.6 ± 21.3 % 

Table 5
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