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Abstract. This paper presents an application of the ant algorithm and bees algorithm in optimization of QAP problem as an example of NP-

hard optimization problem. The experiments with two types of algorithms: the bees algorithm and the ant algorithm were performed for the 

test instances of the quadratic assignment problem from QAPLIB, designed by Burkard, Karisch and Rendl. On the basis of the experiments 

results, an influence of particular elements of algorithms, including neighbourhood size and neighbourhood search method, will be determined.
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2. Quadratic assignment problem

2.1. Complexity of QAP problem. The quadratic assignment 

problem was introduced by Koopmans and Beckman in 1957 as 

a mathematical model of assigning a set of economic activities 

to a set of locations. In 1976, Sahni and Gonzalez proved that 

QAP is strongly NP-hard [4, 5], though showing that the exis-

tence of a polynomial time algorithm for solving QAPs with the 

entries of the coefficient matrices belonging to {0, 1, 2} implies 

the existence of a polynomial time algorithm for an NP-com-

plete decision problem. The problem used in this proof was 

NP-complete decision problem called the Hamiltonian cycle 

problem (HC).

The QAP is an NP-hard problem and this difficulty is not 

restricted only to finding the optimal solution. Sahni and Gon-

zalez [4] proved that even finding an ɛ-approximation solution 
for QAP is a hard problem in this sense that the existence of 

a ɛ-approximation algorithm implies P = NP.

Finding an optimal solution to QAP is a difficult task not 

only in case of looking for the best solution among all the fea-

sible ones. It might appear that finding an optimal solution in 

the subset of the feasible solutions can be easier. For QAP it 

was proven that finding an optimal solution in case of the local 

search is a difficult problem too. Johnson and Papadimitriou in 
[6] created the base for the complexity theory in the local search 

case, where a special structure of neighbourhood is introduced. 

They define the PLS-problems (polynomial-time local search 

problem) as a set for which a locally optimal solution can be 

found in polynomial time. Next, they introduce a PLS-complete 

decision problem as an analogy of NP-complete one, which are 

the most difficult problems in PLS.

Murthy, Pardalos and Li [7] proposed a neighbourhood 

structure for QAP problem and proved that the corresponding 

local search problem is PLS-complete. The proposed structure 

is similar to that proposed by Kernighan and Lin [8] for the 

graph partitioning problem called K-L type neighbourhood 

structure NK-L. As the problem of finding QAP optimal solu-

tion in NK-L (called (QAP, NK-L)) is PLS-complete, then in the 

1. Introduction

The quadratic assignment problem (QAP) is one of the most 

difficult combinatorial problems,  known in literature as the 

assignment problem with quadratic cost function or quadratic 

objective function. This discrete problem is one of the most fun-

damental issues which are the subject of the operation research. 

QAP generalizes a large number of theoretical issues such as 

the graph partitioning,  maximal clique,  linear arrangement 

problem. It models several practical problems,  such as bal-

ancing of jet turbines,  less-than-truckload (LTL),  very-large-

scale integration (VLSI),  backboard wiring problem,  molec-

ular fitting. QAP belongs to the class of NP-hard problems. This 

is the reason why the approximation algorithms are used for the 

instances bigger than 30 [1‒3].
In recent years the nature inspired metaheuristics have been 

used successfully to solve many optimization problems. Al-

though most of them do not ensure obtaining optimal solutions,  

they provide good results at a reasonable time. The achievement 

of a result in real time is often more desirable than looking for 

the best result in a very long time. The implementation of the 

algorithms and the choice of parameters,  including the neigh-

bourhood structure,  determine the algorithms’ effectiveness. 

In the paper two nature-inspired algorithms to solve QAP are 

presented and tested.

The paper is organized as follows: Section 2 describes the 

complexity and model of QAP. Additionally,  a brief description 

of QAP applications is presented. In Section 3,  a survey on 

methods to the QAP problems is described. Section 4 discusses 

a framework of two nature-inspired algorithms with their ad-

aptation to the QAP problems. The results of performed exper-

iments are presented in Section 5. Finally,  Section 6 provides 

the conclusions of the paper.
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worst case the local search algorithm finds local minimum only 

after the time which is exponential in the size of the problem. 

The structure used in the case of other neighbourhood types, 

often used in QAP, is the 2-OPT (based on the pair exchange 

in permutation). Figure 1 shows an example of landscape for 

the problem instance Lipa60b. As could be seen, this landscape 

(QAP, 2-OPT) is multimodal. The neighbourhood solutions are 

characterised by a weak autocorrelation and hence this instance 

of QAP (and mostly others) is difficult to optimise.

Schaffer and Yannakakis [9] proved that the graph par-

titioning problem with a neighbourhood structure 2-OPT is 

PLS-complete. An existing PLS-reduction graph partitioning 

problem to QAP implies that the problem (QAP, 2-OPT) is 

also PLS-complete.

Several approximation algorithms for QAP use procedures 

based on local search, but on the basis of the above consider-

ations, it can be proved that in the general case this approach 

does not guarantee finding the good solution.

There are several problems being specializations of this 

problem, such as GPP (graph partitioning problem), max-clique, 

TSP (traveling salesman problem), LAP (linear arrangement 

problem), backboard wiring problem, minimum weight feed-

back arc set and graph packing problem, and a generalization 

like GQAP (generalized quadratic assignment problem) that 

allows multiple facilities to be assigned to a single location as 

long as the capacity of the location allows for that. The other 

problems are that of Lower QAP [10] and BiQAP.

2.2. Koopmans-Beckmann quadratic assignment problem. 

For the given set N = {1, …, n} we define three non-nega-

tive matrices D = [dij]n×n, F = [ fij]n×n, B = [bij]n×n. Letting per-

mutation π is the solution of the QAP problem, then in the 

terminology of facilities location, π(i) 2 N (i = 1, …, n) defines 

the index of the facility and the set N is a set of the location 

indexes to which the facilities are assigned. For example, the 

permutation π = (4, 5, 2, 1, 6, 3) defines the assignment shown 
in Fig. 2.

The matrix D defines distances between locations and matrix 

F defines the flow (weight,  number of connections) between 

pairs of facilities. Matrix B describes the assignment cost of the 

facility m to the position n. It is a linear part of the assignment 

cost which in most cases is omitted. The solution of QAP (also 

denoted as QAP(F, D, B)) can be defined in permutation form 

π = (π(1), …, π(n)) of the set of n elements (facilities). In the 

Koopmans-Beckmann [11] model the purpose is to find the 

permutation π* which minimizes the objective function:

 φ(π*) = minπ 2 Πφ(π) (1)

where φ(π) = ∑n
i=1∑n

j=1 fπ(i)π( j)dij + ∑n
i=1bπ(i)i

Fig. 1. An example of the landscape for QAP problem (Lipa60) and 
2-OPT the neighbourhood structure

Fig. 2. Example of QAP problem: assignment of six facilities (wheels) 
to six locations (squares)

Lipa60b

φ(
π)

π( j)
π(i)

The objective function φ(π), π 2 Π describes a global cost 
system realization and exploitation. Π is the set of permutations 
on the set N. In most cases matrix D is symmetric because the 

distance dij (between two locations i and j) is the same as dji 

(between j and i). Matrix F is symmetric if fij is considered as 

connections. If fij is flow of goods it need not be symmetric.

An example of six facilities assigned to six positions was 

shown in Fig. 2. In this example the flows and distances are 
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asymmetric. For example, notation (3, 2) for facilities means 

that the flow from facility 1 to facility 2 is 3 and inversely 2.

The first concept on how to deal with the quadratic form 

was the so-called linearisation of the QAP. But, for large n the 

linearisation results in a large number of variables and con-

strains. In this case Bender’s decomposition, cutting planes or 

other methods are not useful.

2.3. QAP applications. Nowadays the QAP problem has 

application in several kinds of technology in the areas like 

transportation [12], scheduling, electronics (wiring problem), 

distributed computing, statistical data analysis (reconstruc-

tion destroyed soundtrack), balancing of turbine running [13], 

chemistry [14], genetics [15], creating the control panels and 

manufacturing [16].

Figure 3 shows an example of the elastic production system 

(EPS) with the workstations distributed around the orbital con-

veyor which acts as the internal, dynamic warehouse of pro-

duction system. The distances between the workstations (pro-

cessing positions) spread along the conveyor depend on the 

transport direction.

and metaheuristic algorithms were proposed. It should be noted 

that several techniques based on natural processes have been 

applied to the QAP. Many solution algorithms regarding the 

QAP can be found in literature. For a survey on these methods, 

one can refer to [18, 19].

Exact algorithm proposed by Roucairol [20, 21] on the basis 

of branch and bound method belongs to the aforementioned 

techniques. In this algorithm the criteria function is defined as 

the sum of linear components and the reduced quadratic com-

ponent. This decomposition enables to determine the upper and 

lower bounds of the criteria function. On the basis of the lower 

and upper bounds, the algorithm performs an indirect search 

of the solution tree.

For the QAP criteria function in the form:

 φ(π) = ∑n
i=1∑n

j=1 fπ(i)π( j)dij (2)

the first step of the decomposition is reduction of the matrix 

D (distances) and the matrix F (flow), the same as in the Hun-

garian method for the classic (linear) assignment problem. The 

second step is matrix reduction which relies on rearranging 

the order of rows and columns due to the position of maximal 

element in the matrix. The connection between the value of 

criteria function for the QAP problem and the reduced criteria 

function assumes the following form:

 φ(π) = φ′(π) + K(π) ¡ γ (3)

where γ is constant value obtained on the basis of reduction 

given as:

γ = (∑iαi)(∑l βl′) + (∑k αk′)(∑j βj)

αi, βj, αk′, βl′ – size of reduction of i, j row/column of the matrix 

F and k, l row/column of the matrix D, K(π) = ∑i kiπ(i) – criteria 

function for linear assignment problem, where:

kiπ(i) = αi ∑l dπ(i)l + βi ∑l dlπ(i) + α′π(i)∑ j fij + β′π(i)∑ j fji + 

kiπ(i) + βiα′π(i) + αi β′π(i) ¡ (n ¡ 1)(αi α′π(i) + βiβ′π(i)).

As reduced matrix F’ and D’ have non-negative elements and

 φ(π) = minπ K(π) ¡ γ (4)

then:

● lower bound is equal: K(π′) ¡ γ  
where K(π′) ¸ minπ∑i kiπ(i)

● upper bound φ(π′) = K(π′) ¡ γ + φ′(π′).
On the basis of the difference between the upper and the 

lower bounds in Roucairol branch and bound algorithm [22], 

a particular subset of solutions can be rejected.

Erdoğan and Tansel [23] proposed the method called branch-
and-cut algorithm, based on the Koopmans – Beckmann formu-

lation and exploit the structure of the flow and distance matrices 

using flow-based linearisation technique. The authors invent the 

two new IP formulations based on the flow-based linearisation 

technique that require fewer variables and yield stronger lower 

bounds than existing formulations. The computational experi-

Fig. 3. Picture of the elastic production system (EPS) with the work-
stations distributed around the orbital conveyor

Another example of the problem defined as QAP is back-

board wiring problem with a number of the modules that have 

to be placed on a board. The modules are pairwise connected 

by a number of wires. The goal is to find a placement of the 

modules on board so that the total length of the connected wires 

is minimised.

An interesting example of the problem which generalizes 

the QAP is the BiQAP problem. It was introduced by Burkard 

and Çela [17]. The definition of BiQAP was motivated by its ap-

plication in the field of VLSI synthesis. This problem appears in 

the case of the design of synchronous sequential VLSI circuits.

3. Algorithms for QAP

Due to the quadratic assignment problem belonging to the class 

of NP-hard problems, many methods including exact, heuristic 
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ments showed a good algorithm performance for instances with 

size smaller than 26.

Bashiri and Karimi in [24] compared several methods of 

solving the QAP problem, like the results obtained by very easy 

procedures including 2-OPT, 2-OPT greedy, 3-OPT or 3-OPT 

greedy and, even more sophisticated, the meta-heuristics as 

tabu search (TS), simulation annealing (SA), particle swarm 

optimization (PSO) and iterated fast local search (IFLS) for 

a large set of the instances from QAPLIB library. The average 

gap for heuristic and metaheuristic methods and the exact solu-

tion are slight for TS algorithm and a little bigger for SA and 

PSO algorithms. For small QAP instances the obtained results 

of PSO algorithm are worse than the results obtained by the 

other methods. However, the difference has disappeared for 

the medium and large instances. Because the authors have not 

described the PSO algorithm in detail, the results cannot be 

compared to those of the other PSO algorithms.

Congying et al. [25] used the PSO algorithm for the QAP 

problem. In this algorithm the great value priority method was 

used to transform the continuous space to discrete space. Un-

fortunately, the authors did not present detailed algorithm tests 

which were limited only to the one test instance from QAPLIB 

library. A modified hybrid particle swarm optimization algo-

rithm was presented and applied to the QAP by Mamaghani 

and Meybodi in [26]. The hybridisation was based on joining 

the PSO algorithm with the hill climbing local optimization 

procedure. The smallest position value (SPV) rule was devel-

oped to enable the continuous version of the particle swarm 

optimization algorithm to be applied to the permutation prob-

lems. Another special case of the nature-inspired algorithms, 

called migrating birds optimization algorithm (MBO), inspired 

by V-formation flight of migrating birds, was proposed and 

tested on quadratic assignment problems by Duman et al. [27]. 

Chmiel et al. in [3] presented the most important properties 

of a multi-population genetic algorithm. These elements in-

clude: connection topology, migration size, migration interval 

and a method for migrant selection. A new diversity measure 

that is applied to permutation encoding is introduced. The pro-

posed measure has proved effective in helping to retain balance 

between population diversity and convergence. A multi-popu-

lation genetic algorithm, with different parameters like type 

of topology, migration interval, migration size and selection 

method was tested against several different test instances of 

travelling salesman problem that belongs to the NP-hard per-

mutational problem class.

4. Bees and ant algorithms as metaheuristics 
based on processes found in nature

4.1. Ant algorithm. The ant algorithm was introduced by Marco 

Dorigo in 1992 [28] for finding the best path in the graph. It was 

inspired by the behavior of an ant colony from Linepithemia 

humile species. At the beginning the ants randomly check their 

surroundings to find the source of food, leaving a path of pher-

omones. Other ants follow this pheromone path. If the source 

of food is large, ants follow this path and reinforce the level of 

the pheromone trial. The probability of choosing a particular 

path by next ants depends on the pheromone level of the path. 

If the amount of food decreases, the pheromone trail leading 

to it weakens. The ant algorithm in most cases can be applied 

to graph problems. For each graph edge (i, j) a non-negative 

weight τij, also called pheromone trail, is assigned. This trail is 

left and later read by the ants travelling between vertices. Ant 

k starts from vertice i and selects next vertex j from the set of 

neighbourhood vertices Ni. The probability of selection of the 

next vertices in iteration t depends on the amount of phero-

mones assigned to the edge (i, j) [29]:

 pi
k
j(t) = { 

τi′j(t) if j 2 Ni

 0 if j 2 Ni

 (5)

where τi′j(t) is a normalized value of τij(t). In each iteration an 

ant adds a small amount of pheromone on the edge, which is 

added to the current solution so that:

 τij(t) ← τij(t ¡ 1) + ∆τ (6)

The amount of the pheromone kept by the ant is constant and 

the strength of the pheromone trail is proportional to the quality 

of solution (e.g. to the length of the path). Pheromone decay 

runs with the introduction of a coefficient of evaporation ( ρ) 

according to:

 τij(t) = (1 ¡ ρ)τij(t ¡ 1) + ∆τij, ρ 2 (0, 1] (7)

Once all m ants have built their solutions, the amount of the 

pheromone in the iteration t is given by:

 τij(t) = (1 ¡ ρ)τij(t ¡ 1) + ∑m
k=1∆τk

ij (8)

where:

∆τi
k
j(t) = {1/Lk if ant k choose edge (i, j)

 0 otherwise

is the amount of pheromone left by the ant k, whereas Lk is the 

length of the k-ant path. QAP is the problem for which a large 

number of metaheuristics was created on the basis of the ant 

algorithm.

Max-Min Ant System (MMAS) is the metaheuristics 

which strongly exploits the search history by allowing only 

the best solution which adds the pheromone to the pheromone 

trail. Therefore, the modified pheromone trail is updated ac-

cording to:

 τij(t) = (1 ¡ ρ)τij(t ¡ 1) + ∆τij
best, (9)

where ∆τij
best denotes the amount of pheromone left by the best 

solution of iteration or global best.

MMAS rather uses a simple mechanism for limiting the 

strengths of the pheromone trails (τmax, τmin – the maximum 

and minimum amount of pheromone), and as a result of this, 
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effectively avoids a premature convergence of the search pro-

cess. Finally, MMAS can easily be extended by adding the local 

search algorithms [30].

Approximate nondeterministic tree search (ANTS) is the 

next algorithm in which a special formula for defining the prob-

ability distribution of each move is used.

The attractiveness of a move can be effectively estimated 

by means of a lower bound of the cost of the completion of 

a partial solution. To improve computing effectiveness, the 

simplified version of Gilmore and Lawler lower bound is used 

(called LBD). To further improve the computing effectiveness 

in algorithm, the simplified version of formula for defining the 

probability distribution at each move proposed by Colorni et 

al. was applied [31]. Additionally, in the algorithm a special 

mechanism for stagnation avoidance was proposed.

Fast Ant System (FANT) is the algorithm which incorpo-

rates a number of search strategies, such as intensification, 

diversification and learning mechanisms. This is realized by 

systematically reinforcing the impact on the search process of 

the best solution found so far. If the search process enters the 

stage of stagnation, the parameter memory is cleared to lessen 

the influence of the best solution [32].

It is worth noting that the selected strategy contains a set of 

the operations which enable an exploration and exploitation of 

the solution space. The proposed algorithm was created on the 

basis of the MMAS algorithm (see Algorithm 1). It applies the 

variable probability of the solutions selection used in the pher-

omone updating ( pbest). At the beginning of the algorithm the 

best solution in the ith iteration (πib) is more preferred but the 

global best solution preference (πbest) increases with the number 

of the algorithm iterations.

Algorithm 1. ANT-QAP algorithm

Require: λ – population size, φ(¢) – criteria function, πbest, πib, ρ, 

τmax, τmin, α, pIbest – initial value of the probability of choosing 

the πbest – solution.

Step 1.  Initializing population with λ random permutation 

(t = 0):
1. Create λ random permutation population. Initially, each 

ant has assigned permutation.

2. Evaluate fitness of the solutions in the population.

3. Each pheromone trial τij is set to the same non-negative 

value τmax; τij measures the desirability of setting πi = j 
in the solution π.

4. Save the best solution from population: πbest = πib = min{πk}, 

k = 1, …, λ.

Step 2. Create λ solutions (t = t + 1):
1. For each newly created solution, randomly choose the 

solution elements πi
k = j according to the probability pi

k
j(t). 

This probability value is proportional to the normalised 

amount of the pheromone τi′j(t).

Step 3. Determining the best solution:

1. For {π k}, k = 1, …, λ evaluate fitness of the new solutions.

2. Save the best solution from the new ones (iteration best) 

πib = min{π k}, k = 1, …, λ if they are better than the cur-

rent best one: πbest = πib.

Step 4. Update the amount of pheromone.

1. Update the pheromone trials. Pheromone trails are updat-

ed by taking into account the best solution produced by 

the search πbest with probability pbest or solutions best in 

the iteration – πib.

2. Evaporate a predefined amount of pheromone

3. Limit the pheromone trials to interval [τmax, τmin].

Step 5. Check stop condition – a maximal number of generated 

solutions.

1. If the stop condition is fulfilled, return the current best 

solution πbest and φ(πbest).
2. Otherwise increase probability 

pbest = 1 + (pIbest ¡ 1)e–αt and return to Step 2.

4.2 Bees algorithm. Bees algorithm (BA) imitates the food 

foraging behaviour of swarms of honey bees [33]. In its basic 

version, the algorithm performs a kind of the neighbourhood 

search combined with the random search. The colony of bees 

searches for the space surrounding the hive in several directions 

in the distance of ten kilometers. The near places with plentiful 

amounts of nectar or pollen are visited more frequently than 

other places. At the beginning of the search process, the scouts 

are sent from the hive into the promising paths. The scouts 

search randomly the space surrounding the hive and provide the 

information about the found food sources to the colony using 

waggle dance. This dance provides such information as wealth, 

distance and direction (relatively to the sun) to the source of 

food. After the dance, on the basis of food source quality and 

energy needed to harvest nectar or pollen, the colony of bees 

makes a decision about the number of bees sent to the source 

of food. The more bees are sent to the food source, the more 

effectively food will be collected. The wealth of the food source 

is still monitored by the returning bees. It enables them to react 

if the amount of food decreases. In this case the new scouts are 

sent to explore the space surrounding the hive to find the new 

promising food sources.

The bees algorithm [34, 35] can be interpreted in many 

ways, resulting from various implementations of the optimiza-

tion algorithm based on the bees’ behaviour, such as:

1. creation of the inauguration of the bees’ population,

2. selection of the methods for the choice of the search direc-

tion (choice of the solution to examine),

3. definition of the number of scouts (number of examined 

solutions),

4. definition of the stop condition.

Implementation of the details described above and the value 

of the parameters determine the algorithms effectiveness. At 

the beginning the bees’ population is created randomly (in the 

presented experiments all compared algorithms use the same in-

auguration population). The key elements which determine the 

algorithm effectiveness are the method of selecting the sites for 
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the neighbourhood search and the size of a neighbourhood. The 

number of the examined solutions in the selected localizations 

is proportional to the quality of solutions. The population of the 

le best solutions (called the elite localizations) and the lb good 

solutions are chosen from the whole population of solutions. 

The size of the searched neighbourhood for the elite localiza-

tion is Ne and for the other good solutions is Nb. The remaining 

solutions with the worse quality (low value of criteria function) 

are ignored in the next search phase. Both le, lb and Ne, Nb are 

the algorithm parameters. In the proposed implementation of 

the bees algorithm (called BA-QAP, Algorithm 2) for creating 

the neighbourhood solution (coded as the permutation) a genetic 

unary operators specialized in QAP problem were used:

● shift the randomly chosen facility to the random position. 

Other facilities are moved to the reverse direction in com-

parison with that in which the shift was made,

● shift the two randomly chosen facilities,

● cycle the shift facilities (rotation) around the randomly 

chosen position,

● create the next permutation in lexical order. In this case 

if more than one permutation is needed, the next permu-

tation in the lexical order from the successor permutation 

will be created,

● create the predecessor permutation in lexical order. In this 

case if more than one permutation is needed, the prede-

cessor permutation in lexical order of the last permutation 

should be created,

● shift the block of facilities over a random number of po-

sitions. Both the beginning and the end of the block is 

randomly chosen,

● reverse the block of facilities. Both the beginning and the 

end of the block are randomly chosen.

The percentage of the solutions created in the neighbour-

hood using the above described procedures is one of the algo-

rithm parameters.

The next population of the solutions is created by choosing 

the best solution from the elite and good localizations. To keep 

the fixed size of the population, missing solutions are randomly 

created.

In BA-QAP algorithm special procedures for preventing 

stagnancy by getting stuck in the local minima have been im-

plemented. The solution can exist in the population only by 

predefined number of iterations called life expectancy. If the 

value of this parameter is exceeded, the new solution is ran-

domly generated and the old solution is replaced by the new 

one. The best solution which has been found so far is kept in the 

algorithm memory. The algorithm terminates after examining 

the predefined number of solutions.

Algorithm 2 uses the following variables:

	 λ – swarm size,

 le – number of solution in elite (elite localization),

 lb – number of good solutions (good localization),

 Ne – neighbourhood size for the elite localization,

 Nb – neighbourhood size for the good localization,

	πbest – the best solution found,

	 φ(¢) – criteria function,

 LT – maximal lifetime of solution.

Algorithm 2. BA-QAP algorithm

Require λ, le, lb, Ne, Nb, πbest, φ(¢), LT

Step 1. Initialize population with λ random solutions:

1. Create λ random population.

2. Evaluate fitness of the solutions in the population.

3. Sort population (from best to worse).

4. Save the best solution: πbest = min{πk}, k = 1, …, λ

Step 2. For each of le + lb best solutions:

1. Define neighbourhood for processed solution π: N(π).
2. Choose the best solution from the neighbourhood 

N(π): π* = arg max φ(π)
π 2 N(π)

.

Step 3. Create a new population:

1. For each le + lb localization choose the best solution (only 

one).

2. Remove solutions which exist in population (swarm) lon-

ger than the predefined number of iterations LT (maximal 

lifetime of solution).

3. Create λ ¡ (le + lb) solutions (missing solutions to fit pop-

ulation size).

4. Sort population (from best to worse).

Step 4.  If in the newly formed population there exists a solution 

with better value of criteria function than solution πbest, 

update πbest.

Step 5.  Check the stop condition – a maximal number of gen-

erated solutions.

1. If the stop condition is fulfilled satisfactorily,  return πbest 

and φ(πbest).
2. Otherwise, return to Step 2.

5. Experiments and results

During preliminary researches we were interested into testing 

several neighbourhood constructions and finding the best one. 

Therefore, six presented below methods were implemented for 

creating solutions in neighbourhood in Step 2 of the ANT-QAP 

algorithm (Algorithm 1) as well as Step 2 of the BA-QAP al-

gorithm (Algorithm 2).

The following neighbourhood structures were implemented:

● 2-OPT [7, 8],

● ASSIGN proposed in [36]: 

ASSIGN = {π 2 Snjπ(2i ¡ 1) = 2i ¡ 1, i = 1, … n

2},

where a new solution is created by removing from the permu-

tation the elements on the odd positions and reinserting the 

removed elements randomly in empty positions. Sn is a sym-

metric group on n.

● TWIN, which is defined only for even n: 

TWIN = {π 2 Snjπ(2i ¡ 1) = 2i ¡ 1 ^ π(2i) = 2i, i = 1, … n
2 }.

● PYRAMID: 

PYRAMID = {π 2 Snji1, i2, …, ik, s, j1, j2, …, jn¡k¡1;  
k ¸ 0; i1 < i2, …, < ik; j1 > j2 > ¢¢¢ > jn¡k¡1}.
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● PYRAMID-CV proposed in [36], which consists of all per-

mutations of the form π ° α, where π is a pyramidal permu-

tation and where α is a rotation:

ROTATION = {(k, k + 1, …, n, …, 1, …, k ¡ 1)jk = 1, . ., n}.

● TWISTED defined by [37], where the permutations are cre-

ated dividing a permutation into some sections. Afterwards, 

each section is twisted in random order.

All methods for creating solutions in the neighbourhood, 

specified above, were tested on the basis of the test instances 

from QAPLIB library.

The best results were obtained by using the 2-OPT neigh-

bourhood structure. Therefore, all the results presented in this 

paper are based on this structure.

ANT-QAP and BA-QAP algorithms were implemented 

and tested on the set of instances of size n = 21‒60 from the 
QAPLIB library developed by Burkard and Rendl [1]. The 

library contains several instances of QAP problems which 

model real problems (from architecture, keyboard developing, 

Manhattan streets, etc.) and the instances created only for 

testing the purpose with special properties.

It is worth mentioning that solving the problems of size 

bigger than 25 is still considered to be a difficult task. In Tables 1 

and 2 the results of the two algorithms – the ant algorithm (AA) 

and the bees algorithm (BA) are shown, where φref is the best 

known objective value from QAPLIB, φbest is the best found 

objective value in 10 algorithm runs and E = 100% φbest ¡ φref

φref
 is 

a percentage relative gap of the solution obtained by our al-

gorithms from the reference value. The referenced solutions 

for the problem with the size equal and below 25 are obtained 

using B&B Roucairol algorithm. For better comparison the pre-

sented results have been obtained using the same type of the 

computing unit.

Table 1 

Results for the ant algorithm

Instance φref φbest E[%]

Chr12a 9 552 9 552 0.00

Chr20a 2 192 2 464 11.04

Els19 17 212 548 17 257 786 0.26

Esc32a 130 134 2.99

Esc64a 116 132 12.12

Esc128 64 78 17.95

Had20 6 922 6 922 00.00

Kra32 88 700 88 700 00.00

Lipa50a 62 093 62 773 01.09

Lipa90a 360 630 363 141 00.69

Nug20 2 570 2 570 00.00

Nug30 6 124 6 124 00.00

Rou20 725 522 725 522 00.00

Scr20 110 030 110 030 00.00

Sko42 15 812 15 940 00.80

Sko90 115 534 116 572 00.89

Sko100a 152 002 153 148 00.75

Ste36a 9 526 9 790 02.70

Tai30a 1 818 146 1 861 488 02.33

Tai50a 4 938 796 5 078 694 02.75

Tai64c 1 855 928 1 855 928 00.00

Tai100a 21 052 466 2 152 146 02.77

Tai100b 1 185 996 137 1 416 812 373 16.29

Tai150b 498 896 643 539 508 841 07.53

Tai256c 44 759 294 44 914 802 00.35

Tho40 240 516 240 516 00.00

Wil50 48 816 49 002 00.38

Wil100 273 038 274 466 00.52

Average 03.01

Table 2 

Results for the bees algorithm

Instance φref φbest E[%]

Chr12a 9 552 9 552 00.00

Chr20a 2 192 2 444 10.31

Els19 17 212 548 17 212 548 00.00

Esc32a 130 134 02.99

Esc64a 116 116 00.00

Esc128 64 64 00.00

Had20 6 922 6 922 00.00

Kra32 88 700 88 700 00.00

Lipa50a 62 093 62 746 01.04

Lipa90a 360 630 363 060 00.67

Nug20 2 570 2 570 00.00

Nug30 6 124 6 124 00.00

Rou20 725 522 725 522 00.00

Scr20 110 030 110 030 00.00

Sko42 15 812 15 940 00.80

Sko90 115 534 116 418 00.76

Sko100a 152 002 15 274 00.83

Ste36a 9 526 9 776 02.56

Tai30a 1 818 146 1 861 488 02.33

Tai50a 4 938 796 5 063 482 02.46

Tai64c 1 855 928 1 855 928 00.00

Tai100a 21 052 466 21 624 756 02.65

Tai100b 1 185 996 137 1 339 342 571 11.45

Tai150b 498 896 643 510 917 010 02.35

Tai256c 44 759 294 44 895 140 00.30

Tho40 240 516 240 516 00.00

Wil50 48 816 48 994 00.36

Wil100 273 038 274 308 00.46

Average 01.51
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In all tests the parameters of ant and bees algorithms are 

as follows:

● AA: λ = 20, ρ = 0.1, τmin = 0.1, τmax = 25, α = 0.05, 
pIbest = 0.1,

● BA: λ = 100, le = 35, lb = 50, Ne = 100, Nb = 50, LT = 4.

The program was implemented using C# language and tests 

were conducted using a workstation with i7‒4860HQ/3.60 GHz 
processor and Windows 7 operation system. This enables to 

compare the computation efficiency (e.g. computation time) 

of the nature-inspired algorithm with the exact method. Other 

referenced solutions are obtained from QAPLIB library.

When going through the presented instances, we can see that 

there are two types of such solutions – the optimal and the lower 

bounds. In Tables 1 and 2 reference solutions are optimal or best 

known suboptimal solutions. In order to describe the solution 

of the considered cases more clearly, let us briefly review the 

methods of the obtained reference solutions.

During the experiments the following instances were used: 

Chr12a, Chr20a with the optimal solution found by the parallel 

branch and bound algorithm [38], Els19 – the optimal solution 

was first found by Mautor using the parallel branch and bound 

algorithm [39], Esc32a, Esc64a – optimal solution was found 

by Nyberg, and Westerlund using a discrete reformulation that 

results in the MILP problem [42], Esc128 – the optimal solution 

was found by Fischetti et al. [43] using MILP branch-and-cut 

solver from IBM ILOG Cplex 12.2 package. This instance is 

the largest QAPLIB instance ever solved to proven optimality, 

Had20 – the optimal solution was found by Brüngger et al. 

solved using the branch and bound algorithm based on the Hun-

garian method [44], Kra32 – the optimal solution was found 

using the B&B algorithm by Anstreicher et al. [45], Lipa50a, 

Lipa90a – asymmetric instances produced by the generator 

with the known optimal solutions [46]. The optimal solution 

was found using the hybrid genetic algorithm by Ji et al.[47], 

Nug20, Nug30 – Anstreicher and Brixius [45] found the op-

timal solution to n = 30 using a parallel B&B algorithm running 
on one thousand computers within a week, Rou20 – instance 

produced by the generator with the known optimal solutions 

[22]. The optimal solution was found using B&B algorithm in 

[22], Scr20 – the optimal solution of this problem was found by 

Mautor using the B&B algorithm [39], Sko42, Sko90, Sko100a 

– the best solution was obtained using the robust tabu search 

algorithm and the genetic algorithm (Sko100a) [40], Ste36a 

– the best solution was found using the tabu search algorithm 

by Skorin and Karpov [40], Tai30a, Tai50a, Tai100a – the best 

solution to the first instance was found by robust tabu search 

by Taillard [41] and for the second and third one by iterated 

tabu search by Misevicius [48], Tai100b, Tai150b – the best 

solution for both instances was found by Taillard, the first one 

using the robust tabu search [41] and the second one by GA 

[49], Tai64c, Tai256c – the best solution for the first instance 

was found using the B&B algorithm by Fischetti [43] and the 

second one using ant-system by Stützle [50], Tho40 – the best 

solution was found by the simulation annealing algorithm by 

Bölte [51], Wil50, Wil100 – the best solution was found by the 

simulation annealing algorithm by Bölte [51] and the genetic 

hybrids algorithm by Fleurent et al. [52].

A typical course optimization process for the ant algorithm 

and the bees algorithm was shown in Fig. 4 and Fig. 5. It is 

interesting that both algorithms during optimization process 

constantly improve the value of criteria function, even in the 

late stage of the optimization process, avoiding being caught in 

the local minimum. In all the cases swarm algorithms (ant and 

Fig. 4. Typical course of the ant algorithm for the Nug20 instance 

of the QAP problem; it shows dependency between value of criteria 

function for the actual solution (green), the best solution (red) and the 

iteration number

φ(
π)

Iter

Fig. 5. Typical course of the bees algorithm for the Nug30 instance of 
the QAP problem; it shows dependency between the best solution and 

the iteration number

φ(
π)

Iter

bees) found a solution near the optimal (average error 3.1% and 
1.5%) in the time below 90 seconds (see Fig. 6).

For pairwise statistical comparisons of applied nature in-

spired metaheuristics,  the Wilcoxon rank test was performed. 

It is a nonparametric test that aims to detect significant differ-

ences between the performances of two algorithms. Details of 

Wilcoxon’s test can be found in [53]. All statistical experiments 
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were conducted using the Statistica package. For the analysed 

instances, the value of T statistics is equal to 14, which leads 

to the conclusion that there are significant differences in the 

results obtained using the bees and the ant algorithms (with 

significance level below 0.05).

6. Conclusions

The results presented above enable us to state that the tested 

algorithms can be used in several scenarios, where the strong 

emphasis is put on time of obtaining good solutions which do 

not need to be optimal (e.g. in the on-line optimization). On 

the other hand, if we take under consideration the fact that 

the QAP problem is NP-hard, which generalizes many other 

discrete problems, we can anticipate that the tested algorithms 

can be used successfully to optimize the other NP-hard discrete 

problems – especially those generalized by QAP.
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