
513Bull. Pol. Ac.: Tech. 65(4) 2017

BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 65, No. 4, 2017

DOI: 10.1515/bpasts-2017-0056

*e-mail: wch@agh.edu.pl

Manuscript submitted 2016-11-23, revised 2017-01-23, 2017-02-20 and 2017-03-19, initially accepted

for publication 2017-03-22, published in August 2017.

Abstract. This paper presents an application of the ant algorithm and bees algorithm in optimization of QAP problem as an example of NP-

hard optimization problem. The experiments with two types of algorithms: the bees algorithm and the ant algorithm were performed for the

test instances of the quadratic assignment problem from QAPLIB, designed by Burkard, Karisch and Rendl. On the basis of the experiments

results, an influence of particular elements of algorithms, including neighbourhood size and neighbourhood search method, will be determined.

Key words: permutation problem, quadratic assignment problem, ant algorithm, bees algorithm.

A comparison of nature inspired algorithms
for the quadratic assignment problem

W. CHMIEL*, P. KADŁUCZKA, J. KWIECIEŃ, and B. FILIPOWICZ
AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland

2. Quadratic assignment problem

2.1. Complexity of QAP problem. The quadratic assignment

problem was introduced by Koopmans and Beckman in 1957 as

a mathematical model of assigning a set of economic activities

to a set of locations. In 1976, Sahni and Gonzalez proved that

QAP is strongly NP-hard [4, 5], though showing that the exis-

tence of a polynomial time algorithm for solving QAPs with the

entries of the coefficient matrices belonging to {0, 1, 2} implies

the existence of a polynomial time algorithm for an NP-com-

plete decision problem. The problem used in this proof was

NP-complete decision problem called the Hamiltonian cycle

problem (HC).

The QAP is an NP-hard problem and this difficulty is not

restricted only to finding the optimal solution. Sahni and Gon-

zalez [4] proved that even finding an ɛ-approximation solution
for QAP is a hard problem in this sense that the existence of

a ɛ-approximation algorithm implies P = NP.

Finding an optimal solution to QAP is a difficult task not

only in case of looking for the best solution among all the fea-

sible ones. It might appear that finding an optimal solution in

the subset of the feasible solutions can be easier. For QAP it

was proven that finding an optimal solution in case of the local

search is a difficult problem too. Johnson and Papadimitriou in
[6] created the base for the complexity theory in the local search

case, where a special structure of neighbourhood is introduced.

They define the PLS-problems (polynomial-time local search

problem) as a set for which a locally optimal solution can be

found in polynomial time. Next, they introduce a PLS-complete

decision problem as an analogy of NP-complete one, which are

the most difficult problems in PLS.

Murthy, Pardalos and Li [7] proposed a neighbourhood

structure for QAP problem and proved that the corresponding

local search problem is PLS-complete. The proposed structure

is similar to that proposed by Kernighan and Lin [8] for the

graph partitioning problem called K-L type neighbourhood

structure NK-L. As the problem of finding QAP optimal solu-

tion in NK-L (called (QAP, NK-L)) is PLS-complete, then in the

1. Introduction

The quadratic assignment problem (QAP) is one of the most

difficult combinatorial problems, known in literature as the

assignment problem with quadratic cost function or quadratic

objective function. This discrete problem is one of the most fun-

damental issues which are the subject of the operation research.

QAP generalizes a large number of theoretical issues such as

the graph partitioning, maximal clique, linear arrangement

problem. It models several practical problems, such as bal-

ancing of jet turbines, less-than-truckload (LTL), very-large-

scale integration (VLSI), backboard wiring problem, molec-

ular fitting. QAP belongs to the class of NP-hard problems. This

is the reason why the approximation algorithms are used for the

instances bigger than 30 [1‒3].
In recent years the nature inspired metaheuristics have been

used successfully to solve many optimization problems. Al-

though most of them do not ensure obtaining optimal solutions,

they provide good results at a reasonable time. The achievement

of a result in real time is often more desirable than looking for

the best result in a very long time. The implementation of the

algorithms and the choice of parameters, including the neigh-

bourhood structure, determine the algorithms’ effectiveness.

In the paper two nature-inspired algorithms to solve QAP are

presented and tested.

The paper is organized as follows: Section 2 describes the

complexity and model of QAP. Additionally, a brief description

of QAP applications is presented. In Section 3, a survey on

methods to the QAP problems is described. Section 4 discusses

a framework of two nature-inspired algorithms with their ad-

aptation to the QAP problems. The results of performed exper-

iments are presented in Section 5. Finally, Section 6 provides

the conclusions of the paper.

514 Bull. Pol. Ac.: Tech. 65(4) 2017

W. Chmiel, P. Kadłuczka, J. Kwiecień, and B. Filipowicz

worst case the local search algorithm finds local minimum only

after the time which is exponential in the size of the problem.

The structure used in the case of other neighbourhood types,

often used in QAP, is the 2-OPT (based on the pair exchange

in permutation). Figure 1 shows an example of landscape for

the problem instance Lipa60b. As could be seen, this landscape

(QAP, 2-OPT) is multimodal. The neighbourhood solutions are

characterised by a weak autocorrelation and hence this instance

of QAP (and mostly others) is difficult to optimise.

Schaffer and Yannakakis [9] proved that the graph par-

titioning problem with a neighbourhood structure 2-OPT is

PLS-complete. An existing PLS-reduction graph partitioning

problem to QAP implies that the problem (QAP, 2-OPT) is

also PLS-complete.

Several approximation algorithms for QAP use procedures

based on local search, but on the basis of the above consider-

ations, it can be proved that in the general case this approach

does not guarantee finding the good solution.

There are several problems being specializations of this

problem, such as GPP (graph partitioning problem), max-clique,

TSP (traveling salesman problem), LAP (linear arrangement

problem), backboard wiring problem, minimum weight feed-

back arc set and graph packing problem, and a generalization

like GQAP (generalized quadratic assignment problem) that

allows multiple facilities to be assigned to a single location as

long as the capacity of the location allows for that. The other

problems are that of Lower QAP [10] and BiQAP.

2.2. Koopmans-Beckmann quadratic assignment problem.

For the given set N = {1, …, n} we define three non-nega-

tive matrices D = [dij]n×n, F = [fij]n×n, B = [bij]n×n. Letting per-

mutation π is the solution of the QAP problem, then in the

terminology of facilities location, π(i) 2 N (i = 1, …, n) defines

the index of the facility and the set N is a set of the location

indexes to which the facilities are assigned. For example, the

permutation π = (4, 5, 2, 1, 6, 3) defines the assignment shown
in Fig. 2.

The matrix D defines distances between locations and matrix

F defines the flow (weight, number of connections) between

pairs of facilities. Matrix B describes the assignment cost of the

facility m to the position n. It is a linear part of the assignment

cost which in most cases is omitted. The solution of QAP (also

denoted as QAP(F, D, B)) can be defined in permutation form

π = (π(1), …, π(n)) of the set of n elements (facilities). In the

Koopmans-Beckmann [11] model the purpose is to find the

permutation π* which minimizes the objective function:

 φ(π*) = minπ 2 Πφ(π) (1)

where φ(π) = ∑n
i=1∑n

j=1 fπ(i)π(j)dij + ∑n
i=1bπ(i)i

Fig. 1. An example of the landscape for QAP problem (Lipa60) and
2-OPT the neighbourhood structure

Fig. 2. Example of QAP problem: assignment of six facilities (wheels)
to six locations (squares)

Lipa60b

φ(
π)

π(j)
π(i)

The objective function φ(π), π 2 Π describes a global cost
system realization and exploitation. Π is the set of permutations
on the set N. In most cases matrix D is symmetric because the

distance dij (between two locations i and j) is the same as dji

(between j and i). Matrix F is symmetric if fij is considered as

connections. If fij is flow of goods it need not be symmetric.

An example of six facilities assigned to six positions was

shown in Fig. 2. In this example the flows and distances are

515Bull. Pol. Ac.: Tech. 65(4) 2017

A comparison of nature inspired algorithms for the quadratic assignment problem

asymmetric. For example, notation (3, 2) for facilities means

that the flow from facility 1 to facility 2 is 3 and inversely 2.

The first concept on how to deal with the quadratic form

was the so-called linearisation of the QAP. But, for large n the

linearisation results in a large number of variables and con-

strains. In this case Bender’s decomposition, cutting planes or

other methods are not useful.

2.3. QAP applications. Nowadays the QAP problem has

application in several kinds of technology in the areas like

transportation [12], scheduling, electronics (wiring problem),

distributed computing, statistical data analysis (reconstruc-

tion destroyed soundtrack), balancing of turbine running [13],

chemistry [14], genetics [15], creating the control panels and

manufacturing [16].

Figure 3 shows an example of the elastic production system

(EPS) with the workstations distributed around the orbital con-

veyor which acts as the internal, dynamic warehouse of pro-

duction system. The distances between the workstations (pro-

cessing positions) spread along the conveyor depend on the

transport direction.

and metaheuristic algorithms were proposed. It should be noted

that several techniques based on natural processes have been

applied to the QAP. Many solution algorithms regarding the

QAP can be found in literature. For a survey on these methods,

one can refer to [18, 19].

Exact algorithm proposed by Roucairol [20, 21] on the basis

of branch and bound method belongs to the aforementioned

techniques. In this algorithm the criteria function is defined as

the sum of linear components and the reduced quadratic com-

ponent. This decomposition enables to determine the upper and

lower bounds of the criteria function. On the basis of the lower

and upper bounds, the algorithm performs an indirect search

of the solution tree.

For the QAP criteria function in the form:

 φ(π) = ∑n
i=1∑n

j=1 fπ(i)π(j)dij (2)

the first step of the decomposition is reduction of the matrix

D (distances) and the matrix F (flow), the same as in the Hun-

garian method for the classic (linear) assignment problem. The

second step is matrix reduction which relies on rearranging

the order of rows and columns due to the position of maximal

element in the matrix. The connection between the value of

criteria function for the QAP problem and the reduced criteria

function assumes the following form:

 φ(π) = φ′(π) + K(π) ¡ γ (3)

where γ is constant value obtained on the basis of reduction

given as:

γ = (∑iαi)(∑l βl′) + (∑k αk′)(∑j βj)

αi, βj, αk′, βl′ – size of reduction of i, j row/column of the matrix

F and k, l row/column of the matrix D, K(π) = ∑i kiπ(i) – criteria

function for linear assignment problem, where:

kiπ(i) = αi ∑l dπ(i)l + βi ∑l dlπ(i) + α′π(i)∑ j fij + β′π(i)∑ j fji + 

kiπ(i) + βiα′π(i) + αi β′π(i) ¡ (n ¡ 1)(αi α′π(i) + βiβ′π(i)).

As reduced matrix F’ and D’ have non-negative elements and

 φ(π) = minπ K(π) ¡ γ (4)

then:

● lower bound is equal: K(π′) ¡ γ
where K(π′) ¸ minπ∑i kiπ(i)

● upper bound φ(π′) = K(π′) ¡ γ + φ′(π′).
On the basis of the difference between the upper and the

lower bounds in Roucairol branch and bound algorithm [22],

a particular subset of solutions can be rejected.

Erdoğan and Tansel [23] proposed the method called branch-
and-cut algorithm, based on the Koopmans – Beckmann formu-

lation and exploit the structure of the flow and distance matrices

using flow-based linearisation technique. The authors invent the

two new IP formulations based on the flow-based linearisation

technique that require fewer variables and yield stronger lower

bounds than existing formulations. The computational experi-

Fig. 3. Picture of the elastic production system (EPS) with the work-
stations distributed around the orbital conveyor

Another example of the problem defined as QAP is back-

board wiring problem with a number of the modules that have

to be placed on a board. The modules are pairwise connected

by a number of wires. The goal is to find a placement of the

modules on board so that the total length of the connected wires

is minimised.

An interesting example of the problem which generalizes

the QAP is the BiQAP problem. It was introduced by Burkard

and Çela [17]. The definition of BiQAP was motivated by its ap-

plication in the field of VLSI synthesis. This problem appears in

the case of the design of synchronous sequential VLSI circuits.

3. Algorithms for QAP

Due to the quadratic assignment problem belonging to the class

of NP-hard problems, many methods including exact, heuristic

516 Bull. Pol. Ac.: Tech. 65(4) 2017

W. Chmiel, P. Kadłuczka, J. Kwiecień, and B. Filipowicz

ments showed a good algorithm performance for instances with

size smaller than 26.

Bashiri and Karimi in [24] compared several methods of

solving the QAP problem, like the results obtained by very easy

procedures including 2-OPT, 2-OPT greedy, 3-OPT or 3-OPT

greedy and, even more sophisticated, the meta-heuristics as

tabu search (TS), simulation annealing (SA), particle swarm

optimization (PSO) and iterated fast local search (IFLS) for

a large set of the instances from QAPLIB library. The average

gap for heuristic and metaheuristic methods and the exact solu-

tion are slight for TS algorithm and a little bigger for SA and

PSO algorithms. For small QAP instances the obtained results

of PSO algorithm are worse than the results obtained by the

other methods. However, the difference has disappeared for

the medium and large instances. Because the authors have not

described the PSO algorithm in detail, the results cannot be

compared to those of the other PSO algorithms.

Congying et al. [25] used the PSO algorithm for the QAP

problem. In this algorithm the great value priority method was

used to transform the continuous space to discrete space. Un-

fortunately, the authors did not present detailed algorithm tests

which were limited only to the one test instance from QAPLIB

library. A modified hybrid particle swarm optimization algo-

rithm was presented and applied to the QAP by Mamaghani

and Meybodi in [26]. The hybridisation was based on joining

the PSO algorithm with the hill climbing local optimization

procedure. The smallest position value (SPV) rule was devel-

oped to enable the continuous version of the particle swarm

optimization algorithm to be applied to the permutation prob-

lems. Another special case of the nature-inspired algorithms,

called migrating birds optimization algorithm (MBO), inspired

by V-formation flight of migrating birds, was proposed and

tested on quadratic assignment problems by Duman et al. [27].

Chmiel et al. in [3] presented the most important properties

of a multi-population genetic algorithm. These elements in-

clude: connection topology, migration size, migration interval

and a method for migrant selection. A new diversity measure

that is applied to permutation encoding is introduced. The pro-

posed measure has proved effective in helping to retain balance

between population diversity and convergence. A multi-popu-

lation genetic algorithm, with different parameters like type

of topology, migration interval, migration size and selection

method was tested against several different test instances of

travelling salesman problem that belongs to the NP-hard per-

mutational problem class.

4. Bees and ant algorithms as metaheuristics
based on processes found in nature

4.1. Ant algorithm. The ant algorithm was introduced by Marco

Dorigo in 1992 [28] for finding the best path in the graph. It was

inspired by the behavior of an ant colony from Linepithemia

humile species. At the beginning the ants randomly check their

surroundings to find the source of food, leaving a path of pher-

omones. Other ants follow this pheromone path. If the source

of food is large, ants follow this path and reinforce the level of

the pheromone trial. The probability of choosing a particular

path by next ants depends on the pheromone level of the path.

If the amount of food decreases, the pheromone trail leading

to it weakens. The ant algorithm in most cases can be applied

to graph problems. For each graph edge (i, j) a non-negative

weight τij, also called pheromone trail, is assigned. This trail is

left and later read by the ants travelling between vertices. Ant

k starts from vertice i and selects next vertex j from the set of

neighbourhood vertices Ni. The probability of selection of the

next vertices in iteration t depends on the amount of phero-

mones assigned to the edge (i, j) [29]:

 pi
k
j(t) = {

τi′j(t) if j 2 Ni

 0 if j 2 Ni

 (5)

where τi′j(t) is a normalized value of τij(t). In each iteration an

ant adds a small amount of pheromone on the edge, which is

added to the current solution so that:

 τij(t) ← τij(t ¡ 1) + ∆τ (6)

The amount of the pheromone kept by the ant is constant and

the strength of the pheromone trail is proportional to the quality

of solution (e.g. to the length of the path). Pheromone decay

runs with the introduction of a coefficient of evaporation (ρ)

according to:

 τij(t) = (1 ¡ ρ)τij(t ¡ 1) + ∆τij, ρ 2 (0, 1] (7)

Once all m ants have built their solutions, the amount of the

pheromone in the iteration t is given by:

 τij(t) = (1 ¡ ρ)τij(t ¡ 1) + ∑m
k=1∆τk

ij (8)

where:

∆τi
k
j(t) = {1/Lk if ant k choose edge (i, j)

 0 otherwise

is the amount of pheromone left by the ant k, whereas Lk is the

length of the k-ant path. QAP is the problem for which a large

number of metaheuristics was created on the basis of the ant

algorithm.

Max-Min Ant System (MMAS) is the metaheuristics

which strongly exploits the search history by allowing only

the best solution which adds the pheromone to the pheromone

trail. Therefore, the modified pheromone trail is updated ac-

cording to:

 τij(t) = (1 ¡ ρ)τij(t ¡ 1) + ∆τij
best, (9)

where ∆τij
best denotes the amount of pheromone left by the best

solution of iteration or global best.

MMAS rather uses a simple mechanism for limiting the

strengths of the pheromone trails (τmax, τmin – the maximum

and minimum amount of pheromone), and as a result of this,

517Bull. Pol. Ac.: Tech. 65(4) 2017

A comparison of nature inspired algorithms for the quadratic assignment problem

effectively avoids a premature convergence of the search pro-

cess. Finally, MMAS can easily be extended by adding the local

search algorithms [30].

Approximate nondeterministic tree search (ANTS) is the

next algorithm in which a special formula for defining the prob-

ability distribution of each move is used.

The attractiveness of a move can be effectively estimated

by means of a lower bound of the cost of the completion of

a partial solution. To improve computing effectiveness, the

simplified version of Gilmore and Lawler lower bound is used

(called LBD). To further improve the computing effectiveness

in algorithm, the simplified version of formula for defining the

probability distribution at each move proposed by Colorni et

al. was applied [31]. Additionally, in the algorithm a special

mechanism for stagnation avoidance was proposed.

Fast Ant System (FANT) is the algorithm which incorpo-

rates a number of search strategies, such as intensification,

diversification and learning mechanisms. This is realized by

systematically reinforcing the impact on the search process of

the best solution found so far. If the search process enters the

stage of stagnation, the parameter memory is cleared to lessen

the influence of the best solution [32].

It is worth noting that the selected strategy contains a set of

the operations which enable an exploration and exploitation of

the solution space. The proposed algorithm was created on the

basis of the MMAS algorithm (see Algorithm 1). It applies the

variable probability of the solutions selection used in the pher-

omone updating (pbest). At the beginning of the algorithm the

best solution in the ith iteration (πib) is more preferred but the

global best solution preference (πbest) increases with the number

of the algorithm iterations.

Algorithm 1. ANT-QAP algorithm

Require: λ – population size, φ(¢) – criteria function, πbest, πib, ρ,

τmax, τmin, α, pIbest – initial value of the probability of choosing

the πbest – solution.

Step 1. Initializing population with λ random permutation

(t = 0):
1. Create λ random permutation population. Initially, each

ant has assigned permutation.

2. Evaluate fitness of the solutions in the population.

3. Each pheromone trial τij is set to the same non-negative

value τmax; τij measures the desirability of setting πi = j
in the solution π.

4. Save the best solution from population: πbest = πib = min{πk},

k = 1, …, λ.

Step 2. Create λ solutions (t = t + 1):
1. For each newly created solution, randomly choose the

solution elements πi
k = j according to the probability pi

k
j(t).

This probability value is proportional to the normalised

amount of the pheromone τi′j(t).

Step 3. Determining the best solution:

1. For {π k}, k = 1, …, λ evaluate fitness of the new solutions.

2. Save the best solution from the new ones (iteration best)

πib = min{π k}, k = 1, …, λ if they are better than the cur-

rent best one: πbest = πib.

Step 4. Update the amount of pheromone.

1. Update the pheromone trials. Pheromone trails are updat-

ed by taking into account the best solution produced by

the search πbest with probability pbest or solutions best in

the iteration – πib.

2. Evaporate a predefined amount of pheromone

3. Limit the pheromone trials to interval [τmax, τmin].

Step 5. Check stop condition – a maximal number of generated

solutions.

1. If the stop condition is fulfilled, return the current best

solution πbest and φ(πbest).
2. Otherwise increase probability

pbest = 1 + (pIbest ¡ 1)e–αt and return to Step 2.

4.2 Bees algorithm. Bees algorithm (BA) imitates the food

foraging behaviour of swarms of honey bees [33]. In its basic

version, the algorithm performs a kind of the neighbourhood

search combined with the random search. The colony of bees

searches for the space surrounding the hive in several directions

in the distance of ten kilometers. The near places with plentiful

amounts of nectar or pollen are visited more frequently than

other places. At the beginning of the search process, the scouts

are sent from the hive into the promising paths. The scouts

search randomly the space surrounding the hive and provide the

information about the found food sources to the colony using

waggle dance. This dance provides such information as wealth,

distance and direction (relatively to the sun) to the source of

food. After the dance, on the basis of food source quality and

energy needed to harvest nectar or pollen, the colony of bees

makes a decision about the number of bees sent to the source

of food. The more bees are sent to the food source, the more

effectively food will be collected. The wealth of the food source

is still monitored by the returning bees. It enables them to react

if the amount of food decreases. In this case the new scouts are

sent to explore the space surrounding the hive to find the new

promising food sources.

The bees algorithm [34, 35] can be interpreted in many

ways, resulting from various implementations of the optimiza-

tion algorithm based on the bees’ behaviour, such as:

1. creation of the inauguration of the bees’ population,

2. selection of the methods for the choice of the search direc-

tion (choice of the solution to examine),

3. definition of the number of scouts (number of examined

solutions),

4. definition of the stop condition.

Implementation of the details described above and the value

of the parameters determine the algorithms effectiveness. At

the beginning the bees’ population is created randomly (in the

presented experiments all compared algorithms use the same in-

auguration population). The key elements which determine the

algorithm effectiveness are the method of selecting the sites for

518 Bull. Pol. Ac.: Tech. 65(4) 2017

W. Chmiel, P. Kadłuczka, J. Kwiecień, and B. Filipowicz

the neighbourhood search and the size of a neighbourhood. The

number of the examined solutions in the selected localizations

is proportional to the quality of solutions. The population of the

le best solutions (called the elite localizations) and the lb good

solutions are chosen from the whole population of solutions.

The size of the searched neighbourhood for the elite localiza-

tion is Ne and for the other good solutions is Nb. The remaining

solutions with the worse quality (low value of criteria function)

are ignored in the next search phase. Both le, lb and Ne, Nb are

the algorithm parameters. In the proposed implementation of

the bees algorithm (called BA-QAP, Algorithm 2) for creating

the neighbourhood solution (coded as the permutation) a genetic

unary operators specialized in QAP problem were used:

● shift the randomly chosen facility to the random position.

Other facilities are moved to the reverse direction in com-

parison with that in which the shift was made,

● shift the two randomly chosen facilities,

● cycle the shift facilities (rotation) around the randomly

chosen position,

● create the next permutation in lexical order. In this case

if more than one permutation is needed, the next permu-

tation in the lexical order from the successor permutation

will be created,

● create the predecessor permutation in lexical order. In this

case if more than one permutation is needed, the prede-

cessor permutation in lexical order of the last permutation

should be created,

● shift the block of facilities over a random number of po-

sitions. Both the beginning and the end of the block is

randomly chosen,

● reverse the block of facilities. Both the beginning and the

end of the block are randomly chosen.

The percentage of the solutions created in the neighbour-

hood using the above described procedures is one of the algo-

rithm parameters.

The next population of the solutions is created by choosing

the best solution from the elite and good localizations. To keep

the fixed size of the population, missing solutions are randomly

created.

In BA-QAP algorithm special procedures for preventing

stagnancy by getting stuck in the local minima have been im-

plemented. The solution can exist in the population only by

predefined number of iterations called life expectancy. If the

value of this parameter is exceeded, the new solution is ran-

domly generated and the old solution is replaced by the new

one. The best solution which has been found so far is kept in the

algorithm memory. The algorithm terminates after examining

the predefined number of solutions.

Algorithm 2 uses the following variables:

	 λ – swarm size,

 le – number of solution in elite (elite localization),

 lb – number of good solutions (good localization),

 Ne – neighbourhood size for the elite localization,

 Nb – neighbourhood size for the good localization,

	πbest – the best solution found,

	 φ(¢) – criteria function,

 LT – maximal lifetime of solution.

Algorithm 2. BA-QAP algorithm

Require λ, le, lb, Ne, Nb, πbest, φ(¢), LT

Step 1. Initialize population with λ random solutions:

1. Create λ random population.

2. Evaluate fitness of the solutions in the population.

3. Sort population (from best to worse).

4. Save the best solution: πbest = min{πk}, k = 1, …, λ

Step 2. For each of le + lb best solutions:

1. Define neighbourhood for processed solution π: N(π).
2. Choose the best solution from the neighbourhood

N(π): π* = arg max φ(π)
π 2 N(π)

.

Step 3. Create a new population:

1. For each le + lb localization choose the best solution (only

one).

2. Remove solutions which exist in population (swarm) lon-

ger than the predefined number of iterations LT (maximal

lifetime of solution).

3. Create λ ¡ (le + lb) solutions (missing solutions to fit pop-

ulation size).

4. Sort population (from best to worse).

Step 4. If in the newly formed population there exists a solution

with better value of criteria function than solution πbest,

update πbest.

Step 5. Check the stop condition – a maximal number of gen-

erated solutions.

1. If the stop condition is fulfilled satisfactorily, return πbest

and φ(πbest).
2. Otherwise, return to Step 2.

5. Experiments and results

During preliminary researches we were interested into testing

several neighbourhood constructions and finding the best one.

Therefore, six presented below methods were implemented for

creating solutions in neighbourhood in Step 2 of the ANT-QAP

algorithm (Algorithm 1) as well as Step 2 of the BA-QAP al-

gorithm (Algorithm 2).

The following neighbourhood structures were implemented:

● 2-OPT [7, 8],

● ASSIGN proposed in [36]:

ASSIGN = {π 2 Snjπ(2i ¡ 1) = 2i ¡ 1, i = 1, … n

2},

where a new solution is created by removing from the permu-

tation the elements on the odd positions and reinserting the

removed elements randomly in empty positions. Sn is a sym-

metric group on n.

● TWIN, which is defined only for even n:

TWIN = {π 2 Snjπ(2i ¡ 1) = 2i ¡ 1 ^ π(2i) = 2i, i = 1, … n
2 }.

● PYRAMID:

PYRAMID = {π 2 Snji1, i2, …, ik, s, j1, j2, …, jn¡k¡1; 
k ¸ 0; i1 < i2, …, < ik; j1 > j2 > ¢¢¢ > jn¡k¡1}.

519Bull. Pol. Ac.: Tech. 65(4) 2017

A comparison of nature inspired algorithms for the quadratic assignment problem

● PYRAMID-CV proposed in [36], which consists of all per-

mutations of the form π ° α, where π is a pyramidal permu-

tation and where α is a rotation:

ROTATION = {(k, k + 1, …, n, …, 1, …, k ¡ 1)jk = 1, . ., n}.

● TWISTED defined by [37], where the permutations are cre-

ated dividing a permutation into some sections. Afterwards,

each section is twisted in random order.

All methods for creating solutions in the neighbourhood,

specified above, were tested on the basis of the test instances

from QAPLIB library.

The best results were obtained by using the 2-OPT neigh-

bourhood structure. Therefore, all the results presented in this

paper are based on this structure.

ANT-QAP and BA-QAP algorithms were implemented

and tested on the set of instances of size n = 21‒60 from the
QAPLIB library developed by Burkard and Rendl [1]. The

library contains several instances of QAP problems which

model real problems (from architecture, keyboard developing,

Manhattan streets, etc.) and the instances created only for

testing the purpose with special properties.

It is worth mentioning that solving the problems of size

bigger than 25 is still considered to be a difficult task. In Tables 1

and 2 the results of the two algorithms – the ant algorithm (AA)

and the bees algorithm (BA) are shown, where φref is the best

known objective value from QAPLIB, φbest is the best found

objective value in 10 algorithm runs and E = 100% φbest ¡ φref

φref
 is

a percentage relative gap of the solution obtained by our al-

gorithms from the reference value. The referenced solutions

for the problem with the size equal and below 25 are obtained

using B&B Roucairol algorithm. For better comparison the pre-

sented results have been obtained using the same type of the

computing unit.

Table 1

Results for the ant algorithm

Instance φref φbest E[%]

Chr12a 9 552 9 552 0.00

Chr20a 2 192 2 464 11.04

Els19 17 212 548 17 257 786 0.26

Esc32a 130 134 2.99

Esc64a 116 132 12.12

Esc128 64 78 17.95

Had20 6 922 6 922 00.00

Kra32 88 700 88 700 00.00

Lipa50a 62 093 62 773 01.09

Lipa90a 360 630 363 141 00.69

Nug20 2 570 2 570 00.00

Nug30 6 124 6 124 00.00

Rou20 725 522 725 522 00.00

Scr20 110 030 110 030 00.00

Sko42 15 812 15 940 00.80

Sko90 115 534 116 572 00.89

Sko100a 152 002 153 148 00.75

Ste36a 9 526 9 790 02.70

Tai30a 1 818 146 1 861 488 02.33

Tai50a 4 938 796 5 078 694 02.75

Tai64c 1 855 928 1 855 928 00.00

Tai100a 21 052 466 2 152 146 02.77

Tai100b 1 185 996 137 1 416 812 373 16.29

Tai150b 498 896 643 539 508 841 07.53

Tai256c 44 759 294 44 914 802 00.35

Tho40 240 516 240 516 00.00

Wil50 48 816 49 002 00.38

Wil100 273 038 274 466 00.52

Average 03.01

Table 2

Results for the bees algorithm

Instance φref φbest E[%]

Chr12a 9 552 9 552 00.00

Chr20a 2 192 2 444 10.31

Els19 17 212 548 17 212 548 00.00

Esc32a 130 134 02.99

Esc64a 116 116 00.00

Esc128 64 64 00.00

Had20 6 922 6 922 00.00

Kra32 88 700 88 700 00.00

Lipa50a 62 093 62 746 01.04

Lipa90a 360 630 363 060 00.67

Nug20 2 570 2 570 00.00

Nug30 6 124 6 124 00.00

Rou20 725 522 725 522 00.00

Scr20 110 030 110 030 00.00

Sko42 15 812 15 940 00.80

Sko90 115 534 116 418 00.76

Sko100a 152 002 15 274 00.83

Ste36a 9 526 9 776 02.56

Tai30a 1 818 146 1 861 488 02.33

Tai50a 4 938 796 5 063 482 02.46

Tai64c 1 855 928 1 855 928 00.00

Tai100a 21 052 466 21 624 756 02.65

Tai100b 1 185 996 137 1 339 342 571 11.45

Tai150b 498 896 643 510 917 010 02.35

Tai256c 44 759 294 44 895 140 00.30

Tho40 240 516 240 516 00.00

Wil50 48 816 48 994 00.36

Wil100 273 038 274 308 00.46

Average 01.51

520 Bull. Pol. Ac.: Tech. 65(4) 2017

W. Chmiel, P. Kadłuczka, J. Kwiecień, and B. Filipowicz

In all tests the parameters of ant and bees algorithms are

as follows:

● AA: λ = 20, ρ = 0.1, τmin = 0.1, τmax = 25, α = 0.05,
pIbest = 0.1,

● BA: λ = 100, le = 35, lb = 50, Ne = 100, Nb = 50, LT = 4.

The program was implemented using C# language and tests

were conducted using a workstation with i7‒4860HQ/3.60 GHz
processor and Windows 7 operation system. This enables to

compare the computation efficiency (e.g. computation time)

of the nature-inspired algorithm with the exact method. Other

referenced solutions are obtained from QAPLIB library.

When going through the presented instances, we can see that

there are two types of such solutions – the optimal and the lower

bounds. In Tables 1 and 2 reference solutions are optimal or best

known suboptimal solutions. In order to describe the solution

of the considered cases more clearly, let us briefly review the

methods of the obtained reference solutions.

During the experiments the following instances were used:

Chr12a, Chr20a with the optimal solution found by the parallel

branch and bound algorithm [38], Els19 – the optimal solution

was first found by Mautor using the parallel branch and bound

algorithm [39], Esc32a, Esc64a – optimal solution was found

by Nyberg, and Westerlund using a discrete reformulation that

results in the MILP problem [42], Esc128 – the optimal solution

was found by Fischetti et al. [43] using MILP branch-and-cut

solver from IBM ILOG Cplex 12.2 package. This instance is

the largest QAPLIB instance ever solved to proven optimality,

Had20 – the optimal solution was found by Brüngger et al.

solved using the branch and bound algorithm based on the Hun-

garian method [44], Kra32 – the optimal solution was found

using the B&B algorithm by Anstreicher et al. [45], Lipa50a,

Lipa90a – asymmetric instances produced by the generator

with the known optimal solutions [46]. The optimal solution

was found using the hybrid genetic algorithm by Ji et al.[47],

Nug20, Nug30 – Anstreicher and Brixius [45] found the op-

timal solution to n = 30 using a parallel B&B algorithm running
on one thousand computers within a week, Rou20 – instance

produced by the generator with the known optimal solutions

[22]. The optimal solution was found using B&B algorithm in

[22], Scr20 – the optimal solution of this problem was found by

Mautor using the B&B algorithm [39], Sko42, Sko90, Sko100a

– the best solution was obtained using the robust tabu search

algorithm and the genetic algorithm (Sko100a) [40], Ste36a

– the best solution was found using the tabu search algorithm

by Skorin and Karpov [40], Tai30a, Tai50a, Tai100a – the best

solution to the first instance was found by robust tabu search

by Taillard [41] and for the second and third one by iterated

tabu search by Misevicius [48], Tai100b, Tai150b – the best

solution for both instances was found by Taillard, the first one

using the robust tabu search [41] and the second one by GA

[49], Tai64c, Tai256c – the best solution for the first instance

was found using the B&B algorithm by Fischetti [43] and the

second one using ant-system by Stützle [50], Tho40 – the best

solution was found by the simulation annealing algorithm by

Bölte [51], Wil50, Wil100 – the best solution was found by the

simulation annealing algorithm by Bölte [51] and the genetic

hybrids algorithm by Fleurent et al. [52].

A typical course optimization process for the ant algorithm

and the bees algorithm was shown in Fig. 4 and Fig. 5. It is

interesting that both algorithms during optimization process

constantly improve the value of criteria function, even in the

late stage of the optimization process, avoiding being caught in

the local minimum. In all the cases swarm algorithms (ant and

Fig. 4. Typical course of the ant algorithm for the Nug20 instance

of the QAP problem; it shows dependency between value of criteria

function for the actual solution (green), the best solution (red) and the

iteration number

φ(
π)

Iter

Fig. 5. Typical course of the bees algorithm for the Nug30 instance of
the QAP problem; it shows dependency between the best solution and

the iteration number

φ(
π)

Iter

bees) found a solution near the optimal (average error 3.1% and
1.5%) in the time below 90 seconds (see Fig. 6).

For pairwise statistical comparisons of applied nature in-

spired metaheuristics, the Wilcoxon rank test was performed.

It is a nonparametric test that aims to detect significant differ-

ences between the performances of two algorithms. Details of

Wilcoxon’s test can be found in [53]. All statistical experiments

521Bull. Pol. Ac.: Tech. 65(4) 2017

A comparison of nature inspired algorithms for the quadratic assignment problem

were conducted using the Statistica package. For the analysed

instances, the value of T statistics is equal to 14, which leads

to the conclusion that there are significant differences in the

results obtained using the bees and the ant algorithms (with

significance level below 0.05).

6. Conclusions

The results presented above enable us to state that the tested

algorithms can be used in several scenarios, where the strong

emphasis is put on time of obtaining good solutions which do

not need to be optimal (e.g. in the on-line optimization). On

the other hand, if we take under consideration the fact that

the QAP problem is NP-hard, which generalizes many other

discrete problems, we can anticipate that the tested algorithms

can be used successfully to optimize the other NP-hard discrete

problems – especially those generalized by QAP.

Acknowledgements. The authors would like to thank the re-

viewers for their constructive comments and suggestions.

References
 [1] R. Burkard, S. Karisch and F. Rendl, “QAPLib: a quadratic as-

signment problem library”, 1997.

 [2] W. Chmiel and P. Szwed, “Bees algorithm for the quadratic as-

signment problem on CUDA platform”, 4th International Con-

ference on Man-Machine Interactions, 615‒625, Springer Int.
Publishing (2015).

 [3] W. Chmiel, P. Kadłuczka, and G. Packanik, “Performance of
swarm algorithms for permutation problems”, Automatyka 15(2),

117–126 (2009) (in Polish).

 [4] S. Sahni and T. Gonzalez, “P-complete approximation prob-

lems”, J.ACM, 23(3), 555‒565 (1976).
 [5] M.R. Garey and D.S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-Completeness, W. H. Freeman & Co.,

New York, 1979.

 [6] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis, “How
easy is local search?”, J. Comput. Syst. Sci. 37(1), 79–100 (1988).

 [7] K.A. Murthy, Y. Li, and P.M.Pardalos, “A local search algorithm

for the quadratic assignment problem”, Informatica, Vilnius,

3(4), 524–538 (1992).

 [8] B.W. Kernighan and S. Lin, “An efficient heuristic procedure for

partitioning graphs”, The Bell System Technical Journal 49(1),

291–307 (1970).

 [9] A.A. Schaffer and M. Yannakakis, “Simple local search problems

that are hard to solve”, SIAM J. Comput., 20(1), 56‒87 (1991).
 [10] E.L. Lawler, “The quadratic assignment problem: A brief re-

view”, Combinatorial Programming: Methods and Applications,

19, 351‒360, Springer Netherlands 1975.
 [11] T.C. Koopmans and M.J. Beckmann, “Assignment problems and

the location of economic activities”, Econometrica 25, 53–76

(1957).

 [12] R. Bermudez and M.H. Cole, “A genetic algorithm approach

to door assignments in breakbulk terminals”, Technical Report

MBTC-1102, Mack-Blackwell Transportation Center, Univer-

sity of Arkansas, 2001.

 [13] A. Mason and M.Rönnqvist, “Solution methods for the balancing

of jet turbines”, Computers & OR 24(2), 153–167 (1997).

 [14] I. Ugi, J. Bauer, J. Brandt, J. Friedrich, J. Gasteiger, C. Jochum,
and W.Schubert, “Neue Anwendungsgebiete für Computer in der

Chemie”, Angewandte Chemie 91(2), (1979) [in German].

 [15] A.T. Phillips and J.B. Rosen, “A quadratic assignment formula-

tion of the molecular conformation problem”, Journal of Global

Optimization 4, 229–241 (1994).

 [16] M. Grötschel, “Discrete mathematics in manufacturing”, in

R.E.O. Malley (Ed.), ICIAM 1991: Proceedings of the Second

International Conference on Industrial and Applied Mathe-

matics, SIAM, 119–145 (1991).

 [17] R.E. Burkard and E. Çela, “Heuristics for biquadratic assign-

ment problems and their computational comparison”, European

Journal of Operational Research 83(2), 283 – 300 (1995).

 [18] Z. Drezner, “The quadratic assignment problem”, Location Sci-

ence (eds.: Laport G.et al.), 345‒363, Springer International
Publishing (2015).

 [19] E.M. Loiola, N.M.M. de Abreu, P.O. Boaventura-Netto, P. Hahn,

and T. Querido, “A survey for the quadratic assignment problem”,

European Journal of Operational Research 176 (2), 657‒690
(2007).

 [20] C. Roucairol, “A reduction method for quadratic assignment

problem”, Operations Research Verfahren, Methods of Opera-

tions Research 32, 185–187 (1979).

 [21] C. Roucairol, “An efficient branching scheme in branch and

bound procedures”, Tims XXVI, Masi, Universite Paris 6, 42,

1984.

 [22] C. Roucairol, “A parallel branch and bound algorithm for the

quadratic assignment problem”, Discrete Applied Mathematics

18(2), 211 – 225 (1987).

 [23] G. Erdoḡan and B. Tansel, “A branch-and-cut algorithm for qua-

dratic assignment problems based on linearizations”, Comput-

ers&Operations Research 34(4), 1085- 1106 (2007).

 [24] M. Bashiri and H. Karimi, “Effective heuristics and meta-heuris-

tics for the quadratic assignment problem with tuned parameters

and analytical comparisons”, Journal of Industrial Engineering

International 8(6), 1‒9 (2012).
 [25] L. Congying, Z. Huanping, and Y. Xinfeng, “Particle swarm

optimization algorithm for quadratic assignment problem”, In-

ternational Conference on Computer Science and Network Tech-

nology, 3, 1728‒1731 (2011).

Fig. 6. Dependency between time and problem size for bees algorithm,
the ant algorithm and B&B Roucairol algorithm

522 Bull. Pol. Ac.: Tech. 65(4) 2017

W. Chmiel, P. Kadłuczka, J. Kwiecień, and B. Filipowicz

 [26] A. Mamaghani and M. Meybodi, “Solving the quadratic as-

signment problem with the modified hybrid PSO algorithm”,

International Conference on Application of Information and

Communication Technologies, 1‒6 (2012).
 [27] E. Duman, M. Uysal and A.F. Alkaya, “Migrating birds opti-

mization: A new metaheuristic approach and its performance

on quadratic assignment problem”, Information Sciences, 217,

65‒77 (2012).
 [28] M. Dorigo, “Optimization, learning and natural algorithms”, PhD

Thesis, Politecnico di Milano, Italy (1992).

 [29] E. Bonabeau, M. Dorigo, and G. Theraulaz, From Natural to

Artificial Swarm Intelligence, Oxford University Press, 1999.

 [30] T. Stützle and H. Hoos, “Max-min ant system”, Future Genera-

tion Computer Systems 16(8), 889–914 (2000).

 [31] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimi-

zation by ant colonies”, European Conference on Artificial Life,

134–142 (1991).

 [32] E.D. Taillard, “Fant: Fast ant system”, Technical Report, (1998).

 [33] D.T. Pham and M. Castellani, “Benchmarking and comparison

of nature-inspired population-based continuous optimisation al-

gorithms”, Soft Computing 18(5), 871‒903 (2014).
 [34] C.S. Chong, A.I. Sivakumar, M.Y.H. Low, and K.L. Gay, “A bee

colony optimization algorithm to job shop scheduling”, Proceed-

ings of the 38th Conference on Winter Simulation, Monterey,

(2006).

 [35] B. Filipowicz and J. Kwiecień, “Swarm algorithms in optimi-
zation of quadratic assignment problem (QAP)”, Automatyka

15(2), 159–166 (2011) (in Polish).

 [36] V. Saravanov and N. Doroshko, “The approximate solution of

the traveling salesman problem by a local algorithm that searches

neighborhoods of factorial cardinality in cubic time”. Software:

Algorithms and Programs 31, 11‒13 (1981).
 [37] F. Aurenhammer, “On-line sorting of twisted sequences in linear

time”, BIT 28, 194‒204 (1988).
 [38] N. Christofides and E. Benavent, “An exact algorithm for the

quadratic assignment problem on a tree”, Operations Research

37(5), 760–768 (1989).

 [39] T. Mautor, “Contribution a la resolution des problemes dimpla-

nation: algorithmes sequentiels et paralleles pour laffectation

quadratique”, PhD thesis (1992).

 [40] J. Skorin-Kapov, “Tabu search applied to the quadratic assign-

ment problem”, ORSA Journal on Computing 2(1), 33–45 (1990).

 [41] E.D. Taillard, “Comparison of iterative searches for the quadratic

assignment problem”, Location Science 3(2), 87‒105 (1995).
 [42] A. Nyberg and T. Westerlund, “New exact discrete linear re-

formulation of the quadratic assignment problem”, Technical

Report, Abo Akademi University (2011).

 [43] M. Fischetti, M. Monaci, and D. Salvagnin, “Three ideas for

the quadratic assignment problem”. CPAIOR 2011, ZIB report
11‒20, 9/13 (2011).

 [44] A. Brüngger, A. Marzetta, J. Clausen, and M. Perregaard,
“Joining forces in solving large-scale quadratic assignment prob-

lems in parallel”, Proceedings of the 11th International 9Sympo-

sium on Parallel Processing, 418–426 (1997).

 [45] K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth, “Solving
large quadratic assignment problems on computational grids”,

Mathematical Programming 91(3), 563‒588 (2002).
 [46] Y. Li and P.M. Pardalos, “Generating quadratic assignment test

problems with known optimal permutations”, Computational

Optimization and Applications 1(2), 163‒184 (1992).
 [47] P. Ji, Y. Wu, and H. Liu, “A solution method for the quadratic

assignment problem (QAP)”, The 6th International Symposium

on Operations Research and Its Applications, Xinjiang, China,

106‒117, (2006).
 [48] A. Misevicius, “An implementation of the iterated tabu search

algorithm for the quadratic assignment problem”, OR Spectrum,

34(3), 665‒690 (2012).
 [49] E.D. Taillard and L.M. Gambardella, “Adaptive memories for

the quadratic assignment problem”, 1997.

 [50] T. Stützle, “MAX-MIN ant system for quadratic assignment

problems”, Research Report AIDA‒97‒04, Department of Com-

puter Science, Darmstadt University of Technology, Germany

(1997).

 [51] A. Bölte and U.W. Thonemann, “Optimizing simulated annealing

schedules with genetic programming”, European Journal of Op-

erational Research 92(2), 402 – 416 (1996).

 [52] C. Fleurent, Jacques, and J.A. Ferland, “Genetic hybrids for the
quadratic assignment problem”, DIMACS Series in Mathematics

and Theoretical Computer Science, American Mathematical So-

ciety, 173–187 (1993).

 [53] J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical tuto-

rial on the use of nonparametric statistical tests as a methodology

for comparing evolutionary and swarm intelligence algorithms”,

Swarm Evol. Comput. 1, 3‒18 (2011).

