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Abstract
Existing literature on speech activity detection (SAD) highlights different approaches within neural networks but does not 
provide a comprehensive comparison to these methods. This is important because such neural approaches often require 
hardware-intensive resources. In this article, we provide a comparative analysis of three different approaches: classification 
with still images (CNN model), classification based on previous images (CRNN model), and classification of sequences of 
images (Seq2Seq model). Our experimental results using the Vid-TIMIT dataset show that the CNN model can achieve an 
accuracy of 97% whereas the CRNN and Seq2Seq models increase the classification to 99%. Further experiments show that 
the CRNN model is almost as accurate as the Seq2Seq model (99.1% vs. 99.6% of classification accuracy, respectively) but 
57% faster to train (326 vs. 761 secs. per epoch).

Keywords  Visual speech activity recognition · Convolutional neural networks · Recurrent neural networks

1  Introduction

The task of detecting speech is typically referred to as voice 
activity detection (VAD) or speech activity detection (SAD) 
in the existing literature. SAD can be considered as classify-
ing a video frame or image as speech or non-speech. Tradi-
tional approaches have often used audio signals for SAD but 
in the recent literature, approaches either involve the use of 
video signals or a combination of both (audio and video). 
In noisy environments, non-speech can often be classified 
as speech due to an increase in noise (Le Cornu and Milner 
2015; Ariav and Cohen 2019; Sharma et al. 2019). As a con-
sequence, recent deep learning approaches applied to SAD 
use video/images or a combination of audio and video for 
increased robustness.

In recent years, modern deep neural networks (DNNs)—
especially applied to SAD—rely on recurrent neural net-
works (RNNs) due to their ability to learn temporal dynamic 
behaviour (Ariav and Cohen 2019; Sharma et al. 2019). 

Recent literature shows that authors have opted for a combi-
nation of convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs). In this case, CNNs are used to 
learn image representations as they carry the ability to dis-
tinguish between images. But the addition of RNNs allows 
the network to learn temporal information, as it introduces 
history and information regarding the sequence Sharma et al. 
(2019).

In this article, we compare three different approaches 
in the literature for detecting whether a person is speak-
ing or not: classification based on still images (one-to-one); 
classification based on previous images (many-to-one); and 
sequence classification (many-to-many). Our results show 
that 

1.	 Using a history of images is crucial for improved per-
formance,

2.	 The many-to-one approach is marginally outperformed 
by the many-to-many approach, and

3.	 The many-to-one approach requires much less compu-
tional requirements than the many-to-many approach 
and represents the best compromise across performance 
metrics.
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2 � Literature review

Le Cornu and Milner (2015) proposed a technique to 
extract visual speech features and use them to classify 
between speech and non-speech. They compare the per-
formances of CNNs (convolutional neural networks) and 
GMMs (Gaussian mixture models). Their suggested archi-
tecture consists of 2 convolution layers (3 x 3 x 32, 3 x 3 x 
64), followed by max-pooling (2 x 2) at each convolutional 
layer with a dropout of 0.2 for convolutional layers. The 
RELU-based architecture also includes L2 regularization 
at 0.0001 and a dropout of 0.5 in the fully-connected layer 
with 512 neurons. GRID Cooke et al. (2006) is the dataset 
used in their experiments in two different scenarios. In the 
first scenario, data is split based on the ratio of 80:20 for 
training and testing respectively (speaker-independent). 
In the second scenario, data is split based on the speaker 
at the ratio of 80:20 (speaker-dependent). For speaker-
dependent, the CNN achieves an accuracy of 97.66% and 
the GMM 94.34%. For speaker-independent, the CNN 
achieves a classification accuracy of 74.68% whereas the 
GMM achieves only 70.50%. Le Cornu and Milner (2015) 
also explore temporal information in the CNN whereby the 
first and last frames of the sequence are included. How-
ever, this only resulted in a slight increase in classification 
accuracy. As a result, they suggest further exploration with 
different architectures regarding temporal information.

Sharma et al. (2019) extends the work of Le Cornu and 
Milner (2015) by exploring temporal information as sug-
gested and thus combine a CNN with an RNN. The paper 
involves visual SAD but is focused on the endpoint—when 
one stops speaking. Their architecture involves a 3-lay-
ered CNN with 5 x 5 filters with kernel sizes of 16, 32, 
and 8 respectively with a stride of 2. For every layer of 
the CNN, max-pooling(2 x 2) is added as well as a batch 
normalization layer. Two unidirectional Long-Short Term 
Memory networks (LSTMs) are added with a hidden size 
of 64. The state is then passed to a dense layer followed 
by a Softmax layer to determine the frame as speech or 
non-speech. Classification of the endpoint is based on 
the sequence, consisting of classification for each frame. 
Their network is run on multiple datasets such as GRID, 
VidTIMIT Sanderson and Lovell (2009) and a personally 
collected dataset referred to as “Indian-English dataset”. 
Similar to Le Cornu and Milner (2015), their experiments 
are run on speaker-dependent and speaker-independent 
scenarios. They compare the performance of Le Cornu 
and Milner (2015) and their suggested architecture on the 
GRID dataset. Their results show that there is an increase 
in performance with the introduction of the RNN. Their 
architecture achieves an accuracy of 92.2% in the speaker-
independent scenario as opposed to Le Cornu and Milner 

(2015) achieving only 74.68%. For speaker-dependent, 
the accuracy achieved is 96.5% which is a similar result 
achieved by Le Cornu and Milner (2015).

Wang and Wang (2019) introduced the landmark pooling 
network (LPN), which acts as an attention guide scheme to 
help the network only focus on the region of interest (ROI). 
The LPN network is provided with raw images including 
landmarks to focus on. This eliminates any pre-processing 
and computation to obtain ROI images and reduces the size 
of the network. Furthermore, allows assigning higher values 
to important locations. LPN uses a convolution layer (7 x 7 x 
64), followed by a landmark pooling layer to pull the feature 
maps. The landmark pooling layer uses 20 landmarks around 
the mouth and thus has 20 64-dimensional vectors, which 
are passed to a Fully Connected (FC) Layer. Such FC layer is 
then passed to a GRU (gated recurrent unit) with 64 hidden 
units, at which case classification (AdaGrad with a learning 
rate of 0.0001) is made via a Softmax layer.

The dataset for their network is personally collected and 
referred to as “Labelled Speech in the Wild (LSW)”. The 
dataset consists of speech and non-speech sequences with 
195 subjects and 8903 sequences. 171 subjects and 8002 
sequences are used for training and 24 subjects with 901 
sequences are used for testing. Data is augmented using ran-
dom flipping, cropping, and face movement speed to name 
a few. Their highest accuracy for their network is 79.9% 
with a network that involves LPN and CNN—using CNN 
features of the image and landmarks as input. The LPN net-
work alone achieves 72.1% compared to a CNN (one con-
volutional layer, spatial max pooling layer, GRU) achieving 
a classification accuracy of 76.7%.

Whilst most previous works focus on recognizing speech 
activity using images of the mouth region, other alterna-
tives include whole face images and whole upper body 
images. The study of Joosten et al. (2015) compared whole 
face images and mouth region found that the latter achieves 
higher classification results in both speaker-dependent and 
speaker-independent SAD. Although using the information 
of the whole face including the dynamics of eyes and cheeks 
seems intuitively useful, it remains to be demonstrated that 
whole face information is superior than mouth region fea-
tures. A recent neural-based study by Shahid et al. (2019) 
found that using whole upper body features yields prom-
ising results —because the dynamics of the arms convey 
additional information while speaking. But it remains to be 
shown that upper body features are indeed a better choice 
than mouth or face regions.

Existing literature has shown various approaches in which 
SAD can be conducted using neural networks. It has also 
highlighted that neural networks can automate the identifica-
tion of speech activity whilst outperforming other systems. 
CNNs in particular, have proven to have the ability to distin-
guish between speech and non-speech. Recently, the addition 



International Journal of Speech Technology	

1 3

of RNNs has been shown to further increase the accuracy of 
the detection. However, the literature lacks studies in pro-
viding any comparison between these approaches (Fig. 1).

3 � Visual speech detection

3.1 � Experimental design

3.1.1 � Dataset

Our experiments use the VidTIMIT dataset Sanderson and 
Lovell (2009). It consists of video and audio recordings 
of 43 individuals (19 females and 24 males) saying short 
phrases. Data was recorded over 3 sessions with a delay 
between each session to obtain different data (attire, hair-
style and beard etc.) for the same individual. Each session 
started with a head rotation sequence whilst images were 
captured. Following that, individuals were asked to recite 
some sentences whilst audio and visual data were recorded. 
For each individual and on average, 1346 images were cap-
tured during the head rotation sequence, and 1061 images 
were captured during the recitation. Thus, the total of head 
rotation images equates to 57881 and recitation images to 
45661 for a total of 103,542 images. As a result, the dataset 
provides reasonable facial images for each category (speech 
and non-speech). Although our dataset contains audio-visual 
recordings, in this paper we only use visual information. 
Therefore, all our experiments are agnostic to acoustic noise.

In our experiments, the data is split in the ratio of 
70:15:15 for training, validation and testing respectively. 
Some learning parameters across models include Adam as 
the optimizer (widely used), learning rate of 0.001, beta 1 
and 2 at 0.9 and 0.999 respectively (as suggested in Kingma 
and Ba (2014)), ReLU activations, 3-fold cross-validation, 
25 epochs, and Softmax classification.

3.1.2 � Feature extraction

Extracting ROI images from the dataset involves labelling 
the data, categorising images into one of the two categories 
(speech/non-speech). The label attached to an image is based 

on two factors: the state of the image at the given time, and 
the state of the current image based on previous images.

As the dataset includes full-face images, images involving 
the mouth region were extracted via the Haar cascade algo-
rithm (with OpenCV1)—as illustrated in Fig. 2) and accord-
ing to MouthRegion = ey ∶ ey + eh, ex ∶ ex + (ew × 2) , 
where ey = y + (eh × 2) , ex = x + ew , eh =

h

3
 , ew =

w

4
 , x 

and y represent the axes of the image, w and h represent the 
width and height of the image, and ex and ey are the starting 
points of the mouth-region as noted in Fig. 3.

The brightness and contrast of images are also altered so 
that images appear to be consistent. Due to lighting condi-
tions, race (i.e. colour) or facial feature (e.g. beard), images 
can appear to be inconsistent which can produce unneces-
sary noise in the neural networks.

3.2 � Detection of speech with still images

3.2.1 � VGG‑like model

VGG -visual geometry group Simonyan and Zisserman 
(2014) is one of the popular CNN models that has achieved 
top performances but also changed the way architectures are 
designed for the networks. Due to its simplicity, the archi-
tecture is adapted for the problem in question. However, as 
there are various versions of VGG (such as VGG-16, VGG-
19) which carry a substantial number of layers and param-
eters, the architecture requires not only time but powerful 
computers that can train such models. This is demonstrated 
in Simonyan and Zisserman (2014) where the smallest VGG 
model has over 100 million parameters. As a result, the orig-
inal architecture is adapted by a reduction in layers and sizes, 
see Fig. 4. It is denoted as

�1 = MAXPOOL(CONV(�)),

�2 = MAXPOOL(CONV(�1)),

�4 = MAXPOOL(CONV(CONV(�2))),

�6 = MAXPOOL(CONV(CONV(�4))),

� = Softmax(���⊺(��⊺�6 + ��) + ���),

Fig. 1   Steps for studying visual 
recognition of speech activity

1  https://​opencv.​org

https://opencv.org
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where � is the input image, �i are the convolutional and pool-
ing operations as in Goodfellow et al. (2016), W and b are 
the weights and biases in the fully connected (FC) layers, 
and Softmax() outputs a probability distribution of labels 
notspeaking and speaking according to P(yj) =

e
yj

∑K

k=1
eyk

.

As the number of hidden units in the FC layers 
can affect the size of the network, different sizes are 

experimented (256, 512, 1024). Initial results showed that 
the model VGG-9 achieves a classification accuracy of 
96% with 1024 hidden units in the FC layer. As a result, 
1024 hidden neurons is the set parameter in the rest of our 
experiments.

Further experiments are conducted with the inclusion 
of batch normalization and dropout. Batch normalization 
is added before the activation function as recommended in 
Ioffe and Szegedy (2015). Dropout 0.2 and 0.5 is used in 
convolutional and FC layers, respectively. Such applica-
tion is suggested by Srivastava et al. (2014) and applied 
by Le Cornu and Milner (2015); Ariav and Cohen (2019). 
Ariav and Cohen (2019) in particular, used a combination 
of both batch normalization and dropout. The stride in 
the first convolution in this model (VGG-9) is increased 
to 2. Enlarging the VGG-9 model in any shape or form 
albeit by adding batch normalization affects the resources 
required. As the network is reparameterized in each mini-
batch with batch normalization, such a process can require 
additional computational resources considering the com-
putation required for the convolution process. As a result, 
the stride of the first convolution is changed (stride = 2) 
to facilitate the memory required for the batch normaliza-
tion operation.

Fig. 2   Illustration of data 
pre-processing: raw data (top 
row), inputs to neural networks 
(bottom row)

Fig. 3   Mouth-region extraction based on proposed procedure, see text 
for details
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3.2.2 � Three‑layered CNN

Based on Le Cornu and Milner (2015), Sharma et al. (2019) 
and Tao and Busso (2019), smaller networks—including 
3 layers of convolution—are also experimented as a com-
parison. As commented in Sect. 2, smaller networks have 
proven to achieve reasonable accuracy. Adapting to smaller 
networks can also improve training and prediction times. In 
this case, the network still utilises 3 x 3 filters, and with an 
incremental number of filters (i.e 32, 64, 128). The same 
parameters and regularization techniques (batch normali-
zation and dropout) are utilised as the VGG-9 architecture 
described previously.

3.3 � Detection of speech with sequences of images

The previous subsection discussed the identification of 
speech via still images. That is, considering an image at a 
given time if the image belongs to the category of speech or 
non-speech. In this subsection, detection of speech is iden-
tified based on sequences of images. This section aims to 
find the effects of adding history/sequence of images in the 
detection of speech by comparing the performance of neural 
models with or without history. Two different but related 
architectures are studied: first, a sequence of images is clas-
sified based on previous images (referred to as Encoder); 
and second, classification of multiple images in a sequence 
(referred to as Encoder-Decoder).

3.3.1 � Classification based on previous images: encoder

Sharma et al. (2019) and Wang and Wang (2019) used a 
combination of CNN and RNN to form a unified model. 
In this case, the CNN model may be an existing one (such 
as VGG or Xception) or may follow its architecture. This 
type of architecture is also referred to as CRNN (convolu-
tional recurrent neural network.) The recurrent layers are 
used to encode the individual information of a sequence 
to support classification based on previous images. This 

architecture that takes recurrent layers into account is 
referred to as Encoder.

In this architecture, the CNN is derived from the archi-
tecture described in Sect. 3.2 (‘3-Layered CNN’). Com-
bining the 3-layered CNN with an RNN allows us to carry 
out a fair comparison, as well as to examine the effect 
of combining an RNN on top of a CNN, see Fig. 5. The 
CRNN is denoted as

where �t is the image at time t, �i are the convolutional 
and pooling operations, GRU​ is a fast implementation of 
the RNN proposed by Cho et al. (2014)—from  Chollet 
(2015)—to generate hidden states �t , and y are the output 
predictions.

Our encoder is implemented with a single GRU layer 
with 1024 hidden units. The GRUs of  Cho et al. (2014) are 
employed—as opposed to the LSTMs of Hochreiter and 
Schmidhuber (1997)—as GRUs require less computation 
(due to fewer parameters) than LSTMs whilst achieving 
similar results Jozefowicz et al. (2015). Various authors, 
including Limet al. (2016), utilise 1024 units for recur-
rent layers to make the network small and compact. Our 
experiments are based on CuDNNGRUs as they provide up 
to 7.2x faster training than standard GRUs Braun (2018).

For CRNN models, the batch size is reduced to 32 as 
training with a batch size of 64 leads to slower training. 
Similarly, the sequence size for the CRNN models is up 
to sequence size of 10. Nonetheless, different sequence 
lengths are examined to find the optimal result and under-
stand the difference in performance and accuracy. The 
CNN in this architecture is wrapped in a Time Distrib-
uted Layer, which introduces introducing a fifth dimen-
sion (time) and allows each image to be a timestamp in 
the sequence.

�1 = MAXPOOL(CONV(�t)),

�2 = MAXPOOL(CONV(�1)),

�3 = MAXPOOL(CONV(�2)),

� = Softmax(GRU(�t−1, �3)),

Fig. 4   VGG architecture (VGG-9)
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3.3.2 � Classification of multiple images: encoder‑decoder

Ariav and Cohen (2019), Soh (2016) and Wang et  al. 
(2016) implemented an existing CNN model for image 
representation where models such as VGG are used to 
obtain embeddings from images. RNNs in the form of 
LSTMs are later attached for sequence learning. We refer 
to this architecture as CNN-RNN, which is usually asso-
ciated with an encoder-decoder neural net. Soh (2016), 
Donahue et al. (2015), Venugopalan et al. (2015) and Vin-
yals et al. (2015) used a separate set of recurrent layers in 
which the first set of recurrent layer(s) act as an encoder, 
whilst the latter set of recurrent layer(s) pose as a decoder.

In our CNN-RNN models, the learned representations 
(image embeddings) are derived from Xception Chollet 
(2017). Xception is a more recent model based on Incep-
tion Szegedy et al. (2016) but with a smaller number of 
parameters and better classification accuracy than its 
predecessors. Opting for Xception would provide faster 
prediction times as it is one of the smallest models avail-
able. Furthermore, Xception has a higher top-1 and top-5 
accuracy than other popular CNN models Filonenko et al. 
(2017).

However, Ariav and Cohen (2019) found that using 
existing CNNs may affect system performance as SAD is a 
binary classification, and large networks (such as VGG and 
Inception) are predominantly used for large datasets with a 
large number of classes. Thus, the Encoder and Encoder-
Decoder models in our experiments are studied with both 
CNN-RNN and CRNN architectures to identify the impact 
of using embeddings from existing CNN architectures, see 
Fig. 6. The CRNN encoder-decoder is denoted as

where �t is the input image at time t, �i are the convolu-
tional and pooling operations, GRU​ is a fast implementation 
of the RNN proposed by Cho et al. (2014)—from  Chollet 
(2015)—to generate hidden states �t , BatchNorm normalises 
the learned weights as in Ioffe and Szegedy (2015), and y are 
the output predictions.

Like the encoder, the encoder-decoder uses GRUs with 
1024 hidden units to keep the models comparable. In 
terms of the number of GRU cells, this is dependent on 
the length of the sequence. Li et al. (2019) found that batch 
normalization is useful for Encoder-Decoder architectures. 
As a result batch normalization is applied to all Encoder-
Decoder models in our experiments.

The batch size for CNN-RNNs is kept the same as 
for CNNs at 64, as increasing the batch size any further 
can cause memory-related issues, especially for larger 
sequences. To keep the models comparable, sequence 
length for CNN-RNNs is up to 10 with various sizes 
experimented (PC used in all experiments: CPU = Intel 
Skylate i7 - 6700HQ, GPU = NVidia GTX 960M, RAM 
= 16GB).

�1 = MAXPOOL(CONV(�t)),

�2 = MAXPOOL(CONV(�1)),

�3 = MAXPOOL(CONV(�2)),

�enc
t

= BatchNorm(GRU(�enc
t−1

, �3),

�dec
t

= BatchNorm(GRU(�dec
t−1

, �enc
t

),

� = Softmax(�dec
t

),

Fig. 5   The Encoder architectures
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4 � Results

4.1 � Results of still images

In Table 1, the architecture on the left shows the adjusted 
VGG-9 architecture described in Sect. 3.2. It achieved an 
accuracy of 97.08%. The average training time was 163.16 
seconds (per epoch) with an average prediction time of 
9.69 milliseconds. With the addition of batch normaliza-
tion and dropout, there is an increase in accuracy of 1% 
from the initial model mentioned previously.

With the smaller network (3-layered CNN), batch 
normalization seemed useful in increasing the speed of 
learning as suggested by Ioffe and Szegedy (2015), but did 
not aid in the performance of the network and thus batch 

normalization was discarded. Similarly, our experimental 
results show that in a smaller network, having multiple FC 
layers does not improve the accuracy, but with a single FC 
layer the network performs better. Ultimately, the smaller 
network (3-layered CNN) achieved the highest accuracy 
of 97.21% with a loss of 0.075. This smaller architecture 
outperforms its counterpart (VGG-9) in all aspects includ-
ing classification accuracy and training & prediction times.

4.2 � Results of sequences of images

Table 2 shows classification accuracies of Encoders and 
Encoder-Decoders with varying sequence lengths. As 
noted, all four architectures achieve reasonable results and 
there is a marginal difference between the accuracy of the 
models. However, for sequence-based classification, the 
results show that the sequence size needs to be at least 3 

Fig. 6   The Encoder-Decoder 
architecture

Table 1   Comparison of results 
of the two CNN architectures

Properties/architecture VGG-9 (adjusted, 3-Layered CNN
see Sect. 3.2.1) (see Sect. 3.2.2)

Number of conv layers 6 Layered 3-layered
Filter size 64,128,256,256,512,512 32,64,128
Normalization/ Batch norm
Regularization Dropout(0.2) Dropout(0.25,0.5)
Classification accuracy 0.9708 0.9721
Train time (on avg. per epoch) 163.16 s 155.92 s
Test time (on avg. per image) 9.69 ms 5.865 ms
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or more to outperform the CNN classification accuracy of 
97.21% (reported above). Furthermore, with sequences of 
images ≥ 5, all architectures outperform the CNN models.

With regard to image classification based on previous 
images, the CRNN architecture achieved the highest accu-
racy of 99.14%. Its counterpart for sequence classifica-
tion—CRNN with Encoder-Decoder—achieved the high-
est accuracy of 99.61%. These results show that in this 
problem domain, using large CNN architectures for feature 
learning can decrease accuracy over using smaller (and 
domain-specific) architectures for sequence classification.

It can also be noted that the CRNN-based encoder-
decoder architecture does provide the highest network 
accuracy but requires an increase in history (sequence 
size). At lower sequence sizes, the Encoder models achieve 
greater accuracy compared to the Encoder-Decoder 
models.

Setting the sequence length as a hyperparameter high-
lighted that increasing the sequence length has a positive 
effect on the accuracy of the network (as the network has 
more data in history for classification). However, in the case 
of CRNNs at sequence length 10, there is no increase in 
accuracy from the previous size. Zhang et al. (2017) found 
that after a certain size increase in sequence size can make 
it more difficult for the network to predict the right output. 
Batch normalization was found useful for the Encoder-
Decoder models as it reduced overfitting and increased accu-
racy. However, for the Encoder models, batch normalization 
did not prove to be as beneficial.

Inspired by Sharma et al. (2019), further experiments 
were carried out by increasing the convolutional stride to 
make the network smaller, thus resulting in faster predic-
tions. Sehgal and Kehtarnavaz (2018) compared different 
strides and found that increasing stride by more than 2 can 
cause a network to be unstable and a noticeable reduction in 
classification accuracy. As a result, the stride of the CRNN 
Encoder architecture was increased to 2. The result of this 

experiment showed a reduction in training times by half but 
caused a 2% reduction in classification accuracy.

5 � Discussion

Table 3 compares the architectures that provided the highest 
accuracy for the task of SAD. As noted, the introduction of 
history increases classification accuracy, as CRNN-based 
Encoder and Encoder-Decoder architectures achieve 99% 
accuracy. Furthermore, with RNNs ability of memory, CNN 
models can be designed smaller which allows for even faster 
prediction times.

From our results in Table 3, it can be noted that classi-
fication based on previous images using the CRNN-based 
Encoder architecture provides an accuracy of 99.14% with 
3.7ms for prediction. On the other hand, the classification 
of sequences of images using the CRNN-Based Encoder-
Decoder provides the highest accuracy of 99.61% with 
5.19ms for prediction times. Both of these architectures out-
perform CNN architectures but require a history of images. 
Although the Encoder-Decoder model provides the highest 
accuracy of 99.61% it, takes almost twice as long to train 
and predict whereas the CRNN Encoder achieves 99.14% 
but offers the fastest training and prediction times. The latter 
is especially important for applications that require near-
real-time performance. This suggests that it is not worth the 
effort in using sequences of length 10 and that sequences of 
length 5 should be preferred in neural architectures applied 
to the task of SAD. In our experiments, we found marginal 
differences in the classification performance for females and 
males.

Results from Tables 2 and 3 highlight that using smaller 
networks over embeddings from existing CNN architectures, 

Table 2   Classification results of four neural networks with varying 
sequence lengths

Encoder Encoder-decoder

CNN-RNN
Seq len 1 0.9465 0.9391
Seq len 3 0.9697 0.9557
Seq len 5 0.9810 0.9642
Seq len 10 0.9857 0.9694
CRNN
Seq len 1 0.9639 0.9611
Seq len 3 0.9880 0.9846
Seq len 5 0.9914 0.9915
Seq len 10 0.9892 0.9961

Table 3   Comparison of the four architectures achieving the highest 
accuracy (best in bold)

Model VGG-9 3-layered CRNN bf CRNN
(Adjusted) CNN Encoder Encoder-

decoder

(Seq len:5) (Seq len:10)

Number of 10,286,082 18,970,114 17,402,370 23,708,162
Parameters
Classification 0.9708 0.9721 0.9914 0.9961
Accuracy
Avg. training 163.16 s 155.92 s 325.72 s 761 s
Time (per 

epoch)
Avg. predic-

tion
9.69 ms 5.86 ms 3.7 ms 5.19 ms

Time (per 
image)
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provide better accuracy and offer faster predictions. The 
CNN-RNN, in this case, took 30ms for prediction as opposed 
to the variants of CRNN that took between 3 and 5ms. The 
training times between encoder and encoder-decoder are 
significant due to the architectures and sequence sizes. The 
Encoder is a simpler network (with a single GRU layer) 
compared to the encoder-decoder which is a more complex 
network (consisting of encoding and decoding layers). In 
summary, our comparison of visual-based recognisers for 
the task of speech activity detection provides evidence to 
suggest that a CRNN-based Encoder architecture is the best 
compromise between classification accuracy and training/
test times.

6 � Conclusion and future work

This article studies speech activity detection (SAD) using 
three types of neural architectures: classification with still 
images (CNN), classification based on previous images 
(encoder), and classification of sequences of images 
(encoder-decoder). CNNs are considered to obtain baseline 
performances with two CNN variant architectures. For com-
parison, the use of sequences of images is also experimented. 
Encoder and encoder-decoder architectures were combined 
and compared with CNN-RNN and CRNN networks.

Regarding still images, our results show that the smaller 
CNN provides a higher accuracy at 97.21% whilst offering 
faster training and prediction times than a VGG-9 model. 
Regarding sequences of images, results showed that both 
RNN architectures can outperform the CNN baselines as 
they achieve 99% compared to 97% for CNNs. Furthermore, 
our results show that RNN-based architectures can be as fast 
predictors (or even faster) than CNNs.

Depending on the requirements and computational 
resources available, both of these architectures can be con-
sidered for real-time application. Although a simpler CRNN 
Encoder may not achieve the best accuracy than a complex 
network (such as an encoder-decoder), the network is still 
a justified choice. This is due to its ability to be a near top 
classifier and to provide faster prediction and training times 
than encoder-decoders.

Future work involves deployments of top speech activity 
detectors in challenging scenarios such as car infotainment 
systems or robots interacting with humans in noisy environ-
ments. Experiments using several datasets instead of one 
or two is also research that remains to be explored, which 
would reveal further information regarding the performance 
and ranking of neural architectures across datasets. Whilst 
the work above focuses on offline training, future work could 
study online training for improved system performance—
where fast training can be relevant. Last but not least, detec-
tion may utilise video and audio-based recognition from 

different sensors and tracking different/multiple parts of 
the body (mouth, face, whole upper body) for more robust 
operation in changing environments (e.g. with good/poor 
illuminating conditions).
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