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Abstract

Speaker diarization finds contiguous speaker segmentsan-an
dio stream and clusters them by speaker identity, withoinigus
a-priori knowledge about the number of speakers or enroitme
data. Diarization typically clusters speech segmentschase
short-term spectral features. In prior work, we showedtieat

ral networks can serve as discriminative feature transéosrfor
diarization by training them to perform same/different adper
comparisons on speech segments, yielding improved diemiza
accuracy when combined with standard MFCC-based models.
In this work, we explore a wider range of neural network archi
tectures for feature transformation, by adding additidagdrs
and nonlinearities, and by varying the objective functionirag
training. We find that the original speaker comparison nektwo
can be improved by adding a nonlinear transform layer, and
that further gains are possible by training the network te pe
form speaker classification rather than comparison. Owveral
achieve relative reductions in speaker error between 183 an
34% on a variety of test data from the AMI, ICSI, and NIST-RT
corpora.

Index Terms: speaker diarization, artificial neural networks,
discriminative feature extraction.

1. Introduction

Speaker diarization answers the question “who spoke when” i
a multiparty conversation, i.e., it aims to identify all sph
coming from the same speaker, without prior knowledge of
the number of speakers or samples of their speech [1, 2]. Di-
arization has been studied in various domains such as asgadc
news [3], telephone calls [4], and on spontaneous meetog ro
conversations [2, 5, 6]. The main issues in performing speak
diarization of meeting room recordings arise due to fadfiel
audio (background noise and room reverberation) and cenver
sational speaking style (short speaker turns, interrnptiand
overlaps).

State of the art systems for speaker diarization use an ag-
glomerative (bottom-up) clustering framework [7, 6]. Tées
systems typically use short-term spectral charactesissach
as Mel-frequency cepstral coefficients (MFCCSs) to repreten
vocal tract characteristics of a speaker, as features éoizdr
tion. MFCCs are not optimized for speaker discrimination as
they reflect various other factors such as channel charstatsr
ambient noises, and phonemes being spoken. To overcome this
factor-analysis based techniques, such as i-vectors,hvwdrie
popular in the speaker-verification domain, have been adapt
to the speaker diarization task [8], but so far have had sscce
only for two-party telephone conversations. The same s tru
of approaches using linear discriminant analysis (LDA) lte o
tain discriminative features [9]. In another approach [16]
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formation bottleneck (IB) features derived from an inifass
of IB diarization system [6] were used to improve MFCC-based
speaker diarization.

In prior work [11] we have proposed using an artificial neu-
ral network (ANN) trained as a classifier to extract featdoes
diarization. In order to induce speaker-discriminativatiees,
we trained the ANN classifier to perform speaker comparison:
decide whether two given speech segments belong to the same
or different speakers, and then use the input-to-hiddeght®i
learned by the network as a feature transform on test da&. Th
resulting features are combined at the level of Gaussiati-ik
hoods with the standard cepstral features, and yield sufita
error reductions on test data that is well-matched to the-tra
ing data. In this work we further explore the general idea of
ANN-induced features for diarization, by considering a evid
range of network architectures and training criteria. tinge
consider a “deeper” version of the speaker comparison mi&fwo
with added hidden layer and the ability to learn a nonlinear f
ture transform. Second, we examine an alternative ANNein
to perform speaker classification (rather than comparjsas)
was previously explored for the speaker verification tasq.[1
Finally, we consider an auto-associative network (autogeq
as a baseline for ANN-based feature transform learning. The
features resulting from all these architectures are eteduby
themselves and in conjunction with baseline cepstral featu
(MFCCs), using speaker diarization on commonly used meet-
ing speech corpora.

2. ANN Features for Speaker Diarization

Artificial neural networks are extensively used in supezdis
tasks such as automatic speech recognition and speakéfiiden
cation/verification tasks. In these applications, neueivorks

are trained to predict the posterior probabilities of theidel
classes (phonemes and speakers, respectively). Theiposter
probabilities obtained from a neural network can be diyectl
used to infer the class. Another way of using neural networks
for these tasks is to use a network trained to identify thesela

as a discriminative feature extractor. Here, the activatiaf the
hidden layer prior to the final layer are used as input feature
to another classifier (such as an HMM/GMM). An example of
this approach is Tandem acoustic modeling in speech recogni
tion [13]. The motivation behind the later approach is to eom
bine the discriminative power of neural networks with thegest
of-the-art statistical systems which are typically basadte
HMM/GMM framework.

In the current work, we follow a similar approach where
we explore three different neural network architecturefeas
ture extractors for speaker diarization. The neural ndtsvare
trained to perform tasks related to speaker diarizatiooh s1$
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Figure 1: Various ANN architectures used to generate featfor speaker diarization: (a) Shallow speaker compadgdN (b) Deep

speaker comparison ANN (c) Speaker classification ANN.

speaker comparison or classification; we also investigate a
toencoding as an additional baseline.

2.1. ANNSs for speaker comparison

Following the approach in [11], we train a neural network for
classifying two given speech segments as belonging to the sa
or different speakers. We trained two such comparator rm&svo
with different numbers of hidden layers: shallow speaker
comparison networlwith two hidden layers, anddeep speaker
comparison networlvith three hidden layers.

2.1.1. Shallow speaker comparison network

Figure 1(a) shows the architecture of the shallow speak®r co
parison network. We split the input layer of the network into
two halves, left and right, to represent acoustic featuedsriy-

ing to the two speech segments being compared. The first hid-
den layer (bottleneck) is also split into two halves simiiar

the input layer, so each half receives input from the respec-
tive input segment. We tie the weight matrices (denoted by
Wi in Figure 1(a)) connecting the right and left halves of input
and hidden layers so that the network learns a common trans-
form for all speakers. The second hidden layer connects both
halves of the first hidden layer to the output layer. The outpu
layer has two units denoting the class labels—-same orrdiffe

2.1.2. Deep speaker comparison network

The deep speaker comparison network contains three hidden
layers. When compared to shallow speaker comparison ANN, it
contains an extra hidden layer before the bottleneck ldyeam(
which features are extracted). As a result, the featureaeet
from this network (activations at the bottleneck layer) emp a
nonlinear transform before the bottleneck layer (secodddn
layer). The architecture of the network is shown in Figutg) 1(

It is similar to that of the network shown in Figure 1(a) excep
that it has an extra hidden layer before the layer from whieh t
features are extracted. As before, the left and right halése
hidden layer weights up to the bottleneck are tied.

Once the network is trained the features are extracted by
feeding speech segments to one (say, the left) half of the net
work and obtaining the activations from the second hiddgerla
(bottleneck layer) of the respective half before applyimg $ig-
moid nonlinearity. Below, we refer to this network and réisigl
features a®spkr-com

2.2. ANN for speaker classification

Konig et al. [12] used a multilayer perceptron (MLP) with five
layers, trained to classify speakers, as a feature extréato
speaker recognition. The MLP was discriminatively traited
maximize speaker recognition performance. They used the ou
puts from the second hidden layer (units of which had linear a

ent speakers— depending on the source of the two input speech tivation function) as features in a standard GMM-basedlsgrea

segments (segmentl, segment2 in Figure 1(a)). All the hidde
layers have sigmoid activation functions; the output ldyas

a softmax function to estimate the posterior probabilitiEthe
classes (same/different). The network is trained usingaser
entropy objective function.

After training the network, we use the first hidden layer ac-
tivations, before applying the sigmoid function, as feasufor
speaker diarization in a HMM/GMM system. To generate fea-
tures from the network, we use a window of speech as input
to one half of the input layer and extract activations at the c
responding half of the bottleneck layer. Also, since the fea
tures are extracted from the first hidden layer before apglyi
the sigmoid nonlinearity, they represent a linear tramsforf
the MFCC vector at the input. Below we refer to this network
and resulting features apkr-com

recognition system.

In the current work, we trained a similar network with
speakers as output classes as shown in Figure 1(c). The net-
work is trained by providing a frame along with its context as
input and the corresponding speaker as the output clask labe
The output layer has a softmax function to estimate the poste
rior probability of the speaker. The second hidden layetti®o
neck) has linear activation functions, and the units in &gt of
the hidden layers have sigmoid nonlinearities.

After training the network, the hidden layer activations ob
tained from the bottleneck layer (second hidden layer) aeglu
as features in speaker diarization. The network performma n
linear transform of the input features as they are fed tHnoug
sigmoid activation function in the first hidden layer. Weereto
this ANN and the resulting features gigkr-class
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Figure 2: Autoencoder: The network reconstructs the center
frame of the input (center frame + context) at the output taye

2.3. Autoencoder ANN

Autoencoders are used in the literature to generate feipre-
sentations and for nonlinear dimensionality reductior].[ ¥
autoencoder encodes the input in a representation whichrin t
is used to reconstruct the input. Therefore, in trainingdbe

put targets are the inputs themselves. In the current woek, w
use an autoencoder with three hidden layers, as depictéd-in F
ure 2. Unlike in standard autoencoders, the input comprises
just the current frame but also includes a window of context a
used by the other network architectures presented eatthisr;
ensures that all networks have the same input information at
their disposal. The network is trained to reconstruct threecu
frame at the output with as little reconstruction error asgilale,

as measured by mean squared error.

Once the network is trained, the features are generated by
giving an input frame with its context as input to the network
and obtaining the activations of the second hidden layer be-
fore applying the sigmoid nonlinearity. Similar to deepaier
comparison and speaker classification ANNs, this network pe
forms a nonlinear transform of the input features, albethwi
an objective function that is not directly related to theadqm
diarization task. In the experiments described later wer rief
this network and features asitoen

3. Experiments and Results
3.1. Data sets

Our experiments make use of meeting room recordings from
several corpora: AMI [15], ICSI [16], and 2006/2007/2009
NIST-RT [17]. Table 1 summarizes the characteristics oé¢he
data sets. The AMI data set is split into train and test sets of
148 and 12 meetings, respectively, such that they are disjoi
in speakers. Out of the ICSI corpus, 20 meetings are set aside
for development and tuning (“dev”), and the remaining 55IICS
meetings form an additional test set. The combined 20067,200
and 2009 NIST-RT evaluation sets are also used for testing.

3.2. ANN training

We trained the ANNs using data from the AMI corpus. To
avoid skewing the training towards particular speakerssave-

pled 50 utterances from each of 138 speakers used for tgainin
Each utterance has a duration of around 10 seconds. We manu-
ally aligned speech transcripts to the close-talking nghome
recordings to obtain frame-level speaker labels. For itngin

Table 1:Meeting corpus statistics as used in experiments.

Corpus Speakers| Sites Meetings
Train | Dev | Test
AMI 150 3 148 - 12
ICSI 50 1 - 20 55
NIST-RT 100 6 - - 24

purposes we removed speech segments containing overdappin
speech. Forinput features we extracted 19 MFCCs from a frame
of 30 ms with a frame increment of 10 ms. The features are
extracted from the audio signal captured by one of the single
distant microphones (SDM) used to record the meetings.

The objective function for the ANN training was cross-
entropy for the speaker comparison (both shallow and deep)
and speaker classification networks and mean square error fo
the autoencoder network. Training used error backpropagat
and stochastic gradient descent for 25 epochs. The ANNSs are
trained with inputs with different context lengths and the o
timal context for each network is obtained by minimizing di-
arization error on the ICSI development set. The dimensfon o
the feature extraction (bottleneck) layer is fixed to 20 inttee
networks to be similar to that of the MFCCs. The dimension of
the second hidden layer for deep speaker comparison (Dspkr-
com), speaker classification (spkr-class) and autoensdder
toen) is fixed to 512 (for each half in case of Dspkr-com). The
dimension of the last hidden layer in all the networks is fited
100. The number of output units is two in speaker comparison
ANNSs (both Dspkr-com & spkr-com), 138 in speaker classifi-
cation ANN (spkr-class), and 19 for the autoencoder (aytoen

When sampling training data for the ANNs, we allow the
input window to contained speech from a single speaker only.
In testing, on the other hand, the context part of the input wi
dow might contain nonspeech and speech from other speakers.
In separate experiments, we did try presenting test-likerbe
geneous speech input during training as well, but found the
results to be worse. Therefore, it seems that pure, speaker-
homogeneous training data is more important than the mis-
match between training and test conditions that this entail

3.3. Speaker diarization experiments

We now report the speaker diarization results based on the
bottleneck features obtained using the various ANN archite
tures. All bottleneck features are compared against the-bas
line 19-dimensional MFCC features. The MFCCs are extracted
from the single distant microphone (SDM) audio signal of
the meetings. The speaker diarization system is based on the
HMM/GMM framework [7] that has been shown to give state-
of-the-art performance in several NIST-RT evaluationse @h
arization output is evaluated using a metric called digiora
error rate (DER), which is the standard metric used in NIST-R
evaluations [18]. DER is the sum of speech/non-speech error
and speaker error. Speech/non-speech error is the sum ®f mis
and false alarm errors by the automatic speech/non-speech d
tection system. Speaker error is the portion of speech tone f
which the speaker is labeled incorrectly (under the bestiptes
mapping of output to true speaker labels). A forgiveness col
lar of +0.25 seconds is applied around the reference segment
boundaries while scoring the automatic systems’ outputcei

all comparisons between systems involve a shared speech/no
speech segmentation (which is either the reference or a@ftom
ically determined) we will be reporting only speaker errgr fi



Table 2:Optimal context length (cntxt) in the number of frames
and optimal feature stream weights (used while combinirlg wi
MFCCs) for different ANN features (bnck-wt) based on tuning

Table 4: Speaker errors on test data sets after combining dif-
ferent bottleneck features with MFCCs. The final row shows
results with automatic speech activity detection.

experiments on the ICSI dev set. M+ M+ M+ M+
ANN spkr-com | Dspkr-com | spkr-class| autoen Test-set spkr- Dspkr- spkr- autoen MFCC
cntxt 20 10 10 50 com com class
bnck-wt 0.5 0.1 0.7 0.9 AMI-test 19.7 23.1 19.2 24.9 24.8
ICSI-test 18.5 15.6 131 211 19.8
NIST-RT 17.3 11.7 11.9 14.3 14.3
Table 3:Speaker errors on test data sets for various bottlengchlIST-RT-SAD |  16.0 113 12.2 12.7 14.2
features.
Test-set | spkr-com | Dspkr-com | spkr-class| autoen| MFCC
AMI-test 22.9 21.8 29.3 25.9 24.8 shows that the autoencoder bottleneck features are natroapt
ICSI-test 23.1 24.3 19.8 20.9 19.8 information that is complementary to MFCCs. The combimatio
NIST-RT 21.3 20.4 215 125 14.3 of MFCCs with speaker classification features (M+spkrsjas
produces a significant decrease in speaker error on alldtst s
and the largest error reduction on the ICSI test set (34% rela
ures here. tive).

To identify the optimal input context length for ANNs to
generate features for diarization, we performed tuningegxp
ments on the ICSI dev meetings. The optimal context lengths
for the various ANN architectures are summarized in thersgco
row of Table 2, and were subsequently used in all experiments

Table 3 shows the speaker errors for different bottleneck
features and the MFCC baseline features. In these expggmen
we use speech regions obtained from ground-truth segnmmtat
as input to the speaker diarization system.

We observe from Table 3 that the bottleneck features from
shallow (spkr-com) and deep (Dspkr-com) speaker compariso
ANNSs give lower speaker error than MFCC features on AMI
test data and increase the error on ICSI-test and NIST-RT dat
sets. Note that AMI-test is drawn from the same corpus as the
ANN training set, and is therefore best matched to the tgini
condition (though the speakers are disjoint). Bottleneckures
from the autoencoder, by contrast, produce lower error on RT
test data. The bottleneck features obtained from the speake
classification ANN increase error on all but the ICSI test bet
summary, we find that none of the ANN features by themselves
perform consistently better than MFCCs.

In spite of this initially disappointing result, we can hype
esize that the bottleneck features capture some inform#tet
is complementary to that in the MFCC features, and could stil
be helpful for speaker diarization when combined with thegba
line features. To test this hypothesis, we combine the MFCC
features with bottleneck features at the model level [18p-s
arate GMM models are estimated for each feature stream, for
every cluster (state), and the overall cluster log-liketitis are
obtained as a weighted combination of the log-likelihoods a
cording to individual feature streams. The combinationglves
sum to unity and are fixed by tuning speaker error on the ICSI
dev data. The third row (bnck-wt) of Table 2, shows the op-
timized weights assigned to bottleneck features for thé var
ous ANNSs types; these are subsequently used while perfgrmin
multistream diarization on the test sets.

Table 4 shows the results obtained using combined MFCC
and ANN features. We observe that the combination M+Dspkr-
com decreases the speaker error on all test sets when campare
to the MFCC features. It also performs better than the M+spkr
com combination on all the test sets except on the AMI-test se
The combination of MFCCs and autoencoder bottleneck fea-
tures (M+autoen) does not show significant changes from the
single stream autoencoder system (cf. autoen in Table 3% Th

Finally, we also perform speaker diarization experiments
using speech regions obtained from an automatic speech/non
speech detection system, which is the more realistic agpplic
tion scenario. We perform these experiments on the NIST-RT
data set. Speech activity detection (SAD) is performedgusin
the SHOUT toolkit [20]. The total speech/non-speech error
was 7.7%, which includes a missed speech error of 7.3% and
a false alarm error of 0.4%. The results in the last row of Ta-
ble 4 (NIST-RT-SAD) show that the combination of MFCCs and
deep speaker comparison features gives the best diarizatte
put, reducing the speaker error from 14.2% (MFCCs) to 11.3%.

4. Conclusions

Our results confirm the effectiveness of ANN-trained featur
transforms for speaker diarization and show improvemergs o
previous work. Adding an additional, nonlinear hidden fatpe
the ANN trained for speaker comparison results in substhnti
error reduction over the earlier, linear-transform ANNtgas.
In particular, it yields improvements over the baseline dbr
our test sets, both matched (AMI and ICSI) and mismatched
(NIST-RT); all improvements are obtained by combining &-an
formed and baseline features (MFCCs) at the level of model
likelihoods. Speaker error on NIST-RT test data processdd w
automatic speech activity detection is reduced by 20%ivelat
An alternative training criterion (first suggested for dpa
verification [12]) induces a nonlinear feature transforntriayn-
ing the ANN to perform speaker classification, and also tssul
in error reductions over baseline; though the improvements
NIST-RT data are not as large as with speaker comparisan trai
ing. For additional comparison, we also trained a bottlenec
feature extractor based on autoencoder ANNs. While the re-
sulting bottleneck features give some gains over the basel
RT data, they do not improve in combination with the baseline
and are worse than multistream features based on speaker com
parison and classification training, confirming the impoce
of discriminative training related to the diarization task
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