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1 Introduction

Hou, Xue, and Zhang (HXZ, 2014) propose an empirical q-factor model that largely describes the

cross section of average stock returns. Most (but not all) of the anomalies that plague the Fama-

French (1993, 1996) three-factor model can be captured. The q-factor model says that the expected

return of an asset in excess of the risk-free rate is described by the sensitivities of its returns to the

market factor, a size factor, an investment factor, and a profitability (return on equity, ROE) factor:

E[Ri]−Rf = βi
MKTE[MKT] + βi

MEE[rME] + βi
I/A E[rI/A] + βi

ROEE[rROE], (1)

in which E[Ri] − Rf is the expected excess return, E[MKT], E[rME], E[rI/A], and E[rROE] are

expected factor premiums, and βi
MKT, β

i
ME, β

i
I/A, and βi

ROE are the corresponding factor loadings.

Subsequent to our work, Fama and French (FF, 2014a) incorporate variables that resemble our

investment and ROE factors into their three-factor model to form a five-factor model.1 Motivating

their new factors from valuation theory, FF show that the five-factor model outperforms their orig-

inal three-factor model in a set of testing portfolios formed on size, book-to-market, investment,

and profitability (the same variables underlying their new factors). FF (2014b) extend their set of

testing portfolios to include accruals, net share issues, momentum, volatility, and the market beta,

which are a small subset of the comprehensive universe of nearly 80 anomalies in HXZ (2014). How-

ever, FF do not compare the performance of their five-factor model with that of the q-factor model.

We provide a direct comparison between the q-factor model and the FF five-factor model on

both conceptual and empirical grounds. The q-factors are constructed from a triple (2×3×3) sort on

size, investment-to-assets, and ROE, whereas the new FF RMW (robust-minus-weak profitability)

1The first draft of HXZ (2014) appears in October 2012 as NBER working paper 18435. More generally, this
work is a new incarnation of the previous work circulated under various titles, including “Neoclassical factors”
(as NBER working paper 13282, dated July 2007), “An equilibrium three-factor model (dated January 2009),”
“Production-based factors (dated April 2009),” “A better three-factor model that explains more anomalies (dated
June 2009),” and “An alternative three-factor model (dated April 2010).” The economic insight that investment
and profitability are fundamental forces in the cross section of expected stock returns in investment-based asset
pricing first appears in NBER working paper 11322, titled “Anomalies,” dated May 2005. For comparison, the FF
(2013, 2014a) work is first circulated in June 2013. Their 2013 draft adds only a profitability factor to their original
three-factor model, and the 2014 draft subsequently adds an investment factor.
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and CMA (conservative-minus-aggressive investment) factors are from double (2×3) sorts by inter-

acting size with operating profitability and investment. More important, whereas our ROE factor

is from monthly sorts on ROE, RMW is from annual sorts on operating profitability. The bench-

mark construction of the q-factor model is motivated from the neoclassical q-theory of investment,

which says that ROE forecasts returns to the extent that it forecasts future ROE. Because the most

recently announced quarterly earnings contain the latest information on future ROE, it seems most

efficient to use the latest earnings data in our monthly sorted ROE factor. In contrast, the annually

formed RMW seems less efficient because it is based only on earnings from the last fiscal year end.

We raise four concerns with the motivation of the FF (2014a) five-factor model based on valu-

ation theory. First, FF derive the relations between book-to-market, investment, and profitability

only with the internal rate of return (on expected dividends), which is the long-term average

expected return. These relations do not necessarily carry over to the one-period-ahead expected re-

turn. Estimating the internal rate of returns for RMW and CMA using accounting-based valuation

models, we show that these estimates differ greatly from their one-period-ahead average returns.

In particular, the estimates for the internal rate of return for RMW are often significantly negative.

Second, FF (2014a) argue that the value factor should be a separate factor based on valuation

theory, but find it to be redundant in describing average returns in the data. However, q-theory

implies that the value factor should be redundant in the presence of the investment factor. In-

tuitively, the first principle of investment says that the marginal costs of investment, which rise

with investment, equal marginal q, which is closely related to market-to-book equity. This tight

economic link implies that the value and investment factors should be highly correlated in the data.

Third, FF (2014a) motivate CMA from the negative relation between the expected investment

and the internal rate of return in valuation theory. Reformulating the Miller and Modigliani (1961)

valuation equation with the one-period-ahead expected return, we show that the theoretical rela-

tion between the expected investment and the expected return is more likely to be positive.2 As

2This relation also tends to be positive in q-theory, an insight that can be traced back to Cochrane (1991).
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such, the investment factor can only be motivated from the market-to-book term in the valuation

equation, augmented with the q-theory linkage between investment and market-to-book.

Fourth, after motivating CMA from the expected investment effect, FF (2014a) use past invest-

ment as a proxy for the expected investment. This practice is problematic. While past profitability

forecasts future profitability, past investment does not forecast future investment. In the annual

cross-sectional regressions of future book equity growth on asset growth, the average R2 starts at

5% in year one, and drops quickly to zero in year three.3 In contrast, in the annual cross-sectional

regressions of future operating profitability on operating profitability, the average R2 starts at 55%

in year one, drops to 28% in year three, and remains above 10% in year ten.

Empirically, from January 1967 to December 2013, our size, investment, and ROE factors earn

on average 0.34%, 0.44%, and 0.57% per month (t = 2.51, 5.12, and 5.21), respectively. SMB, HML,

RMW, and CMA earn on average 0.28%, 0.37%, 0.27%, and 0.36% (t = 2.02, 2.63, 2.58, and 3.68),

respectively. The five-factor model cannot capture our investment and ROE factors, leaving alphas

of 0.12% (t = 3.24) and 0.45% (t = 5.44), respectively. However, the q-factor model captures

the HML, RMW, and CMA returns, with tiny alphas of 0.04%, 0.04%, and 0.02%, respectively

(t-statistics all less than 0.5). As such, RMW and CMA are noisy versions of the q-factors.

Most important, the q-factor model outperforms the FF five-factor model empirically. Across

a list of 36 high-minus-low anomaly deciles, which earn significant average returns with New York

Stock Exchange (NYSE) breakpoints and value-weighted returns, the average magnitude of the al-

phas is 0.20% per month in the q-factor model. This estimate is lower than 0.36% in the five-factor

model and 0.33% in the Carhart (1997) model, which adds a momentum factor, UMD, to the FF

three-factor model. Seven out of 36 high-minus-low alphas are significant in the q-factor model, in

contrast to 19 in the five-factor model (21 in the Carhart model).

FF (2014a) argue that the most serious challenges for asset pricing models are in small stocks,

3This evidence on the low persistence of micro-level investment is consistent with the large empirical and theoretical
literature on lumpy investment (e.g., Dixit and Pindyck (1994), Doms and Dunne (1998), and Whited (1998)).
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which value-weighted portfolio returns in HXZ (2014) tend to underweight. To address this con-

cern, we also form testing portfolios with all-but-micro breakpoints and equal-weighted returns. We

exclude microcaps (stocks with market equity below the 20th NYSE percentile), use the remaining

stocks to calculate breakpoints, and then equal-weight the stocks within a given portfolio to give

small stocks sufficient weights. We exclude microcaps because due to transaction costs and lack of

liquidity, anomalies in microcaps are unlikely to be exploitable in practice.

The q-factor model continues to outperform the FF five-factor model. Across a set of 50 high-

minus-low anomaly deciles, which earn significant average returns with all-but-micro breakpoints

and equal-weighted returns, the mean absolute alpha is 0.24% per month in the q-factor model

and 0.41% in the five-factor model (0.40% in the Carhart model). 16 out of 50 high-minus-low

q-model alphas are significant, in contrast to 34 five-factor alphas (37 Carhart alphas). Across

different categories of anomalies, the q-factor model outperforms the five-factor model the most in

the momentum and profitability categories. However, the mean absolute alpha across all 50 deciles

is 0.13% in the q-factor model, which is slightly higher than 0.11% in the five-factor model (but

lower than 0.16% in the Carhart model). Finally, the relative performance of the q-factor model over

the five-factor model is robust to alternative constructions of the q-factors and the new FF factors.

Cochrane (1991) first applies q-theory in asset pricing. Berk, Green, and Naik (1999), Carlson,

Fisher, and Giammarino (2004), and Da, Guo, and Jagannathan (2012) use real options theory to

study expected returns. Titman, Wei, and Xie (2004) and Cooper, Gulen, and Schill (2008) show the

investment effect, Loughran and Ritter (1995) show the empirical relation between equity issues and

investment, and Ball and Brown (1968), Bernard and Thomas (1989), Haugen and Baker (1996),

and Chan, Jegadeesh, and Lakonishok (1996) show the earnings (profitability) effect. We compare q-

theory and valuation theory in terms of asset pricing implications and perform large-scale empirical

horse races between the q-factor model and the FF five-factor model in “explaining” anomalies.

The rest of the paper unfolds as follows. Section 2 describes all the factors. Section 3 compares
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the q-factor model and the FF five-factor model on conceptual grounds, and Section 4 on empirical

grounds. Section 5 concludes. A separate Internet Appendix furnishes supplementary results.

2 New Factors

We construct the new factors in Section 2.1, and document their properties in Section 2.2.

2.1 Factor Construction

Monthly returns are from the Center for Research in Security Prices (CRSP) and accounting infor-

mation from the Compustat Annual and Quarterly Fundamental Files. The sample is from January

1967 to December 2013. Financial firms and firms with negative book equity are excluded.

2.1.1 The q-factor model from HXZ (2014)

The size, investment, and ROE factors are constructed from a triple (2 × 3 × 3) sort on size,

investment-to-assets (I/A), and ROE. Size is the market equity, which is stock price per share

times shares outstanding from CRSP, I/A is the annual change in total assets (Compustat annual

item AT) divided by one-year-lagged total assets, and ROE is income before extraordinary items

(Compustat quarterly item IBQ) divided by one-quarter-lagged book equity.4

At the end of June of each year t, we use the median NYSE size to split NYSE, Amex, and

NASDAQ stocks into two groups, small and big. Independently, at the end of June of year t, we

break stocks into three I/A groups using the NYSE breakpoints for the low 30%, middle 40%, and

high 30% of the ranked values of I/A for the fiscal year ending in calendar year t− 1. Also, inde-

pendently, at the beginning of each month, we sort all stocks into three groups based on the NYSE

breakpoints for the low 30%, middle 40%, and high 30% of the ranked values of ROE. Earnings

data in Compustat quarterly files are used in the months immediately after the most recent public

4Book equity is shareholders’ equity, plus balance sheet deferred taxes and investment tax credit (Compustat
quarterly item TXDITCQ) if available, minus the book value of preferred stock. Depending on availability, we use
stockholders’ equity (item SEQQ), or common equity (item CEQQ) plus the carrying value of preferred stock (item
PSTKQ), or total assets (item ATQ) minus total liabilities (item LTQ) in that order as shareholders’ equity. We use
redemption value (item PSTKRQ) if available, or carrying value for the book value of preferred stock. This book
equity measure is the quarterly version of the annual book equity measure in Davis, Fama, and French (2000).

5



quarterly earnings announcement dates (Compustat quarterly item RDQ). For a firm to enter the

factor construction, we require the end of the fiscal quarter that corresponds to its announced

earnings to be within six months prior to the portfolio formation month.

Taking the intersection of the two size, three I/A, and three ROE groups, we form 18 portfolios.

Monthly value-weighted portfolio returns are calculated for the current month, and the portfolios

are rebalanced monthly. The size factor is the difference (small-minus-big), each month, between

the simple average of the returns on the nine small size portfolios and the simple average of the

returns on the nine big size portfolios. The investment factor is the difference (low-minus-high),

each month, between the simple average of the returns on the six low I/A portfolios and the simple

average of the returns on the six high I/A portfolios. Finally, the ROE factor is the difference

(high-minus-low), each month, between the simple average of the returns on the six high ROE

portfolios and the simple average of the returns on the six low ROE portfolios.

HXZ (2014) start their sample in January 1972, which is restricted by the limited coverage

of earnings announcement dates and book equity in Compustat quarterly files. We construct the

q-factors following their procedure from January 1972 to December 2013. Because FF (2014a) start

their sample in July 1963 using only Compustat annual files, to make the samples more comparable,

we extend the starting point of the q-factors sample to January 1967.

In particular, to overcome the lack of coverage for quarterly earnings announcement dates, we

use the most recent quarterly earnings from the fiscal quarter ending at least four months prior to

the portfolio formation month. To expand the coverage for quarterly book equity, we use book eq-

uity from Compustat annual files and impute quarterly book equity with clean surplus accounting.

We first use quarterly book equity from Compustat quarterly files whenever available. We then

supplement the coverage for fiscal quarter four with book equity from Compustat annual files.5

5Following Davis, Fama, and French (2000), we measure annual book equity as stockholders’ book equity, plus
balance sheet deferred taxes and investment tax credit (Compustat annual item TXDITC) if available, minus the
book value of preferred stock. Stockholders’ equity is the value reported by Compustat (item SEQ), if available.
Otherwise, we use the book value of common equity (item CEQ) plus the par value of preferred stock (item PSTK),
or the book value of assets (item AT) minus total liabilities (item LT). Depending on availability, we use redemption
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If neither estimate is available, we apply the clean surplus relation to impute the book equity.

We first backward impute the beginning-of-quarter book equity as the end-of-quarter book equity

minus quarterly earnings plus quarterly dividends.6 Because we impose a four-month lag between

earnings and the holding period month (and the book equity in the denominator of ROE is one-

quarter-lagged relative to earnings), all the Compustat data in the backward imputation are at

least four-month lagged relative to the portfolio formation month.

If data are unavailable for the backward imputation, we impute the book equity for quarter t for-

ward based on book equity from prior quarters. Let BEQt−j , 1 ≤ j ≤ 4, denote the latest available

quarterly book equity as of quarter t, and IBQt−j+1,t and DVQt−j+1,t be the sum of quarterly earn-

ings and quarterly dividends from quarter t− j+1 to t, respectively. BEQt can then be imputed as

BEQt−j +IBQt−j+1,t−DVQt−j+1,t. We do not use prior book equity from more than four quarters

ago (1 ≤ j ≤ 4) to reduce imputation errors. We start the sample in January 1967 to ensure that

all the 18 benchmark portfolios from the triple sort on size, I/A, and ROE have at least ten firms.

2.1.2 The FF Five-factor Model

FF (2014a) propose a five-factor model:

E[Ri]−Rf = biE[MKT] + siE[SMB] + hi E[HML] + riE[RMW] + ci E[CMA]. (2)

MKT, SMB, and HML are the market, size, and value factors that first appear in the FF (1993)

three-factor model. The two new factors resemble our q-factors. RMW is the difference between

the returns on diversified portfolios of stocks with robust and weak profitability, and CMA is the

difference between the returns on diversified portfolios of low and high investment stocks.

Following Novy-Marx (2013), FF (2014a) measure (operating) profitability (OP) as revenues

value (item PSTKRV), liquidating (item PSTKL), or par value (item PSTK) for the book value of preferred stock.
6Quarterly earnings are income before extraordinary items (Compustat quarterly item IBQ). Quarterly dividends

are zero if dividends per share (item DVPSXQ) are zero. Otherwise, total dividends are dividends per share times
beginning-of-quarter shares outstanding adjusted for stock splits during the quarter. Shares outstanding are from
Compustat (quarterly item CSHOQ supplemented with annual item CSHO for fiscal quarter four) or CRSP (item
SHROUT), and the share adjustment factor is from Compustat (quarterly item AJEXQ supplemented with annual
item AJEX for fiscal quarter four) or CRSP (item CFACSHR).
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(Compustat annual item REVT) minus cost of goods sold (item COGS), minus selling, general, and

administrative expenses (item XSGA, zero if missing), minus interest expense (item XINT, zero if

missing) all divided by book equity for the fiscal year ending in calendar year t−1. Essentially, OP

is OIt−1/BEt−1, in which OIt−1 is operating income for the fiscal year ending in calendar year t−1,

and BEt−1 is the book equity. However, OIt−1/BEt−1 = (OIt−1/BEt−2)/(BEt−1/BEt−2), and the

growth in book equity tends to be highly correlated with the growth in total assets, TAt−1/TAt−2.

As such, OP is a combination of annual ROE and I/A variables. Also, FF measure investment (Inv)

in the same way as our I/A, i.e., as the change in total assets from the fiscal year ending in year

t− 2 to the fiscal year ending in t− 1, divided by total assets from the fiscal year ending in t− 2.

FF (2014a) construct their factors in three different ways. The benchmark approach is based

on independent (2×3) sorts by interacting size with book-to-market (B/M), and separately, with

OP and Inv. The size breakpoint is NYSE median market equity, and the B/M, OP, and Inv

breakpoints are their respective 30th and 70th percentiles for NYSE stocks. HML is the average of

the two high B/M portfolio returns minus the average of the two low B/M portfolio returns. RMW

is the average of the two high OP portfolio returns minus the average of the two low OP portfolio

returns. CMA is the average of the two low Inv portfolio returns minus the average of the two high

Inv portfolio returns. Finally, SMB is the average of the returns on the nine small stock portfolios

from the three separate 2×3 sorts minus the average of the returns on the nine big stock portfolios.

The second approach is similar to the first approach but with the 2×3 sorts replaced with 2×2

sorts, with NYSEmedians as breakpoints for all the variables. In the third approach, FF (2014a) use

an independent quadruple (2×2×2×2) sort on size, B/M, OP, and Inv with NYSE medians as break-

points. Taking intersections yields 16 value-weighted portfolios. SMB is the average of the returns

on the eight small stock portfolios minus the average of the returns on the eight big stock portfolios.

HML is the average of the returns on the eight high B/M portfolios minus the average of the returns

on the eight low B/M portfolios. RMW is the average of the returns on the eight high OP portfolios

minus the average of the returns on the eight low OP portfolios. CMA is the average of the returns
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on the eight low Inv portfolios minus the average of the returns on the eight high Inv portfolios.

2.2 Empirical Properties

Table 1 reports the empirical properties of the new factors in the sample from January 1967 to

December 2013. From Panel A, our size, investment, and ROE factors earn on average 0.34%,

0.44%, and 0.57% per month (t = 2.51, 5.12, and 5.21), respectively. We compute the market factor

as the value-weighted market return minus the one-month Treasury bill rate from CRSP, and obtain

the data for SMB, HML, RMW, CMA, and UMD from Kenneth French’s Web site. Consistent

with HXZ (2014), the investment and ROE premiums cannot be captured by the FF three-factor

model or the Carhart four-factor model. More important, the five-factor model cannot capture the

premiums either, leaving significant alphas of 0.12% and 0.45% (t = 3.24 and 5.44), respectively.

Panel B of Table 1 reports the results for the FF new factors from the benchmark 2×3 sorts (see

Section 4.4 for their alternative sorts). Panel B shows that their SMB, HML, RMW, and CMA earn

on average 0.28%, 0.37%, 0.27%, and 0.36% per month (t = 2.02, 2.63, 2.58, and 3.68), respectively.

The Carhart alphas of RMW and CMA are 0.34% (t = 3.36) and 0.19% (t = 2.82), respectively.

More important, the q-factor model captures the average RMW and CMA returns, leaving tiny

alphas of 0.04% (t = 0.49) and 0.02% (t = 0.45), respectively. The q-factor model also captures the

HML return, leaving an alpha of 0.04% (t = 0.36). From Panel C, UMD earns on average 0.68%

per month (t = 3.65). The q-factor model captures the UMD return with a small alpha of 0.09%

(t = 0.38) and an ROE factor loading of 0.92 (t = 5.63). In contrast, the FF five-factor model

cannot capture the UMD return, with an alpha of 0.70% (t = 3.02). The RMW loading is 0.26,

which is insignificant (t = 1.26). Panel D reports correlations among the factors. Consistent with

HXZ (2014), the investment factor has a high correlation of 0.69 with HML, and the ROE factor

has a high correlation of 0.50 with UMD. The investment factor has an almost perfect correlation

of 0.90 with CMA, but the ROE factor has a lower correlation of 0.68 with RMW.
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3 Comparison on Conceptual Grounds

With the necessary background of the new factors out of the way, we are ready to compare the

q-factor model with the FF five-factor model on conceptual grounds. We first review briefly their

motivation in Section 3.1, and then raise four concerns on the FF motivation in Section 3.2.

3.1 A Brief Review

Section 3.1.1 reviews the logic of the q-factor model, and Section 3.1.2 the five-factor model.

3.1.1 Motivation for the q-factor Model

Consider a two-period q-theory model. There are two dates, t and t+1, a representative household,

and heterogenous firms, indexed by i = 1, 2, ..., N . Let Πit = Π(Ait,Xit) be the operating profits

of firm i at time t, in which Ait is productive assets, and Xt is a vector of exogenous aggregate and

firm-specific shocks. Πit is of constant returns to scale, i.e., Πit = Ait∂Πit/∂Ait, in which ∂Πit/∂Ait

is the first-order derivative of Πit with respect to Ait. The firm exits at the end of date t+ 1 with

a liquidation value of Ait+1, in which the depreciation rate of assets is assumed to be zero.

Let Iit denote investment for date t, then Ait+1 = Iit + Ait. Investment entails quadratic

adjustment costs, (a/2)(Iit/Ait)
2Ait, in which a > 0 is a constant parameter. Firm i uses

the operating profits at date t to pay investment and adjustment costs. If the free cash flow,

Dit ≡ Πit − Iit − (a/2)(Iit/Ait)
2Ait, is positive, the firm distributes it back to the household.

Otherwise, a negative Dit means external equity. At date t+1, the firm uses assets, Ait+1, to obtain

the operating profits, Πit+1, which is distributed along with Ait+1 as dividends, Dit+1. With only

two dates, the firm does not invest in date t+ 1, and the ex-dividend equity value, Pit+1, is zero.

Taking the representative household’s stochastic discount factor, Mt+1, as given, firm i chooses

Iit to maximize the cum-dividend equity value at the beginning of date t:

Pit +Dit ≡ max
{Iit}

Πit − Iit −
a

2

(

Iit
Ait

)2

Ait + Et[Mt+1(Πit+1 +Ait+1)]. (3)

10



The first principle for investment says:

1 + a
Iit
Ait

= Et

[

Mt+1

(

Πit+1

Ait+1

+ 1

)]

. (4)

The definition of Dit and equation (3) imply the ex-dividend equity value Pit = E0[M1(Πit+1 +

Ait+1)] at the optimum. The stock return is rSit+1 = (Pit+1 + Dit+1)/Pit = [Πit+1 +

Ait+1]/Et[Mt+1(Πit+1 + Ait+1)] = (Πit+1/Ait+1 + 1)/Et[Mt+1(Πit+1/Ait+1 + 1)]. The first prin-

ciple for investment in equation (4) then implies:

Et[r
S
it+1] =

Et[Πit+1/Ait+1] + 1

1 + a(Iit/Ait)
. (5)

Intuitively, firm i keeps investing until the marginal costs, 1+a(Iit/Ait), equal the expected marginal

benefit of investment, Et[Πit+1/Ait+1] + 1, discounted to date t with the expected stock return,

Et[r
S
it+1], as the discount rate. At the margin, the net present value of a new project is zero.

Equation (5) implies that investment and profitability (as a proxy for the expected profitability)

forecast returns. The logic is really just capital budgeting. Intuitively, investment predicts stock

returns because given expected cash flows, high costs of capital mean low net present values of new

projects and low investment, and low costs of capital mean high net present values of new projects

and high investment. Profitability predicts stock returns because high expected cash flows relative

to low investment must mean high discount rates. The high discount rates are necessary to offset

the high expected cash flows to induce low net present values of new projects and low investment.

The economic model in equation (5) provides useful guidance on our empirical implementation

of the q-factor model. In particular, an important difference between our ROE factor and FF’s

RMW is that our factor is from monthly sorts on ROE, whereas RMW is from annual sorts on op-

erating profitability. (Both our investment factor and CMA are from annual sorts on investment.)

As noted in HXZ (2014), this aspect of the q-factors construction is consistent with equation (5),

which says that ROE predicts returns to the extent that it predicts future ROE. Because the most
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recent quarterly ROE contains the most up-to-date information about future ROE, it seems most

efficient to use the latest ROE in our monthly sorts.

The q-factors are based on a triple sort on size, investment, and ROE, whereas the benchmark

RMW and CMA in the FF five-factor model are based on double sorts on size and operating prof-

itability as well as on size and investment. As noted in HXZ (2014), the joint sort on investment

and ROE is consistent with equation (5), which says that the investment and ROE effects are

conditional in nature. The negative investment-return relation is conditional on a given level of

ROE. The correlation could be positive unconditionally if large investment delivers exceptionally

high ROE. Similarly, the positive ROE-return relation is conditional on a given level of invest-

ment. The correlation could be negative unconditionally if high ROE comes with exceptionally

large investment. A joint sort on investment and ROE controls for these conditional relations.

3.1.2 Motivation for the FF Five-factor Model from Valuation Theory

FF (2014a) motivate their five-factor model from the Miller and Modigliani (1961) valuation theory.

The dividend discounting model says that the market value of firm i’s stock, Pit, is the present value

of its expected dividends, Pit =
∑∞

τ=1E[Dit+τ ]/(1 + ri)
τ , in which Dit is dividends, and ri is the

firm’s long-term average expected stock return, or the internal rate of return. The clean surplus re-

lation says that dividends equal earnings minus the change in book equity, Dit+τ = Yit+τ −△Bit+τ ,

in which △Bit+τ ≡ Bit+τ −Bit+τ−1. The dividend discounting model then becomes:

Pit

Bit
=

∑∞
τ=1E[Yit+τ −△Bit+τ ]/(1 + ri)

τ

Bit
. (6)

FF (2014a) argue that equation (6) makes three predictions. First, fixing everything except the

current market value, Pit, and the expected stock return, ri, a low Pit, or a high book-to-market

equity, Bit/Pit, implies a high expected return. Second, fixing everything except the expected prof-

itability and the expected stock return, high expected profitability implies a high expected return.

Finally, fixing everything except the expected growth in book equity and the expected return, high
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expected growth in book equity implies a low expected return.

Crucially, FF (2014a) predict the relations between book-to-market, investment, and profitabil-

ity only with the internal rate of return. FF (p. 2) argue that the difference between the one-

period-ahead expected return and the internal rate of return is not important: “Most asset pricing

research focuses on short-horizon returns—we use a one-month horizon in our tests. If each stock’s

short-horizon expected return is positively related to its internal rate of return—if, for example, the

expected return is the same for all horizons—the valuation equation implies that the cross-section

of expected returns is determined by the combination of current prices and expectations of future

dividends. The decomposition of cash flows then implies that each stock’s relevant expected return

is determined by its price-to-book ratio and expectations of its future profitability and investment

(our emphasis).” Empirically, FF use profitability as the proxy for the expected profitability and

assets growth as a proxy for the expected investment to form their new factors.7

3.2 Four Concerns on the FF (2014a) Motivation

We argue that the FF (2014a) motivation is flawed. First, the internal rate of return can correlate

negatively with the one-period-ahead expected return. Second, HML is a separate factor per the

FF logic, but is redundant in describing average returns in the data. Third, the investment factor is

more likely motivated from market-to-book in the valuation equation (6), not through the expected

book equity growth. Finally, past investment is a poor proxy for the expected investment.

3.2.1 The Internal Rate of Return is Not the One-period Ahead Expected Return

With time-varying expected returns, the internal rate of return (IRR) can differ greatly from the

one-period ahead expected return. The difference is most striking in the context of price and

7FF (2006) construct proxies of the expected profitability and the expected investment (growth in book equity
or total assets) as the fitted components from first-stage annual cross-sectional regressions of future profitability and
future investment on current variables. In second-stage cross-sectional regressions of returns on these proxies, FF find
some evidence on the expected profitability effect, but the relation between the expected investment and expected
returns is weakly positive. Performing these tests on firm-level variables instead of per share variables, Aharoni,
Grundy, and Zeng (2013) report a negative relation between the expected investment and expected returns. As
noted, FF (2014a) do not use the proxies from the first-stage cross-sectional regressions in forming their new factors.
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earnings momentum. Chan, Jegadeesh, and Lakonishok (1996) show that momentum profits are

short-lived, large and positive for up to 12 months, but turn negative afterward. In contrast, Tang,

Wu, and Zhang (2014) estimate price and earnings momentum to be significantly negative, once

measured with the IRRs estimated from the Gebhardt, Lee, and Swaminathan (2001) methodology.8

To quantify how the IRR deviates from the one-month-ahead average return in the context of

the FF five-factor model, we estimate the IRRs for SMB, HML, RMW, and CMA with a wide range

of accounting-based methods proposed by Gordon and Gordon (1997), Claus and Thomas (2001),

Gebhardt, Lee, and Swaminathan (2001), Easton (2004), and Ohlson and Juettner-Nauroth (2005).

Although differing in implementation details, these models all share the basic idea of backing out the

IRR from the valuation equation (6). The baseline versions of these methods all use analysts’ earn-

ings forecasts to predict future profitability. Because analysts’ forecasts are limited to a (relatively)

small sample and are likely even biased, we also implement two sets of modified procedures. The

Hou, van Dijk, and Zhang (2012) modification uses pooled cross-sectional regressions to forecast

future earnings, and the Tang, Wu, and Zhang (2014) modification uses annual cross-sectional re-

gressions to forecast future profitability. Appendix A describes in details all the estimation methods.

Panel A of Table 2 reports that the IRRs estimated with analysts’ earnings forecasts for RMW

and CMA differ significantly from their one-month-ahead average returns. The differences for

RMW are significant in 14 out of the 15 experiments from intersecting the three factor construc-

tion procedures with the five IRR estimation models. The IRRs of RMW are even significantly

negative in five experiments, in contrast to the average returns that are significantly positive in all

experiments. Averaging across the five IRR models, the IRR for the benchmark 2 × 3 RMW is

−0.07% per month (t = −16.56), whereas the one-month-ahead average return is 0.35% (t = 2.68).

The contrast for the 2 × 2 RMW is similar, −0.05 (t = −14.90) versus 0.23 (t = 2.69). For the

8Tang, Wu, and Zhang (2014) show further that except for the size and value premiums, the estimates for the
internal rate of return differ drastically from the one-period-ahead average realized returns across a wide array of
anomaly portfolios. In addition to price and earnings momentum, the two estimates also have opposite signs for the
high-minus-low portfolios formed on financial distress and return on assets. Using cross-sectional regressions, Hou,
van Dijk, and Zhang (2012) also show that inferences about the cross-section of expected returns are sensitive to
the choice of expected return proxy (the average realized return versus the internal rate of return).
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2× 2× 2× 2 RMW, the IRR is virtually zero, despite an average return of 0.25% (t = 2.91).

Estimating the IRRs with earnings or ROE forecasts from cross-sectional regressions yields

largely similar results. Panel B shows that with cross-sectional earnings forecasts, the IRRs of

RMW are significantly negative in eight out of 15 experiments, and the IRR-average-return differ-

ences are significant in 14 out of 15 experiments. Averaged across the five IRR models, in particular,

the IRR for the benchmark RMW is −0.13% per month (t = −21.32), in contrast to the average

return of 0.28% (t = 2.62). Panel C shows that with cross-sectional ROE forecasts, the IRRs of

RMW are significantly negative in ten out of 15 experiments, and the IRR-average-return differ-

ences are significant in all 15 experiments. Averaged across the five IRR models, the IRR for the

benchmark RMW is −0.17% (t = −33.97), in contrast to the average return of 0.23% (t = 2.32).

Table 2 also reports important IRR-average-return differences for CMA, although not as dra-

matic as the differences for RMW. From Panel A, with analysts’ earnings forecasts, the differences

for CMA are significant for 11 out of 15 experiments. The IRRs for CMA are even negative in

six experiments, although significant in only two. Although averaged across the five estimation

models, the IRRs for CMA are positive, their magnitudes are substantially smaller than those of

their average returns. With cross-sectional earnings forecasts, Panel B reports closer alignment

between IRRs and average returns for CMA. Their differences are significant in only three out of

15 experiments, although the IRR magnitudes are still smaller than those of the average returns.

With cross-sectional ROE forecasts, Panel C shows that the IRR-average-return differences for

CMA are significant in six out of 15 experiments, and that the IRR magnitudes continue to be

smaller. Finally, without going through the details, we can report that, consistent with Tang, Wu,

and Zhang (2014), the IRR-average-return differences for HML are all insignificant.

3.2.2 HML: A Redundant Factor

FF (2014a) argue that market-to-book, expected profitability, and expected investment give rise to

three separate factors in valuation theory. However, empirically, once RMW and CMA are added to
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their three-factor model, HML becomes redundant in describing average returns. This inconsistency

between theory and evidence is so striking that FF caution that it might be specific to their sample.

The evidence that HML is redundant is consistent with q-theory. The denominator of equation

(5) is the marginal costs of investment (an increasing function of investment-to-assets), which equal

marginal q (the value of an additional unit of capital). With constant returns to scale, marginal q

equals average q, which is in turn highly correlated with market-to-book equity (the two are iden-

tical without debt). This tight economic link between investment and market-to-book implies that

HML should be highly correlated with the investment factor. This q-theory insight also implies that

the investment factor in the FF five-factor model can be motivated from market-to-book, Pit/Bit,

in the valuation equation (6). In particular, contrary to FF (2014a), the investment factor cannot

be motivated from the expected growth of book equity, E[△Bit+τ ]/Bit (Section 3.2.3).

3.2.3 Past Investment, Future Investment, and the Expected Return

Equation (6) predicts a negative relation between the expected investment and the IRR. However,

this negative relation does not necessarily apply to that between the expected investment and the

one-period-ahead expected return, Et[rit+1]. From the definition of return, Pit = (Et[Dit+1] +

Et[Pit+1])/(1 + Et[rit+1]), and the clean surplus relation, we can reformulate equation (6) as:

Pit =
Et[Yit+1 −△Bit+1] + Et[Pit+1]

1 + Et[rit+1]
. (7)

Dividing both sides of equation (7) by Bit and rearranging, we obtain:

Pit

Bit
=

Et

[

Yit+1

Bit

]

− Et

[

△Bit+1

Bit

]

+ Et

[

Pit+1

Bit+1

(

1 + △Bit+1

Bit

)]

1 + Et[rit+1]
, (8)

Pit

Bit
=

Et

[

Yit+1

Bit

]

+ Et

[

△Bit+1

Bit

(

Pit+1

Bit+1
− 1

)]

+ Et

[

Pit+1

Bit+1

]

1 + Et[rit+1]
. (9)

Fixing everything except Et [△Bit+1/Bit] and Et[rit+1], high Et [△Bit+1/Bit] implies high Et[rit+1],

because Pit+1/Bit+1−1 is more likely to be positive in the data. More generally, leading equation (9)
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by one period at a time and recursively substituting Pit+1/Bit+1 in the same equation implies a pos-

itive Et [△Bit+τ/Bit]-Et[rit+1] relation for all τ ≥ 1. This insight helps interpret the mixed evidence

on the Et [△Bit+1/Bit]-Et[rit+1] relation in FF (2006) and Aharoni, Grundy, and Zeng (2013).

The relation between the expected investment and the expected return is also positive in q-

theory. To bring back the expected investment effect, we extend equation (5) from the static to a

dynamic framework (see Appendix B for detailed derivations):

Et[r
S
it+1] =

Et[Πit+1/Ait+1] + (a/2)Et

[

(Iit+1/Ait+1)
2
]

+ (1 + aEt[Iit+1/Ait+1])

1 + a (Iit/Ait)
. (10)

In the numerator, Et[Πit+1/Ait+1] is the expected marginal product of assets, and

(a/2)Et

[

(Iit+1/Ait+1)
2
]

is the expected marginal reduction in adjustment costs. The last

term, 1 + aEt[Iit+1/Ait+1], is the expected marginal continuation value of an extra unit of as-

sets, which equals the expected marginal costs of investment. The expected “capital gain,”

(1+ aEt[Iit+1/Ait+1])/[1+ a(Iit/Ait)], is roughly proportional to Et[Iit+1/Ait+1]/(Iit/Ait). Because

assets do not vary much relative to investment, Et[Iit+1/Ait+1]/(Iit/Ait) is in turn roughly the ex-

pected investment growth, Et[Iit+1/Iit]. As such, all else equal, the expected investment (growth)

and the expected return tend to be positively correlated.9 In all, the q-theory implications are

consistent with those from valuation theory on the one-period-ahead expected return.

3.2.4 Past Investment Is a Poor Proxy for the Expected Investment

Finally, as noted, after motivating the investment factor from the expected investment effect, FF

(2014a) use past investment as a proxy for the expected investment. This practice is problematic.

The crux is that whereas past profitability is a good proxy for the expected profitability, past

investment is a poor proxy for the expected investment. Table 3 reports annual cross-sectional re-

9At the aggregate level, Lettau and Ludvigson (2002) document that high risk premiums forecast high long-term in-
vestment growth rates. Intuitively, high risk premiums signal economic recessions, and going forward, the economy re-
bounds, giving rise to high investment growth rates. In the cross section, Liu and Zhang (2014) show that the expected
investment growth is an important component of price and earnings momentum predicted in the dynamic investment
model, both in terms of average momentum profits as well as their short-lived dynamics (from six to twelve months).
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gressions of future book equity growth rates, △BEit+τ/BEit+τ−1 ≡ (BEit+τ −BEit+τ−1)/BEit+τ−1,

for τ = 1, 2, . . . , 10, on the current total assets growth, △TAit/TAit−1 = (TAit − TAit−1)/TAit−1,

and, separately, on book equity growth, △BEit/BEit−1. For comparison, we also report annual

cross-sectional regressions of future operating profitability, OPit+τ , on operating profitability, OPit.

We follow the sample selection criteria in FF (2006, 2014a). The sample contains all common

stocks traded on NYSE, Amex, and NASDAQ from 1963 to 2013. We do not exclude financial

firms because these are included in the construction of their five factors. Book equity is measured

per Davis, Fama, and French (2000), and operating profitability per FF (2014a). Variables dated

t are from the fiscal year ending in calendar year t. We exclude firms with total assets (Compustat

annual item AT) below $5 million or book equity below $2.5 million in year t in Panel A of Table

3. The cutoffs are $25 million and $12.5 million in Panel B. We also winsorize all the variables each

year at the 1st and 99th percentiles of their cross-sectional distributions.

Table 3 shows that assets growth is a poor proxy for future book equity growth. In Panel A,

the slope starts at 0.22 at the one-year forecast horizon, drops to 0.07 in year three and further

to 0.05 in year five. The average R2 of the cross-sectional regressions starts at 5% in year one,

drops to zero in year four, and stays at zero for the remaining years. The results from using past

book equity growth as a proxy and those with the more stringent sample selection criterion in

Panel B are largely similar. The evidence casts doubt on the FF motivation of CMA from the

expected investment effect, but lends support to our reinterpretation of their CMA through the

market-to-book term in valuation equation based on q-theory.

The last five columns in Table 3 show that profitability forecasts future profitability. In Panel

A, the slope in the annual cross-sectional regressions starts with 0.80 in year one, drops to 0.59 in

year three and 0.49 in year five, and remains at 0.37 even in year ten. The average R2 starts at 55%

in year one, drops to 28% in year three and 19% in year five, and remains above 10% in year ten. As

such, the use of profitability as a proxy for the expected profitability in FF (2014a) is reasonable,
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but their use of past asset growth as a proxy for the expected investment is problematic.

4 Comparison in Empirical Performance

We perform large-scale empirical horse races between the q-factor model and the FF five-factor

model in “explaining” anomalies. Section 4.1 sets up the playing field. Section 4.2 reports factor

regressions with testing portfolios with NYSE breakpoints and value-weighted returns, and Section

4.3 with all-but-micro breakpoints and equal-weighted returns. Section 4.4 shows that the relative

performance of the q-factor model persists with alternative factor constructions.

4.1 The Playing Field

We work with the universe of anomalies in HXZ (2014). Table 4 reports their list of 73 anomalies,

covering six major categories: momentum, value-versus-growth, investment, profitability, intangi-

bles, and trading frictions.10 Appendix C details the variable definition and portfolio construction.

Following HXZ, we form testing portfolios with NYSE breakpoints and value-weighted returns to al-

leviate the impact of microcaps. Microcaps are on average only 3% of the market value of the NYSE-

Amex-NASDAQ universe, but account for about 60% of the total number of stocks (e.g., FF (2008)).

However, FF (2014a) argue that value-weighted portfolio returns can be dominated by a few big

stocks. More important, the most serious challenges for asset pricing models are in small stocks,

which value-weighted portfolios tend to underweight. To address this concern, we also form testing

portfolios with all-but-micro breakpoints and equal-weighted returns. As noted, we exclude micro-

caps from the NYSE-Amex-NASDAQ universe, use the remaining stocks to calculate breakpoints,

and then equal-weight all the stocks within a given portfolio to give small stocks sufficient weights

in the portfolio. By construction, microcaps are not included in this set of testing portfolios.

Our timing in forming testing portfolios follows HXZ (2014). For annually sorted testing portfo-

lios, we sort all stocks at the end of June of each year t into deciles based on, for instance, book-to-

10HXZ (2014) also examine industry and six momentum-reversal variables (momentum with holding periods
longer than six months), which we do not include because these are not primary anomaly variables.

19



market at the fiscal year ending in calendar year t−1, and calculate decile returns from July of year

t to June of t + 1. For monthly sorted portfolios involving latest earnings data, such as the ROE

deciles, we follow the timing in constructing the ROE factor. In particular, earnings data in Compu-

stat quarterly files are used in the months immediately after the quarterly earnings announcement

dates. Finally, for monthly sorted portfolios involving quarterly accounting data other than earn-

ings, such as the failure probability deciles, we impose a four-month lag between the sorting variable

and holding period returns. Unlike earnings, other quarterly data items might not be available upon

earnings announcement dates. The four-month lag is imposed to guard against look-ahead bias.

Table 5 shows that 37 out of 73 anomalies are insignificant with NYSE breakpoints and value-

weighted returns and 23 are insignificant with all-but-micro breakpoints and equal-weighted returns.

Consistent with HXZ (2014), 12 out of 13 variables in the trading frictions category are insignif-

icant with NYSE breakpoints and value-weighted returns. The number of insignificant trading

frictions anomalies reduces to eight with all-but-micro breakpoints and equal-weighted returns.

Two marginally significant anomalies are Ang, Hodrick, Xing, and Zhang’s (2006) idiosyncratic

volatility, which earns an average high-minus-low return of −0.61% per month (t = −1.87), and

Amihud’s (2002) price impact measure, which earns 0.29% (t = 1.92). Finally, both Gompers,

Ishii, and Metrick’s (2003) corporate governance index and Francis, Lafond, Olsson, and Schipper’s

(2005) accrual quality earn tiny average returns regardless of the portfolio formation procedure.

4.2 NYSE Breakpoints and Value-weighted Returns

4.2.1 Pricing Errors and Tests of Overall Performance

Table 6 reports the alphas and their t-statistics for the 36 significant high-minus-low deciles, as

well as the mean absolute alphas across a given set of deciles and the corresponding p-values for

the Gibbons, Ross, and Shanken (1989, GRS) test on the null that the alphas across a given set

of deciles are jointly zero. The q-factor model performs well relative to the FF five-factor model

and the Carhart model. Across the 36 high-minus-low deciles, the average magnitude of the alphas
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is 0.20% per month in the q-factor model, which is lower than 0.36% in the five-factor model,

0.33% in the Carhart model, and 0.51% in the FF three-factor model. In addition, seven out of

36 high-minus-low deciles have alphas that are significant at the 5% level in the q-factor model, in

contrast to 19 in the five-factor model, 21 in the Carhart model, and 28 in the three-factor model.

The q-factor model has the lowest mean absolute alpha across the 36 sets of deciles, 0.11% per

month, in contrast to 0.12% in the five-factor model, 0.12% in the Carhart model, and 0.15% in

the three-factor model. The GRS test rejects at the 5% level the q-factor model, the five-factor

model, and the Carhart model in 25 out of 36 sets of deciles, but the three-factor model in 32 sets.

The q-factor model outperforms the Carhart model, which in turn outperforms both FF models

in the momentum categories. Across the eight significant high-minus-low momentum deciles, the

average magnitude of the alphas is 0.20% per month in the q-factor model, which is lower than

0.29% in the Carhart model, 0.76% in the five-factor model, and 0.89% in the three-factor model.

Two out of eight high-minus-low alphas are significant in the q-factor model, in contrast to four

in the Carhart model and all eight in both FF models. Across the eight sets of deciles, the mean

absolute alpha is 0.11% in the q-factor model, which is close to 0.10% in the Carhart model. Both

are lower than 0.17% in the three-factor and five-factor models. The GRS test rejects the q-factor

model in six and the Carhart model in five but the two FF models in all eight sets of deciles.

The four models are largely comparable in the value-versus-growth category, with the five-factor

model having a slight edge. None of the high-minus-low alphas are significant in the five-factor

model. Except for net payout yield (NO/P), the high-minus-low alphas are also insignificant in the

other models. The GRS test rejects the five-factor model in two sets of deciles, and the three-factor

model and the q-factor model in three sets, but the Carhart model in only one set of deciles.

In the investment category, three out of 12 high-minus-low alphas are significant in the q-factor

model, in contrast to six five-factor alphas, eight Carhart alphas, and 11 three-factor alphas. The

average magnitude of the high-minus-low alphas is 0.21% per month in the q-factor model, which
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is lower than 0.25% in the five-factor model, 0.31% in the Carhart model, and 0.39% in the three-

factor model. The mean absolute alphas across the deciles are comparable: 0.11% in the q-factor

model, 0.10% in the five-factor model, 0.12% in the Carhart model, and 0.13% in the three-factor

model. However, all four models are rejected by the GRS test in most sets of deciles.

The q-factor model dominates the other models in the profitability category. None of the five

high-minus-low alphas are significant in the q-factor model. In contrast, all but one (gross profits-

to-assets) high-minus-low alphas are significant in the five-factor model, and all five are significant

in the three-factor and Carhart models. The average magnitude of the high-minus-low alphas is

0.13% per month in the q-factor model, which is substantially lower than 0.44% in the five-factor

model, 0.57% in the Carhart model, and 0.78% in the three-factor model. However, the GRS test

still rejects the q-factor model (and the five-factor model) in three out of five sets of deciles, and

rejects the Carhart model in four, and the three-factor model in all five sets of deciles.

We comment on three results in the remaining columns in the lower panel of Table 6. First,

the organizational capital (OC/A) effect is captured by the q-factor model but not by the five-

factor model. The high-minus-low decile has a q-model alpha of 0.13% per month (t = 1.03) but

a five-factor alpha of 0.33% (t = 2.61). Second, the q-factor model fails to fit the R&D-to-market

anomaly, with a large high-minus-low alpha of 0.60% (t = 2.46). In contrast, the five-factor alpha

is 0.38% (t = 1.57), and the three-factor and Carhart alphas are even smaller (and insignificant).

Finally, both the q-factor model and the five-factor model capture the systematic volatility (Svol)

effect, with high-minus-low alphas around −0.34%, which are within 1.5 standard errors from zero.

Overall, except for the R&D-to-market anomaly, the q-factor model performs well relative to

the FF five-factor model. The q-factor model outperforms the five-factor model in the momentum,

investment, and profitability categories. The two models are largely comparable, but the five-factor

model has a slight edge in the value-versus-growth category.
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4.2.2 Factor Loadings

To shed light on the sources behind the relative performance of the q-factor model and the FF

five-factor model, Table 7 examines their factor loadings.

The first eight columns (from “SUE-1‘” to “I-Mom”) in the upper panel show why the q-factor

model outperforms the five-factor model in capturing price and earnings momentum. Across the

eight high-minus-low deciles, the ROE factor loadings vary from 0.18 to 1.46, all of which are

more than 2.5 standard errors from zero. In contrast, the RMW factor loadings are substantially

smaller and mostly insignificant. In fact, the RMW loadings for two anomalies (Abr-1 and Abr-6)

are even negative, albeit insignificant. Only the high-minus-low deciles on revisions in analysts’

earnings forecasts (RE-1 and RE-6) have significant RMW loadings, and the rest are insignificant.

Intuitively, formed monthly on the latest announced quarterly earnings, our ROE factor is more

powerful in capturing the profitability differences between winners and losers. In contrast, formed

annually on earnings from the last fiscal year end, RMW seems less effective.

The next six columns (from “B/M” to “Dur”) show that HML is the main source of the five-

factor model’s power in fitting the value-versus-growth anomalies. All the high-minus-low deciles

have HML loadings that are at least 3.5 standard errors from zero. CMA also helps, but its loadings

can be insignificant, and their signs can occasionally be opposite to those of the HML loadings. In

the q-factor model, the investment factor is the main source of its power in fitting these anomalies.

Ranging from −1.17 to 1.40, the loadings are all at least six standard errors from zero.

The last four columns in the upper panel and the first eight columns in the lower panel show that

the investment factor is the main source of the q-factor model’s power in fitting the investment, eq-

uity issues, inventory, and accrual anomalies. Leaving aside abnormal corporate investment (ACI),

net operating assets (NOA), and operating accruals (OA), the loadings on the investment factor

vary from −0.68 to −1.37, all of which are at least six standard errors from zero. Similarly, CMA

is the main source of the five-factor model’s power in fitting these anomalies. Leaving aside ACI,
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NOA, and OA, the CMA loadings vary from −0.57 to −1.14, all of which are significant.

The high-minus-low ACI decile has an investment factor loading of 0.13 (t = 1.01) and an ROE

factor loading of −0.19 (t = −2.10). However, its RMW and CMA loadings are both close to zero.

Accordingly, the q-model alpha is −0.17% per month (t = −0.96, Table 6), and the five-factor

alpha is −0.30% (t = −1.91). Although commonly viewed as an investment variable, ACI is the

ratio of capital expenditure divided by sales (scaled by the prior three-year moving average of the

ratio). The denominator seems to make ACI closer to profitability than to investment.

Consistent with HXZ (2014), the q-factor model has trouble in fitting the NOA and OA anoma-

lies. The five-factor model also struggles with these two. The high-minus-low NOA decile has a

q-model alpha of −0.39% per month (t = −2.10) and a five-factor alpha of −0.44% (t = −2.62)

(Table 6). Table 7 shows that the investment factor loading for the high-minus-low decile is only

−0.07. Although commonly viewed as an accrual variable, NOA is a stock variable, as opposed

to a flow variable such as accruals.11 The problem for the five-factor model arises from a different

source. Although both large and significant, the HML and CMA loadings have different signs that

work to offset each other, leaving a large alpha unaccounted for.

The high-minus-low OA decile has a q-model alpha of −0.54% (t = −3.81) and a five-factor

alpha of −0.52% (t = −4.10) (Table 6), although both models capture the two percent accrual

anomalies, POA and PTA. The high-minus-low OA decile has a tiny investment factor loading,

−0.05, in the q-factor model but a significant ROE loading of 0.27 that goes in the wrong direction

in capturing the average returns (Table 7). The same trouble also plagues the five-factor model,

with a CMA loading of 0.01 and a large RMW loading of 0.40 (t = 6.18).

The next five columns (from “ROE” to “NEI”) in the lower panel of Table 7 show that the

profitability anomalies are largely captured by the ROE factor in the q-factor model. The ROE

11In untabulated results, we show that the change in NOA (a flow variable) forecasts returns, and the q-factor
model captures this effect. The high-minus-low decile earns on average −0.53% per month (t = −3.84). The CAPM,
FF three-factor, and Carhart alphas are −0.62%,−0.40%, and −0.34% (t = −4.51,−3.06, and −2.40), respectively.
The q-model alpha is only −0.09 (t = −0.60). The investment factor loading is −1.06 (t = −9.35), and all the other
factor loadings are insignificant. The five-factor alpha is −0.22% (t = −1.41).
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loadings for the high-minus-low deciles range from 0.54 to 1.50, all of which are more than seven

standard errors from zero. RMW is the main source of power for the five-factor model. However,

the RMW loadings are smaller than the ROE factor loadings. In fact, other than gross profits-

to-assets, the five-factor alphas for the other profitability variables vary from 0.46% per month to

0.53%, all of which are at least three standard errors from zero (Table 6). Intuitively, all the other

anomaly deciles are formed monthly, meaning that the annually formed RMW is less powerful than

the monthly formed ROE factor in capturing these anomalies.

Finally, the “RD/M” column in the lower panel of Table 7 shows why the q-factor model un-

derperforms the five-factor model in capturing the R&D-to-market anomaly. Despite earning an

average return of 0.64% per month (t = 2.40), the high-minus-low decile has an ROE factor loading

of −0.58 (t = −4.08). HXZ (2014) conjecture that because R&D is expensed rather than capital-

ized per standard accounting rules, high R&D expenses give rise to artificially low ROE. Although

this problem also appears in the five-factor model, as evidenced in the RMW loading of −0.52

(t = −2.86), it causes more trouble for the q-factor model.

In all, our ROE factor is more powerful than RMW, and allows the q-factor model to out-

perform the FF five-factor model in capturing the momentum and profitability anomalies. Our

investment factor is also somewhat more powerful than CMA, likely resulting from jointly sorting

with ROE, and allows the q-factor model to outperform the five-factor model in capturing the

investment anomalies. The five-factor model has a slight edge over the q-factor model in fitting the

value-versus-growth anomalies, likely because both HML and CMA are at work, whereas only the

investment factor is at work in the q-factor model.

4.3 All-but-micro Breakpoints and Equal-weighted Returns

We next compare the performance of the various factor models in capturing the 50 significant

anomalies with all-but-micro breakpoints and equal-weighted returns.
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4.3.1 Pricing Errors and Tests of Overall Performance

Table 8 reports the high-minus-low alphas and their t-statistics as well as the mean absolute alphas

across a given set of deciles and the corresponding p-values for the GRS test. The q-factor model

continues to perform well. Across the 50 high-minus-low deciles, the average magnitude of the

alphas is 0.24% per month in the q-factor model, which is lower than 0.41% in the five-factor

model, 0.40% in the Carhart model, and 0.59% in the three-factor model. Also, 16 out of 50 high-

minus-low deciles have alphas that are significant at the 5% level in the q-factor model, in contrast

to 34 in the five-factor model, 37 in the Carhart model, and 44 in the three-factor model. The mean

absolute alpha is 0.13% in the q-factor model, which is slightly higher than 0.11% in the five-factor

model, but lower than 0.16% in the Carhart model and 0.14% in the three-factor model. Finally,

the GRS test rejects the q-factor model at the 5% level in 37 out of 50 sets of deciles, and rejects the

five-factor model in 35, the Carhart model in 39, and the three-factor model in 41 sets of deciles.

Across the ten significant momentum anomalies, the average magnitude of the high-minus-low

alphas is 0.27% per month in the q-factor model, which is lower than 0.31% in the Carhart model,

and substantially lower than 0.79% in the five-factor model and 0.92% in the three-factor model.

Three high-minus-low alphas are significant in the q-factor model, in contrast to five in the Carhart

model, and ten out of ten in both the five-factor and three-factor models. The average magnitude

of the alphas across the ten sets of deciles is 0.13% in the q-factor model, which is identical to 0.13%

in the Carhart model, but lower than 0.18% in the five-factor model and 0.19% in the three-factor

model. However, all four models are rejected by the GRS test in most sets of deciles.

Across the seven anomalies in the value-versus-growth category, the q-factor model is largely

comparable with the five-factor model. (The slight edge for the five-factor model with NYSE break-

points and value-weighted returns has vanished.) Both models perform somewhat better than the

Carhart model and the three-factor model. None of the high-minus-low alphas are significant in the

q-factor model or the five-factor model, whereas two Carhart alphas and five three-factor alphas
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are significant. The GRS test rejects the q-factor model as well as the five-factor model in one set

of deciles, but rejects the Carhart and three-factor models in two sets of deciles.

The q-factor model is also largely comparable with the five-factor model across the 14 invest-

ment anomalies. The average magnitude of the high-minus-low alphas is 0.32% per month in the

q-factor model, which is lower than 0.39% in the five-factor model, 0.42% in the Carhart model,

and 0.51% in the three-factor model. Ten out of 14 high-minus-low alphas are significant in the

q-factor model, in contrast to 13 in the five-factor model and all 14 in the Carhart and three-factor

models. However, the five-factor model has the lowest mean absolute alpha across all 14 sets of

deciles, 0.09%, in contrast to 0.14% in the q-factor model, 0.19% in the Carhart model, and 0.13%

in the three-factor model. All four models are rejected by the GRS test in most sets of deciles.

The q-factor model dominates all the other models in the profitability category. The average

magnitude of the nine high-minus-low alphas is 0.14% per month in the q-factor model, in contrast

to 0.37% in the five-factor model, 0.53% in the Carhart model, and 0.70% in the three-factor model.

One out of nine high-minus-low alphas is significant in the q-factor model, in contrast to seven in

the five-factor model and eight in the Carhart and three-factor models. The mean absolute alpha

is 0.12% in the q-factor model, 0.11% in the five-factor model, and 0.17% in the Carhart and three-

factor models. However, all four models are still rejected by the GRS test in most sets of deciles.

The last eight columns in Table 8 show that the q-factor model performs well relative to the

five-factor model in the intangibles and trading frictions categories. The underperformance of the

q-factor model in fitting the R&D-to-market anomaly relative to the five-factor model has attenu-

ated. The high-minus-low q-model alpha is 0.78% per month (t = 2.66), which is not far from the

five-factor alpha of 0.69% (t = 2.70). The high-minus-low deciles on maximum daily returns and

dispersion in analysts’ earnings forecasts have q-model alphas of −0.16% and −0.04%, respectively.

Both are within one standard error from zero. In contrast, their five-factor alphas of −0.28% and

−0.33%, respectively, are both significant. Finally, except for organizational capital, both models
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reduce the high-minus-low alphas for the other anomaly variables to insignificance.

4.3.2 Factor Loadings

Table 9 reports the factor loadings for the q-factor model and the FF five-factor model for high-

minus-low deciles with all-but-micro breakpoints and equal-weighted returns.

The first ten columns show that the ROE factor loadings for the high-minus-low momentum

deciles vary from 0.22 to 1.36, all of which are significant. In contrast, the RMW loadings for

these deciles are substantially smaller, varying from −0.07 to 0.32, and six out of ten loadings are

insignificant. The next seven columns (from “B/M” to “Rev”) show that the investment factor

is mostly responsible for the q-factor model’s power in fitting the value-versus-growth anomalies.

The loadings vary from −1.18 to 1.97, all of which are more than seven standard errors from zero.

Naturally, HML is the most powerful factor in the five-factor model in capturing these anomalies.

The next 14 columns (from “ACI” to “PTA”) in Table 9 show that the investment factor is the

main force of the q-factor model to fit the investment anomalies. Again leaving aside ACI, NOA,

and OA, the investment factor loadings vary from −0.55 to −1.25, all of which are more than six

standard errors from zero. Similarly, the CMA loadings in the five-factor model vary from −0.35 to

−0.97, all of which are more than three standard errors from zero. As noted, ACI in effect combines

investment and profitability. The high-minus-low decile has a significant loading of −0.15 on both

the investment and ROE factors, which together produce a q-model alpha of −0.13% per month

(t = −1.32). Although the CMA loading is significantly negative, the HML and RMW loadings

are insignificant, producing a five-factor alpha of −0.26% (t = −2.85).

For the high-minus-low NOA decile, its investment factor loading is virtually zero, giving rise to

a large q-model alpha of −0.71% per month (t = −3.26) (Table 8).12 Although the CMA loading

12In untabulated results, we again verify that the q-factor model does better in capturing the average returns across
deciles formed on the NOA change. The high-minus-low decile with all-but-micro breakpoints and equal-weighted
returns earns on average −0.76% per month (t = −5.93). The CAPM, FF three-factor, and Carhart alphas are
−0.87%,−0.72%, and −0.60% (t = −7.17,−5.99, and −5.05), respectively. The high-minus-low decile has a large
investment factor loading of −0.83 (t = −9.83), but its q-model alpha is still −0.46% (t = −3.69). For comparison,
the five-factor alpha is −0.57% (t = −5.16), despite a CMA loading of −0.82 (t = −8.88).

28



is −0.65 (t = −5.41), the HML loading, 0.61 (t = 5.91), goes in the wrong direction as the average

return, giving rise to a large five-factor alpha of −0.79 (t = −4.89). The high-minus-low OA decile

has a q-model alpha of −0.53% (t = −4.05) and a five-factor alpha of −0.51% (t = −4.79) (Table 8).

As noted, the problem with the q-factor model is that the high-minus-low decile has an insignificant

investment factor loading of −0.19, but a significant ROE loading of 0.43, which goes in the wrong

direction in capturing the average returns. The same problem also plagues the five-factor model,

with a small CMA loading, −0.13, but a large RMW loading, 0.62.

Across the nine high-minus-low profitability deciles, the ROE factor loadings vary from −0.54

to 1.50, all of which are more than 5.5 standard errors from zero. The RMW loadings vary from

−0.60 to 1.59, and all except for tax expense surprise are at least 4.5 standard errors from zero.

Because the factor loadings are of similar magnitude, the difference in performance between the

q-factor model and the five-factor model likely results from the difference between the average ROE

factor return, 0.57% per month, and the average RMW return, 0.27%.

We comment on three results in the remaining columns in Table 9. First, the high-minus-low

hiring rate decile has a large investment factor loading of −1.14, which is more than 15 standard

errors from zero. Intuitively, firms that hire more workers also invest more, and vice versa. As

a result, despite a high average return of −0.50% (t = 3.62), the q-model alpha is tiny, −0.05%

(t = −0.44). The five-factor model also has a small alpha of −0.11% (t = −1.19). Second, the

q-factor model reduces the maximum daily return (MDR) anomaly to insignificance. The invest-

ment and ROE factor loadings, −1.19 and −0.78, respectively, are both more than four standard

errors from zero. Finally, the q-factor model captures the average high-minus-low return on the

dispersion in analysts’ earnings forecasts (Disp) mainly through the ROE factor, with a loading of

−1.04 (t = −14.58). The five-factor alphas are significant for both MDR and Disp anomalies.

4.4 Alternative Factor Constructions

The relative performance of the q-factor model is robust with alternative factor constructions.
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4.4.1 Alternative Factors

In addition to the benchmark 2 × 3 sorts, FF (2014a) also consider 2 × 2 sorts and a quadruple

2×2×2×2 sort on size, book-to-market, Inv, and OP to construct their new factors. Analogously,

in addition to the benchmark 2×3×3 sort, we also consider a triple 2×2×2 sort on size, I/A, and

ROE and double (2× 3 and 2× 2) sorts on size and I/A as well as on size and ROE in constructing

the q-factors. The triple 2× 2× 2 sort on size, I/A, and ROE is similar to the benchmark 2× 3× 3

sort, except that we use NYSE medians to break stocks into two I/A groups and two ROE groups.

In the 2 × 3 sorts for the q-factors, at the end of June of year t, we use the NYSE median to

split stocks into two size groups, small and big. Independently, at the end of June of year t, we split

stocks into three I/A groups with the NYSE breakpoints for the low 30%, middle 40%, and high

30% of the rank values of I/A for the fiscal year ending in calendar year t−1. Also, independently, at

the beginning of each month, we split all stocks into three ROE groups with the NYSE breakpoints

for the low 30%, middle 40%, and high 30% of the rank values of ROE calculated with the most

recent announced quarterly earnings. Taking the intersection of the two size and three I/A groups,

we form six portfolios. Monthly value-weighted returns are calculated from July of year t to June

of year t+1, and the portfolios are rebalanced in June. Taking the intersection of the two size and

three ROE groups, we form six different portfolios. Monthly value-weighted returns are calculated

for the current month, and the portfolios are rebalanced at the beginning of next month.

The investment factor is the simple average of the returns on the two low I/A portfolios minus

the simple average of the returns on the two high I/A portfolios. The ROE factor is the simple

average of the returns on the two high ROE portfolios minus the simple average of the returns on

the two low ROE portfolios. Also, the two double sorts generate six small portfolios and six big

portfolios. As such, the size factor is the simple average of the returns on the six small portfolios

minus the simple average of the returns on the six big portfolios. Finally, the 2×2 sorts are similar to

the 2×3 sorts, except that we use NYSE medians to split stocks into two I/A and two ROE groups.
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4.4.2 Empirical Properties

From Panel A of Table 10, the investment and ROE factors from the 2× 2× 2 sort earn on average

0.26% per month (t = 3.90) and 0.40% (t = 5.00), respectively. By focusing less on the extreme

I/A and ROE stocks, these premiums are somewhat lower than those of the benchmark q-factors.

Still, the premiums cannot be captured by the Carhart model or the FF five-factor model. The

Carhart alphas of the investment and ROE factors are 0.18% (t = 3.63) and 0.36% (t = 4.99), and

the five-factor alphas are 0.07% (t = 2.20) and 0.29% (t = 4.80), respectively.

The investment and ROE factors from the 2×3 sorts earn on average 0.29% per month (t = 3.07)

and 0.57% (t = 4.44). As such, the joint sort on I/A and ROE in the benchmark construction does

not affect the ROE factor, but reduces the average return of the investment factor by 0.15%. In fact,

this alternative construction of the investment factor is virtually identical to the benchmark con-

struction of CMA. As such, the benchmark five-factor model largely captures the investment factor

return, but still leaves a large alpha of 0.37% (t = 4.02) for the ROE factor. The investment and

ROE factors from the 2×2 sorts earn on average 0.19% (t = 2.68) and 0.40% (t = 4.36). A compar-

ison with the 2×2×2 sort shows that the joint sort again leaves the ROE factor largely untouched,

but reduces somewhat the investment factor premium. The benchmark five-factor model again

captures the investment factor return, but leaves an alpha of 0.23% (t = 3.59) for the ROE factor.

Panel B reports the results from the alternative sorts for the new FF factors. RMW and CMA

from the 2 × 2 × 2 × 2 sort earn on average 0.27% per month (t = 3.78) and 0.16% (t = 2.84),

respectively. Both RMW and CMA survive the Carhart model, but their average returns are cap-

tured by the benchmark q-factor model, with alphas of 0.13% (t = 1.68) and −0.00% (t = −0.01),

respectively. Finally, the alternative 2 × 2 sorts produce largely similar results. RMW and CMA

from these sorts earn average returns of 0.19% (t = 2.56) and 0.24% (t = 3.33), but tiny q-model

alphas of 0.03% (t = 0.50) and 0.03% (t = 0.93), respectively.
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4.4.3 Regressions with Alternative Factors

The q-factor model outperforms the FF five-factor model under alternative factor constructions.

Panel A of Table 11 reports factor regressions for testing deciles with NYSE breakpoints and value-

weighted returns. Across the 36 high-minus-low deciles, the average magnitude of the alphas is

0.26% per month in the 2× 2× 2, 0.26% in the 2× 3, and 0.29% in the 2× 2 version of the q-factor

model (0.20% in the benchmark). These estimates are all lower than 0.40% in the 2× 2× 2× 2 and

0.37% in the 2× 2 version of the five-factor model (0.36% in the benchmark). Also, ten out of 36

high-minus-low deciles have significant alphas at the 5% level in the 2×2×2, 11 in the 2×3, and 11

in the 2× 2 version of the q-factor model (seven in the benchmark), which are again all lower than

19 in the 2× 2× 2× 2 and 20 in the 2× 2 version of the five-factor model (19 in the benchmark).

The mean absolute alpha across the 36 deciles is 0.11% per month in all three alternative ver-

sions of the q-factor model (as well as the benchmark). The estimate is 0.12% in the two alternative

versions of the five-factor model (as well as the benchmark). Also, the GRS test rejects the 2×2×2

q-model in 20 out of 36 sets of deciles, the 2×2 q-model in 23, and the 2×3 q-model (as well as the

benchmark) in 25 sets of deciles. For comparison, the GRS test rejects the 2× 2× 2× 2 five-factor

model in 23 and the 2× 2 five-factor model (as well as the benchmark) in 25 sets of deciles.

Panel B furnishes the results for the testing deciles with all-but-micro breakpoints and equal-

weighted returns. Across the 50 high-minus-low deciles, the average magnitude of the alphas is

0.29% per month in the 2× 2× 2, 0.29% in the 2× 3, and 0.31% in the 2× 2 version of the q-factor

model (0.24% in the benchmark). These estimates are all lower than 0.46% in the 2× 2× 2× 2 and

0.43% in the 2× 2 five-factor model (0.41% in the benchmark). Also, 20 out of 50 high-minus-low

deciles have significant alphas at the 5% level in the 2× 2× 2, 21 in the 2× 3, and 22 in the 2× 2

q-model (16 in the benchmark). In contrast, 36 have significant five-factor alphas in the 2×2×2×2

and 35 in the 2× 2 five-factor model (34 in the benchmark).

The mean absolute alpha across the 50 deciles is 0.15% per month in the 2× 2× 2, and 0.13%
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in the 2×3 and 2×2 q-models (0.13% in the benchmark). These estimates are slightly higher than

0.12% in the 2×2×2×2 and 0.11% in the 2×2 five-factor model (0.11% in the benchmark). Also,

the GRS test rejects the 2× 2× 2 q-model in 37 sets of deciles and the 2× 3 and 2× 2 q-models in

36 sets (37 for the benchmark). For comparison, the GRS test rejects the 2 × 2× 2× 2 in 34 and

the 2× 2 five-factor model (as well as the benchmark) in 35 sets of deciles. Finally, without going

through the details, we can report that the q-factor model outperforms the FF five-factor model

by a big margin in the momentum and profitability categories with the alternative factors.13

5 Conclusion

Our comparison between the q-factor model and the FF five-factor model yields two major findings.

Conceptually, four concerns cast doubt on the motivation of the five-factor model from valuation

theory: (i) The internal rate of return often correlates negatively with the one-period-ahead ex-

pected return; (ii) the value factor is separate in theory but redundant in the data; (iii) the expected

investment tends to be positively correlated with the one-period-ahead expected return; and (iv)

past investment does not forecast future investment. The last two concerns, in particular, suggest

that the investment factor can only be derived from the q-theory link between value and investment.

Empirically, the q-factor model outperforms the five-factor model, especially in capturing price

and earnings momentum and profitability anomalies. The relative performance of the q-factor model

is robust to several perturbations of our test design, including breakpoints and return-weighting

schemes in forming testing portfolios, as well as alternative factor constructions. In all, we conclude

that the FF five-factor model is in essence a noisy version of the q-factor model.

13In constructing q-factors, we scale earnings by lagged book equity, as opposed to lagged book assets. FF (2014a)
also use book equity to scale the operating profitability when constructing RMW. Replacing the ROE factor with a
factor formed on ROA (earnings scaled by one-quarter-lagged book assets) has little impact on the performance of the
q-factor model. If anything, the ROA factor improves slightly the q-model’s performance (the Internet Appendix).

33



References

Aharoni, Gil, Bruce Grundy, and Qi Zeng, 2013, Stock returns and the Miller Modigliani valuation
formula: Revisiting the Fama French analysis, Journal of Financial Economics 110, 347–357.

Ang, Andrew, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang, 2006, The cross-section of
volatility and expected returns, Journal of Finance 61, 259–299.

Balakrishnan, Karthik, Eli Bartov, and Lucile Faurel, 2010, Post loss/profit announcement drift,
Journal of Accounting and Economics 50, 20–41.

Bali, Turan G., Nusret Cakici, and Robert F. Whitelaw, 2011, Maxing out: Stocks as lotteries
and the cross-section of expected returns, Journal of Financial Economics 99, 427–446.

Ball, Ray, and Philip Brown, 1968, An empirical evaluation of accounting income numbers, Journal
of Accounting Research 6, 159-178.

Banz, Rolf W., 1981, The relationship between return and market value of common stocks, Journal
of Financial Economics 9, 3–18.

Basu, Sanjoy, 1983, The relationship between earnings yield, market value, and return for NYSE
common stocks: Further evidence, Journal of Financial Economics 12, 129–156.

Barth, Mary E., John A. Elliott, and Mark W. Finn, 1999, Market rewards associated with
patterns of increasing earnings, Journal of Accounting Research 37, 387–413.

Belo, Frederico, and Xiaoji Lin, 2011, The inventory growth spread, Review of Financial Studies

25, 278–313.

Belo, Frederico, Xiaoji Lin, and Santiago Bazdresch, 2014, Labor hiring, investment, and stock
return predictability in the cross section, Journal of Political Economy 122, 129–177.

Belo, Frederico, Xiaoji Lin, and Maria Ana Vitorino, 2014, Brand capital and firm value, Review
of Economic Dynamics 17, 150–169.

Berk, Jonathan B., Richard C. Green, and Vasant Naik, 1999, Optimal investment, growth options,
and security returns, Journal of Finance 54, 1153–1607.

Bernard, Victor L., and Jacob K. Thomas, 1989, Post-earnings-announcement drift: Delayed price
response or risk premium? Journal of Accounting Research Supplement 27, 1-48.

Bhandari, Laxmi Chand, 1988, Debt/equity ratio and expected common stock returns: Empirical
evidence, Journal of Finance 43, 507–528.

Black, Fischer, Michael C. Jensen, and Myron Scholes, 1972, The Capital Asset Pricing Model:
Some empirical tests, in Studies in the Theory of Capital Markets, edited by Michael C.
Jensen, New York: Praeger, 79–121.

Boudoukh, Jacob, Roni Michaely, Matthew Richardson, and Michael R. Roberts, 2007, On the
importance of measuring payout yield: Implications for empirical asset pricing, Journal of
Finance 62, 877–915.

34



Bradshaw, Mark T., Scott A. Richardson, and Richard G. Sloan, 2006, The relation between
corporate financing activities, analysts’ forecasts and stock returns, Journal of Accounting
and Economics 42, 53–85.

Brennan, Michael J., Tarun Chordia, and Avanidhar Subrahmanyam, 1998, Alternative factor
specifications, security characteristics, and the cross-section of expected stock returns, Journal
of Financial Economics 49, 345–373.

Campbell, John Y., Jens Hilscher, and Jan Szilagyi, 2008, In search of distress risk, Journal of
Finance 63, 2899–2939.

Carhart, Mark M. 1997, On persistence in mutual fund performance, Journal of Finance 52,
57–82.

Carlson, Murray, Adlai Fisher, and Ron Giammarino, 2004, Corporate investment and asset price
dynamics: Implications for the cross section of returns, Journal of Finance 59, 2577–2603.

Chan, Louis K. C., Narasimhan Jegadeesh, and Josef Lakonishok, 1996, Momentum strategies,
Journal of Finance 51, 1681–1713.

Chan, Louis K. C., Josef Lakonishok, and Theodore Sougiannis, 2001, The stock market valuation
of research and development expenditures, Journal of Finance 56, 2431–2456.

Claus, James, and Jacob Thomas, 2001, Equity premia as low as three percent? Evidence from
analysts’ earnings forecasts for domestic and international stock markets, Journal of Finance
56, 1629–1666.

Cochrane, John H., 1991, Production-based asset pricing and the link between stock returns and
economic fluctuations, Journal of Finance 46, 209–237.

Cooper, Michael J., Huseyin Gulen, and Michael J. Schill, 2008, Asset growth and the cross-section
of stock returns, Journal of Finance 63, 1609–1652.

Da, Zhi, Re-Jin Guo, and Ravi Jagannathan, 2012, CAPM for estimating the cost of equity capital:
Interpreting the empirical evidence, Journal of Financial Economics 103, 204–220.

Daniel, Kent D. and Sheridan Titman, 2006, Market reactions to tangible and intangible
information, Journal of Finance 61, 1605–1643.

Datar, Vinay T., Narayan Y. Naik, and Robert Radcliffe, 1998, Liquidity and stock returns: An
alternative test, Journal of Financial Markets 1, 203–219.

Davis, James L., Eugene F. Fama, and Kenneth R. French, 2000, Characteristics, covariances,
and average returns: 1929 to 1997, Journal of Finance 55, 389–406.

De Bondt, Werner F. M., and Richard Thaler, 1985, Does the stock market overreact? Journal of

Finance 40, 793–805.

Dechow, Patricia M., Richard G. Sloan, and Mark T. Soliman, 2004, Implied equity duration: A
new measure of equity risk, Review of Accounting Studies 9, 197–228.

Dichev, Ilia, 1998, Is the risk of bankruptcy a systematic risk? Journal of Finance 53, 1141–1148.

35



Diether, Karl B., Christopher J. Malloy, and Anna Scherbina, 2002, Differences of opinion and
the cross section of stock returns, Journal of Finance 57, 2113–2141.

Dimson, Elroy, 1979, Risk management when shares are subject to infrequent trading, Journal of
Financial Economics 7, 197–226.

Dixit, Avinash K., and Robert S. Pindyck, 1994, Investment Under Uncertainty, Princeton
University Press: Princeton, New Jersey.

Doms, Mark, and Timothy Dunne, 1998, Capital adjustment patterns in manufacturing plants,
Review of Economic Dynamics 1, 409–429.

Easton, Peter D., 2004, PE ratios, PEG ratios, and estimating the implied expected rate of return
on equity capital, The Accounting Review 79, 73–95.

Eisfeldt, Andrea L., and Dimitris Papanikolaou, 2013, Organizational capital and the cross-section
of expected returns, Journal of Finance 68, 1365–1406.

Elgers, Pieter T., May H. Lo, and Ray J. Pfeiffer, Jr., 2001, Delayed security price adjustments
to financial analysts’ forecasts of annual earnings, The Accounting Review 76, 613–632.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks
and bonds, Journal of Financial Economics 33, 3–56.

Fama, Eugene F., and Kenneth R. French, 1997, Industry costs of equity, Journal of Financial
Economics 43, 153-93.

Fama, Eugene F., and Kenneth R. French, 2006, Profitability, investment, and average returns,
Journal of Financial Economics 82, 491–518.

Fama, Eugene F., and Kenneth R. French, 2008, Dissecting anomalies, Journal of Finance 63,
1653–1678.

Fama, Eugene F., and Kenneth R. French, 2013, A four-factor model for the size, value, and
profitability patterns in stock returns. Fama-Miller Working Paper, University of Chicago.

Fama, Eugene F., and Kenneth R. French, 2014a, A five-factor asset pricing model, forthcoming,
Journal of Financial Economics.

Fama, Eugene F., and Kenneth R. French, 2014b, Dissecting anomalies with a five-factor model.
Fama-Miller Working Paper, University of Chicago.

Foster, George, Chris Olsen, and Terry Shevlin, 1984, Earnings releases, anomalies, and the
behavior of security returns, The Accounting Review 59, 574–603.

Francis, Jennifer, Ryan LaFond, Per Olsson, and Katherine Schipper, 2005, The market price of
accruals quality, Journal of Accounting and Economics 39, 295–327.

Frazzini, Andrea, and Lasse Heje Pedersen, 2014, Betting against beta, Journal of Financial

Economics 111, 1–25.

Gebhardt, William R., Charles M. C. Lee, and Bhaskaram Swaminathan, 2001, Toward an implied
cost of capital, Journal of Accounting Research 39, 135–176.

36



Gibbons, Michael R., Stephen A. Ross, and Jay Shanken, 1989, A test of the efficiency of a given
portfolio, Econometrica 57, 1121–1152.

Gode, Dan, and Partha Mohanram, 2003, Inferring the cost of capital using the Ohlson-Juettner
model, Review of Accounting Studies 8, 399–431.

Gompers, Paul, Joy Ishii, and Andrew Metrick, 2001, Corporate governance and equity prices,
Quarterly Journal of Economics 118, 107–155.

Gordon, Joseph R., and Myron J. Gordon, 1997, The finite horizon expected return model,
Financial Analysts Journal 53, 52–61.

Green, Jeremiah, John R. M. Hand, and X. Frank Zhang, 2013, The remarkable
multidimensionality in the cross-section of expected U.S. stock returns, working paper, Yale
University.

Hafzalla, Nader, Russell Lundholm, and E. Matthew Van Winkle, 2011, Percent accruals, The
Accounting Review 86, 209–236.

Haugen, Robert A., and Nardin L. Baker, 1996, Commonality in the determinants of expected
stock returns, Journal of Financial Economics 41, 401-439.

Hirshleifer, David, Kewei Hou, Siew Hong Teoh, and Yinglei Zhang, 2004, Do investors overvalue
firms with bloated balance sheets? Journal of Accounting and Economics 38, 297–331.

Hou, Kewei, Chen Xue, and Lu Zhang, 2014, Digesting anomalies: An investment approach,
forthcoming, Review of Financial Studies.

Hou, Kewei, Mathijs A. van Dijk, and Yinglei Zhang, 2012, The implied cost of capital: A new
approach, Journal of Accounting and Economics 53, 504–526.

Hribar, Paul, and Daniel W. Collins, 2002, Errors in estimating accruals: Implications for empirical
research, Journal of Accounting Research 40, 105–134.

Jegadeesh, Narasimhan, 1990, Evidence of predictable behavior of security returns, Journal of
Finance 45, 881–898.

Jegadeesh, Narasimhan and Sheridan Titman, 1993, Returns to buying winners and selling losers:
Implications for stock market efficiency, Journal of Finance 48, 65–91.

Jegadeesh, Narasimhan, and Joshua Livnat, 2006, Revenue surprises and stock returns, Journal
of Accounting and Economics 41, 147–171.

Lakonishok, Josef, Andrei Shleifer, and Robert W. Vishny, 1994, Contrarian investment,
extrapolation, and risk, Journal of Finance 49, 1541–1578.

La Porta, Rafael, 1996, Expectations and the cross-section of stock returns, Journal of Finance
51, 1715–1742.

Lettau, Martin, and Sydney Ludvigson, 2002, Time-varying risk premia and the cost of capital:
An alternative implication of the Q theory of investment, Journal of Monetary Economics

49, 31-66.

37



Li, Dongmei, 2011, Financial constraints, R&D investment, and stock returns, Review of Financial

Studies 24, 2974–3007.

Liu, Laura Xiaolei, Toni M. Whited, and Lu Zhang, 2009, Investment-based expected stock
returns, Journal of Political Economy 117, 1105–1139.

Liu, Laura Xiaolei, and Lu Zhang, 2014, A neoclassical interpretation of momentum, Journal of
Monetary Economics 67, 109–128.

Loughran, Tim, and Jay R. Ritter, 1995, The new issues puzzle, Journal of Finance 50, 23–51.

Miller, Merton H., and Franco Modigliani, 1961, Dividend policy, growth, and the valuation of
shares, Journal of Business 34, 411–433.

Miller, Merton H., and Myron S. Scholes, 1982, Dividends and taxes: Some empirical evidence,
Journal of Political Economy 90, 1118–1141.

Moskowitz, Tobias J., and Mark Grinblatt, 1999, Do industries explain momentum? Journal of

Finance 54 1249–1290.

Novy-Marx, Robert, 2011, Operating leverage, Review of Finance 15, 103–134.

Novy-Marx, Robert, 2013, The other side of value: The gross profitability premium, Journal of
Financial Economics 108, 1–28.

Ohlson, James A., 1980, Financial ratios and the probabilistic prediction of bankruptcy, Journal
of Accounting Research 18, 109–131.

Ohlson, James A., and Beate E. Juettner-Nauroth, 2005, Expected EPS and EPS growth as
determinants of value, Review of Accounting Studies 10, 349–365.

Piotroski, Joseph D., 2000, Value investing: The use of historical financial statement information
to separate winners from losers, Journal of Accounting Research 38, Supplement: Studies on
accounting information and the economics of the firm, 1-41.

Pontiff, Jeffrey, and Artemiza Woodgate, 2008, Share issuance and cross-sectional returns, Journal
of Finance 63, 921–945.

Richardson, Scott A., Richard G. Sloan, Mark T. Soliman, and Irem Tuna, 2005, Accrual
reliability, earnings persistence and stock prices, Journal of Accounting and Economics 39,
437–485.

Rosenberg, Barr, Kenneth Reid, and Ronald Lanstein, 1985, Persuasive evidence of market
inefficiency, Journal of Portfolio Management 11, 9–16.

Sloan, Richard G., 1996, Do stock prices fully reflect information in accruals and cash flows about
future earnings? The Accounting Review 71, 289–315.

Soliman, Mark T., 2008, The use of DuPont analysis by market participants, The Accounting

Review 83, 823–853.

Tang, Yue, Jin (Ginger) Wu, and Lu Zhang, 2013, Do anomalies exist ex ante? Review of Finance

18, 843–875.

38



Thomas, Jacob K., and Huai Zhang, 2002, Inventory changes and future returns, Review of

Accounting Studies 7, 163–187.

Thomas, Jacob K., and Frank X. Zhang, 2011, Tax expense momentum, Journal of Accounting
Research 49, 791–821.

Titman, Sheridan, K. C. John Wei, and Feixue Xie, 2004, Capital investments and stock returns,
Journal of Financial and Quantitative Analysis 39, 677–700.

Whited, Toni M., 1998, Why do investment Euler equations fail? Journal of Business and

Economic Statistics 16, 479–488.

Xing, Yuhang, 2008, Interpreting the value effect through the Q-theory: An empirical
investigation, Review of Financial Studies 21, 1767–1795.

Zhang, Lu, 2005, The value premium, Journal of Finance 60, 67–103.

39



Table 1 : Empirical Properties of the New Factors, January 1967 to December 2013

rME, rI/A, and rROE are the size, investment, ROE factors in the q-factor model, respectively. We calculate

MKT as the value-weighted market return minus the one-month Treasury bill rate from CRSP. SMB, HML,

RMW, and CMA are the size, value, profitability, and investment factors from the FF five-factor model

(from 2× 3 sorts), respectively. The data for SMB and HML in the three-factor model, SMB, HML, RMW,

and CMA in the five-factor model, as well as UMD are from Kenneth French’s Web site. m is the average

return, α is either the FF three-factor alpha or the Carhart alpha, αq the q-model alpha, a is the five-

factor alpha, and b, s, h, r, and c are five-factor loadings. The numbers in parentheses in Panels A to C are

heteroscedasticity-and-autocorrelation-adjusted t-statistics, which test that a given point estimate is zero.

In Panel D, the numbers in parentheses are p-values testing that a given correlation is zero.

Panel A: The q-factors

m α βMKT βSMB βHML βUMD R2

rME 0.34 0.03 0.01 0.98 0.17 0.93
(2.51) (0.95) (0.83) (60.34) (7.05)

0.00 0.01 0.98 0.18 0.03 0.93
(0.06) (1.50) (65.19) (7.27) (2.02)

rI/A 0.44 0.34 −0.07 −0.04 0.40 0.51
(5.12) (5.57) (−4.70) (−1.66) (13.14)

0.29 −0.06 −0.04 0.41 0.05 0.52
(4.54) (−4.40) (−1.76) (13.07) (1.89)

rROE 0.57 0.77 −0.09 −0.31 −0.22 0.20
(5.21) (7.82) (−2.32) (−5.64) (−2.70)

0.52 −0.03 −0.30 −0.13 0.27 0.40
(5.52) (−1.31) (−4.17) (−1.82) (6.13)

a b s h r c R2

rME 0.04 0.01 0.98 0.03 −0.01 0.04 0.95
(1.22) (0.76) (65.86) (1.14) (−0.17) (1.17)

rI/A 0.12 0.01 −0.04 0.04 0.08 0.82 0.84
(3.24) (0.85) (−2.67) (1.53) (2.79) (25.71)

rROE 0.45 −0.04 −0.11 −0.25 0.76 0.14 0.52
(5.44) (−1.29) (−2.65) (−3.59) (13.21) (1.39)
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Panel B: The FF five factors

m α βMKT βSMB βHML βUMD R2

SMB 0.28 −0.02 0.01 1.00 0.13 0.00 0.99
(2.02) (−1.26) (0.99) (88.07) (8.12) (0.11)

HML 0.37 0.00 −0.00 0.00 1.00 0.00 1.00
(2.63) (1.49) (−0.68) (0.37) (1752.68) (0.97)

RMW 0.27 0.34 −0.04 −0.27 −0.00 0.04 0.19
(2.58) (3.36) (−1.38) (−3.08) (−0.07) (0.83)

CMA 0.36 0.19 −0.09 0.04 0.46 0.04 0.55
(3.68) (2.82) (−4.42) (0.90) (13.43) (1.52)

αq βMKT βME βI/A βROE R2

SMB 0.05 −0.00 0.94 −0.09 −0.10 0.96
(1.58) (−0.48) (58.83) (−4.72) (−5.61)

HML 0.04 −0.05 0.00 1.03 −0.17 0.50
(0.36) (−1.37) (0.01) (11.67) (−2.19)

RMW 0.04 −0.03 −0.12 −0.03 0.52 0.49
(0.49) (−1.07) (−1.70) (−0.37) (8.54)

CMA 0.02 −0.05 0.04 0.93 −0.11 0.85
(0.45) (−3.65) (1.58) (33.68) (−3.90)

Panel C: The Carhart momentum factor, UMD

m αq βMKT βME βI/A βROE R2

UMD 0.68 0.09 −0.07 0.24 0.04 0.92 0.28
(3.65) (0.38) (−1.10) (1.71) (0.22) (5.63)

a b s h r c R2

UMD 0.70 −0.13 0.03 −0.55 0.26 0.49 0.09
(3.02) (−1.76) (0.24) (−2.97) (1.26) (1.91)

Panel D: Correlation matrix

rI/A rROE MKT SMB HML UMD RMW CMA

rME −0.15 −0.31 0.28 0.97 −0.08 −0.02 −0.37 −0.06
(0.00) (0.00) (0.00) (0.00) (0.07) (0.70) (0.00) (0.16)

rI/A 0.03 −0.39 −0.20 0.69 0.04 0.04 0.90
(0.45) (0.00) (0.00) (0.00) (0.36) (0.29) (0.00)

rROE −0.20 −0.37 −0.11 0.50 0.68 −0.11
(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

MKT 0.29 −0.31 −0.14 −0.22 −0.40
(0.00) (0.00) (0.00) (0.00) (0.00)

SMB −0.12 −0.05 −0.37 −0.10
(0.00) (0.23) (0.00) (0.02)

HML −0.15 0.10 0.71
(0.00) (0.02) (0.00)

UMD 0.10 0.01
(0.02) (0.84)

RMW −0.09
(0.04)
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Table 2 : Estimates of the Internal Rates of Return for the FF Factors

AR, IRR, and Diff (all in monthly percent) are the average return, the internal rate of return, and AR minus IRR, respectively. SMB, HML, RMW,

and CMA are the factors (other than the market factor) in the FF five-factor model. Results from the benchmark 2×3 construction and those from

the two alternative constructions based on 2× 2 and 2× 2× 2× 2 are presented. Appendix A describes in details all the IRR estimation methods.

2× 3 2× 2 2× 2× 2× 2 2× 3 2× 2 2× 2× 2× 2

AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff

Panel A: Estimates with the Institutional Brokers’ Estimate System (IBES) earnings forecasts (1/1979–12/2013)

The Gebhardt, Lee, and Swaminathan (2001) model The Easton (2004) MPEG model

SMB 0.26 0.06 0.20 0.27 0.07 0.20 0.25 0.05 0.20 0.26 0.18 0.08 0.27 0.18 0.09 0.27 0.15 0.11
[t] 1.89 9.61 1.45 1.89 10.18 1.43 1.94 9.98 1.56 1.86 29.04 0.59 1.86 28.97 0.60 2.01 33.10 0.85
HML 0.23 0.27 −0.04 0.17 0.19 −0.02 0.17 0.19 −0.02 0.25 0.25 0.00 0.19 0.17 0.02 0.18 0.12 0.06
[t] 1.38 40.30 −0.23 1.42 35.93 −0.14 1.37 40.11 −0.12 1.43 15.46 −0.01 1.50 15.38 0.17 1.40 12.26 0.46
RMW 0.32 −0.08 0.40 0.21 −0.06 0.27 0.23 0.01 0.22 0.34 −0.24 0.57 0.22 −0.16 0.37 0.23 −0.10 0.33
[t] 2.65 −15.74 3.34 2.63 −13.25 3.38 2.78 4.18 2.64 2.54 −21.17 4.34 2.45 −19.57 4.24 2.56 −14.28 3.72
CMA 0.28 0.05 0.23 0.20 0.03 0.17 0.17 −0.01 0.18 0.29 0.19 0.11 0.20 0.12 0.09 0.16 0.08 0.09
[t] 2.75 9.22 2.27 2.67 8.83 2.25 2.68 −3.46 2.84 2.86 17.02 1.07 2.68 16.37 1.15 2.54 12.53 1.38

The Claus and Thomas (2001) model The Gordon and Gordon (1997) model

SMB 0.27 0.08 0.19 0.27 0.08 0.20 0.26 0.07 0.19 0.27 0.00 0.27 0.27 0.00 0.27 0.26 −0.01 0.27
[t] 1.95 14.78 1.40 1.95 14.64 1.41 1.99 14.39 1.45 2.00 −0.61 2.06 1.99 −0.27 2.03 2.03 −2.27 2.15
HML 0.23 0.00 0.23 0.17 0.01 0.17 0.17 0.02 0.15 0.19 0.25 −0.06 0.15 0.18 −0.03 0.15 0.22 −0.07
[t] 1.36 0.01 1.36 1.42 1.02 1.36 1.38 2.63 1.20 1.16 20.81 −0.39 1.28 19.82 −0.26 1.26 23.49 −0.56
RMW 0.31 0.04 0.28 0.20 0.03 0.17 0.23 0.05 0.18 0.31 0.08 0.23 0.20 0.05 0.16 0.23 0.13 0.10
[t] 2.78 5.71 2.47 2.76 8.08 2.37 2.90 11.74 2.32 3.17 12.68 2.37 3.08 9.83 2.38 3.20 33.25 1.35
CMA 0.27 0.01 0.26 0.19 −0.01 0.20 0.16 −0.01 0.17 0.23 0.03 0.20 0.16 0.02 0.14 0.15 −0.02 0.17
[t] 2.67 0.97 2.62 2.59 −1.39 2.68 2.61 −1.60 2.69 2.28 6.03 1.97 2.23 5.67 1.94 2.35 −7.08 2.75

The Ohlson and Juettner-Nauroth (2005) model Averages across the five models

SMB 0.27 0.05 0.22 0.27 0.05 0.22 0.25 0.04 0.21 0.25 0.09 0.16 0.25 0.09 0.16 0.24 0.08 0.17
[t] 1.98 9.39 1.64 1.98 9.41 1.63 1.99 7.81 1.71 1.77 13.05 1.14 1.76 13.13 1.13 1.84 13.37 1.27
HML 0.17 0.05 0.12 0.14 0.03 0.11 0.15 0.04 0.11 0.25 0.17 0.07 0.19 0.12 0.07 0.18 0.12 0.06
[t] 1.04 7.13 0.75 1.18 6.92 0.90 1.17 8.77 0.85 1.45 20.96 0.43 1.52 19.82 0.53 1.45 19.72 0.49
RMW 0.30 0.00 0.30 0.19 −0.00 0.19 0.21 0.02 0.19 0.35 −0.07 0.42 0.23 −0.05 0.28 0.25 0.00 0.25
[t] 3.05 0.19 3.05 2.80 −0.05 2.80 2.80 4.15 2.55 2.68 −16.56 3.25 2.69 −14.90 3.23 2.91 1.36 2.86
CMA 0.25 0.00 0.25 0.17 −0.00 0.17 0.15 −0.01 0.17 0.28 0.08 0.20 0.20 0.05 0.15 0.16 0.02 0.15
[t] 2.46 0.59 2.43 2.24 −1.23 2.32 2.39 −4.21 2.61 2.75 14.96 1.99 2.66 12.90 2.06 2.61 5.21 2.34
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2× 3 2× 2 2× 2× 2× 2 2× 3 2× 2 2× 2× 2× 2

AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff

Panel B: Estimates with the Hou, van Dijk, and Zhang (2012) cross-sectional earnings forecasts (1/1967–12/2013)

The Gebhardt, Lee, and Swaminathan (2001) model The Easton (2004) MPEG model

SMB 0.30 0.12 0.18 0.31 0.12 0.18 0.31 0.09 0.21 0.28 0.38 −0.09 0.29 0.38 −0.09 0.31 0.35 −0.04
[t] 2.11 9.81 1.29 2.13 9.97 1.28 2.30 9.51 1.61 2.07 16.60 −0.68 2.10 16.53 −0.65 2.37 15.66 −0.35
HML 0.31 0.43 −0.12 0.21 0.31 −0.10 0.24 0.31 −0.07 0.27 0.54 −0.27 0.19 0.38 −0.19 0.20 0.34 −0.13
[t] 2.18 66.94 −0.86 1.97 60.16 −0.93 2.30 66.34 −0.65 1.88 31.43 −1.85 1.77 32.51 −1.77 1.91 32.47 −1.26
RMW 0.27 −0.11 0.38 0.19 −0.09 0.28 0.25 0.04 0.21 0.33 −0.28 0.61 0.23 −0.21 0.44 0.26 −0.07 0.33
[t] 2.68 −16.18 3.85 2.76 −16.34 4.12 3.77 9.18 3.23 2.86 −24.33 5.29 3.00 −25.15 5.67 3.35 −11.14 4.29
CMA 0.30 0.13 0.18 0.20 0.09 0.11 0.14 0.01 0.13 0.35 0.31 0.04 0.24 0.22 0.03 0.19 0.13 0.06
[t] 3.30 20.23 1.96 2.95 22.51 1.61 2.69 4.12 2.47 4.14 23.43 0.43 3.80 24.67 0.41 3.62 13.44 1.11

The Claus and Thomas (2001) model The Gordon and Gordon (1997) model

SMB 0.30 0.20 0.09 0.31 0.20 0.11 0.30 0.19 0.11 0.32 0.11 0.20 0.33 0.12 0.21 0.33 0.09 0.23
[t] 2.15 10.35 0.69 2.19 10.25 0.76 2.31 10.50 0.84 2.35 7.22 1.54 2.39 7.27 1.57 2.54 7.46 1.84
HML 0.29 0.27 0.01 0.19 0.20 −0.01 0.23 0.22 0.01 0.25 0.47 −0.21 0.17 0.33 −0.17 0.21 0.38 −0.17
[t] 2.04 33.10 0.10 1.80 34.34 −0.06 2.20 38.17 0.08 1.88 33.35 −1.59 1.62 32.11 −1.63 2.07 35.50 −1.75
RMW 0.25 0.00 0.25 0.17 −0.00 0.18 0.23 0.09 0.14 0.22 0.00 0.22 0.15 −0.01 0.16 0.21 0.16 0.05
[t] 2.96 0.60 2.92 2.96 −0.83 3.03 4.07 17.48 2.49 2.92 0.43 2.88 2.75 −2.19 2.98 4.17 32.64 1.07
CMA 0.27 0.12 0.15 0.18 0.08 0.09 0.13 0.03 0.10 0.26 0.15 0.10 0.17 0.11 0.06 0.13 0.02 0.11
[t] 2.93 22.24 1.64 2.62 22.44 1.36 2.42 9.75 1.77 2.66 23.03 1.08 2.44 25.60 0.90 2.27 5.27 1.90

The Ohlson and Juettner-Nauroth (2005) model Averages across the five models

SMB 0.37 0.24 0.13 0.39 0.25 0.14 0.37 0.23 0.14 0.28 0.23 0.06 0.29 0.23 0.06 0.29 0.21 0.09
[t] 2.84 12.82 0.99 2.91 12.76 1.08 3.02 12.57 1.13 2.00 13.49 0.41 2.00 13.38 0.43 2.17 13.87 0.64
HML 0.26 0.36 −0.09 0.18 0.26 −0.07 0.21 0.25 −0.03 0.33 0.42 −0.10 0.22 0.30 −0.08 0.25 0.30 −0.05
[t] 1.93 43.64 −0.69 1.78 42.81 −0.69 2.10 46.43 −0.32 2.26 51.22 −0.67 2.06 52.28 −0.72 2.33 50.53 −0.45
RMW 0.24 −0.12 0.35 0.17 −0.09 0.26 0.24 0.02 0.22 0.28 −0.13 0.41 0.20 −0.10 0.29 0.25 0.03 0.22
[t] 3.06 −13.21 4.55 3.04 −14.51 4.59 4.25 2.98 3.90 2.62 −21.32 3.81 2.68 −22.16 4.02 3.62 8.08 3.18
CMA 0.31 0.16 0.15 0.20 0.12 0.08 0.17 0.05 0.12 0.31 0.21 0.10 0.21 0.15 0.06 0.15 0.07 0.08
[t] 3.30 24.06 1.57 2.85 23.58 1.17 3.03 11.59 2.10 3.48 35.32 1.15 3.15 37.92 0.97 2.86 14.05 1.51
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2× 3 2× 2 2× 2× 2× 2 2× 3 2× 2 2× 2× 2× 2

AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff AR IRR Diff

Panel C: Estimates with the Tang, Wu, and Zhang (2014) cross-sectional ROE forecasts (1/1967–12/2013)

The Gebhardt, Lee, and Swaminathan (2001) model The Easton (2004) MPEG model

SMB 0.32 0.01 0.31 0.33 0.02 0.31 0.30 −0.02 0.32 0.31 0.09 0.22 0.33 0.10 0.22 0.30 0.01 0.28
[t] 2.39 1.38 2.32 2.42 2.28 2.29 2.41 −3.16 2.57 2.28 10.47 1.62 2.34 11.58 1.61 2.28 1.37 2.17
HML 0.31 0.40 −0.09 0.22 0.28 −0.06 0.26 0.28 −0.02 0.33 0.58 −0.25 0.23 0.40 −0.17 0.27 0.29 −0.02
[t] 2.24 77.38 −0.68 2.18 69.67 −0.59 2.44 72.39 −0.23 2.26 35.58 −1.75 2.12 36.47 −1.56 2.47 31.62 −0.20
RMW 0.23 −0.11 0.34 0.15 −0.08 0.24 0.24 0.03 0.22 0.24 −0.49 0.74 0.17 −0.35 0.52 0.26 −0.23 0.49
[t] 2.33 −19.02 3.45 2.25 −18.55 3.48 3.43 7.82 3.07 2.49 −45.27 7.43 2.46 −43.88 7.57 3.58 −31.09 6.62
CMA 0.29 0.09 0.20 0.19 0.07 0.13 0.13 −0.00 0.13 0.27 0.36 −0.09 0.19 0.26 −0.07 0.10 0.18 −0.08
[t] 3.23 12.54 2.26 2.97 14.07 1.98 2.56 −0.11 2.56 2.87 24.92 −0.94 2.90 28.70 −1.16 2.00 24.16 −1.51

The Claus and Thomas (2001) model The Gordon and Gordon (1997) model

SMB 0.34 −0.08 0.41 0.34 −0.08 0.42 0.32 −0.10 0.42 0.34 0.00 0.34 0.34 0.00 0.34 0.32 −0.04 0.35
[t] 2.62 −7.69 3.25 2.65 −7.32 3.24 2.66 −10.50 3.51 2.67 −0.31 2.72 2.70 0.37 2.70 2.71 −4.41 3.03
HML 0.26 0.20 0.07 0.20 0.14 0.06 0.23 0.16 0.07 0.26 0.37 −0.11 0.19 0.26 −0.07 0.23 0.30 −0.07
[t] 2.04 12.14 0.52 2.04 12.87 0.57 2.34 14.93 0.74 1.99 35.25 −0.82 1.96 34.83 −0.72 2.25 38.63 −0.71
RMW 0.19 −0.00 0.20 0.13 −0.01 0.13 0.22 0.06 0.15 0.20 −0.02 0.22 0.13 −0.02 0.15 0.22 0.10 0.11
[t] 2.44 −0.53 2.47 2.31 −1.24 2.41 3.75 26.14 2.65 2.73 −2.87 2.96 2.51 −5.85 2.88 4.02 31.05 2.09
CMA 0.24 0.05 0.19 0.16 0.04 0.12 0.11 0.02 0.09 0.23 0.06 0.17 0.15 0.05 0.11 0.10 −0.01 0.12
[t] 2.68 9.01 2.11 2.47 9.29 1.86 2.03 4.87 1.72 2.42 11.83 1.76 2.27 13.33 1.58 1.86 −4.43 2.10

The Ohlson and Juettner-Nauroth (2005) model Averages across the five models

SMB 0.34 −0.10 0.44 0.36 −0.09 0.45 0.33 −0.13 0.46 0.32 0.00 0.32 0.33 0.01 0.32 0.30 −0.04 0.34
[t] 2.64 −7.88 3.36 2.73 −7.45 3.39 2.68 −10.40 3.68 2.39 0.10 2.39 2.41 0.82 2.37 2.41 −4.57 2.69
HML 0.29 0.33 −0.04 0.22 0.23 −0.01 0.24 0.22 0.02 0.31 0.40 −0.09 0.23 0.28 −0.05 0.26 0.26 0.00
[t] 2.14 20.58 −0.29 2.19 20.70 −0.12 2.39 22.46 0.21 2.25 39.43 −0.63 2.20 39.39 −0.51 2.45 40.15 −0.01
RMW 0.16 −0.16 0.32 0.11 −0.11 0.21 0.17 −0.03 0.20 0.23 −0.17 0.40 0.15 −0.12 0.27 0.24 −0.02 0.26
[t] 2.03 −20.08 4.03 1.88 −17.23 3.74 3.03 −5.19 3.47 2.32 −33.97 4.06 2.23 −36.15 4.03 3.42 −6.49 3.69
CMA 0.25 0.06 0.19 0.17 0.05 0.12 0.10 −0.01 0.11 0.28 0.15 0.13 0.19 0.11 0.08 0.14 0.05 0.09
[t] 2.69 8.03 2.01 2.45 9.63 1.71 1.79 −1.03 1.84 3.21 30.53 1.50 2.97 27.79 1.31 2.56 14.83 1.62
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Table 3 : Annual Cross-sectional Regressions of Future Book Equity Growth Rates and Operating Profitability

The sample contains all common stocks traded on NYSE, Amex, and Nasdaq. We do not exclude financial firms, because these stocks are included

in the construction of the FF (2014a) five factors. All the regressions are annual cross-sectional regressions. TAit is total assets for firm i at year

t, △TAit ≡ TAit − TAit−1, BEit is book equity for firm i at year t, △BEit ≡ BEit − BEit−1, and OPit is operating profitability for firm i at year

t. Book equity is measured as in Davis, Fama, and French (2000), and operating profitability is measured as in FF (2014a). Variables dated t are

measured at the end of the fiscal year ending in calendar year t. To avoid the excess influence of small firms, we exclude those with total assets

below $5 million or book equity below $2.5 million in year t in Panel A. The cutoffs are $25 million and $12.5 million in Panel B. We also winsorize

all regression variables at the 1st and 99th percentiles of their cross-sectional distributions each year.

△BEit+τ

BEit+τ−1
= γ0 + γ1

△TAit

TAit−1
+ ǫt+τ

△BEit+τ

BEit+τ−1
= γ0 + γ1

△BEit

BEit−1
+ ǫt+τ OPit+τ = γ0 + γ1OPit + ǫt+τ

τ #firms γ0 tγ0
γ1 tγ1

R2 γ0 tγ0
γ1 tγ1

R2 γ0 tγ0
γ1 tγ1

R2

Panel A: Firms with assets ≥ $5 million and book equity ≥ $2.5 million

1 3,112 0.09 14.47 0.22 14.23 0.05 0.09 12.95 0.21 8.66 0.06 0.03 5.24 0.80 51.05 0.55
2 2,847 0.10 14.54 0.10 7.38 0.01 0.10 14.65 0.10 5.17 0.02 0.06 6.80 0.67 30.48 0.36
3 2,622 0.10 15.06 0.07 6.23 0.01 0.10 15.00 0.06 4.05 0.01 0.07 8.25 0.59 25.49 0.28
4 2,425 0.10 16.23 0.05 5.76 0.00 0.10 16.27 0.06 3.77 0.00 0.09 9.75 0.53 23.42 0.22
5 2,247 0.10 14.87 0.05 3.93 0.00 0.10 15.94 0.03 2.18 0.00 0.10 11.48 0.49 23.50 0.19
6 2,086 0.10 15.18 0.05 4.56 0.00 0.10 14.94 0.03 2.36 0.00 0.10 13.20 0.46 23.28 0.16
7 1,939 0.10 15.38 0.05 4.50 0.00 0.10 15.54 0.03 2.78 0.00 0.11 14.75 0.43 22.12 0.14
8 1,803 0.10 15.35 0.03 3.97 0.00 0.10 15.63 0.01 1.58 0.00 0.12 16.23 0.40 20.24 0.12
9 1,679 0.10 15.23 0.03 3.55 0.00 0.10 15.48 0.01 1.26 0.00 0.12 16.06 0.38 19.93 0.12
10 1,565 0.09 14.76 0.04 4.28 0.00 0.10 15.06 0.02 2.00 0.00 0.13 15.51 0.37 20.15 0.11

Panel B: Firms with assets ≥ $25 million and book equity ≥ $12.5 million

1 2,473 0.08 15.84 0.23 17.57 0.05 0.08 13.96 0.25 10.49 0.07 0.03 7.27 0.82 58.03 0.61
2 2,264 0.09 15.86 0.13 9.93 0.02 0.09 16.23 0.13 7.00 0.02 0.06 9.30 0.69 35.98 0.42
3 2,086 0.09 16.82 0.09 7.48 0.01 0.09 16.62 0.09 5.76 0.01 0.08 11.18 0.61 31.81 0.32
4 1,930 0.09 17.19 0.07 7.09 0.01 0.09 17.13 0.07 4.54 0.01 0.09 13.38 0.56 29.86 0.26
5 1,792 0.09 16.65 0.06 4.09 0.00 0.09 17.31 0.05 3.15 0.01 0.10 15.82 0.52 30.37 0.22
6 1,665 0.09 16.77 0.05 5.53 0.00 0.09 16.57 0.04 3.48 0.00 0.11 17.16 0.49 29.68 0.19
7 1,551 0.09 16.99 0.05 4.91 0.00 0.09 17.07 0.04 3.24 0.00 0.12 19.16 0.45 29.69 0.16
8 1,446 0.09 16.17 0.03 3.93 0.00 0.09 16.24 0.02 2.62 0.00 0.13 20.69 0.42 28.89 0.14
9 1,349 0.09 16.00 0.04 3.99 0.00 0.09 16.32 0.02 2.14 0.00 0.13 20.31 0.41 25.44 0.13
10 1,260 0.09 14.91 0.05 5.16 0.00 0.09 15.30 0.03 2.83 0.00 0.14 18.77 0.40 24.99 0.12
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Table 4 : List of Anomalies

This table lists all the anomalies that we study. The anomalies are grouped into six categories: (i) momentum;

(ii) value-versus-growth; (iii) investment; (iv) profitability; (v) intangibles; and (vi) trading frictions. For

each anomaly variable, we list its symbol, brief description, and source in the academic literature. Appendix

C details variable definition and portfolio construction.

Panel A: Momentum

SUE-1 Earnings surprise (1-month holding period), SUE-6 Earnings surprise (6-month holding period),
Foster, Olsen, and Shevlin (1984) Foster, Olsen, and Shevlin (1984)

Abr-1 Cumulative abnormal stock returns Abr-6 Cumulative abnormal stock returns
around earnings announcements around earnings announcements
(1-month holding period), (6-month holding period),
Chan, Jegadeesh, and Lakonishok (1996) Chan, Jegadeesh, and Lakonishok (1996)

RE-1 Revisions in analysts’ earnings forecasts RE-6 Revisions in analysts’ earnings forecasts
(1-month holding period), (6-month holding period),
Chan, Jegadeesh, and Lakonishok (1996) Chan, Jegadeesh, and Lakonishok (1996)

R6-1 Price momentum (6-month prior returns, R6-6 Price momentum (6-month prior returns,
1-month holding period), 6-month holding period),
Jegadeesh and Titman (1993) Jegadeesh and Titman (1993)

R11-1 Price momentum, (11-month prior returns, I-Mom Industry momentum,
1-month holding period), Moskowitz and Grinblatt (1999)
Fama and French (1996)

Panel B: Value-versus-growth

B/M Book-to-market equity, A/ME Market leverage, Bhandari (1988)
Rosenberg, Reid, and Lanstein (1985)

Rev Reversal, De Bondt and Thaler (1985) E/P Earnings-to-price, Basu (1983)
EF/P Analysts’ earnings forecasts-to-price, CF/P Cash flow-to-price,

Elgers, Lo, and Pfeiffer (2001) Lakonishok, Shleifer, and Vishny (1994)
D/P Dividend yield, O/P Payout yield, Boudoukh, Michaely,

Litzenberger and Ramaswamy (1979) Richardson, and Roberts (2007)
NO/P Net payout yield, Boudoukh, Michaely, SG Sales growth,

Richardson, and Roberts (2007) Lakonishok, Shleifer, and Vishny (1994)
LTG Long-term growth forecasts of analysts, Dur Equity duration,

La Porta (1996) Dechow, Sloan, and Soliman (2004)

Panel C: Investment

ACI Abnormal corporate investment, I/A Investment-to-assets,
Titman, Wei, and Xie (2004) Cooper, Gulen, and Schill (2008)

NOA Net operating assets, △PI/AChanges in property, plant, and equipment
Hirshleifer, Hou, Teoh, and Zhang (2004) plus changes in inventory scaled by assets,

Lyandres, Sun, and Zhang (2008)
IG Investment growth, Xing (2008) NSI Net stock issues, Pontiff and Woodgate (2008)
CEI Composite issuance, NXF Net external financing,

Daniel and Titman (2006) Bradshaw, Richardson, and Sloan (2006)
IvG Inventory growth, Belo and Lin (2011) IvC Inventory changes, Thomas and Zhang (2002)
OA Operating accruals, Sloan (1996) TA Total accruals,

Richardson, Sloan, Soliman, and Tuna (2005)
POA Percent operating accruals, PTA Percent total accruals,

Hafzalla, Lundholm, and Van Winkle (2011) Hafzalla, Lundholm, and Van Winkle (2011)

46



Panel D: Profitability

ROE Return on equity, ROA Return on assets,
Haugen and Baker (1996) Balakrishnan, Bartov, and Faurel (2010)

RNA Return on net operating assets, PM Profit margin, Soliman (2008)
Soliman (2008)

ATO Asset turnover, Soliman (2008) CTO Capital turnover, Haugen and Baker (1996)
GP/A Gross profits-to-assets, Novy-Marx (2013) F F -score, Piotroski (2000)
TES Tax expense surprise, TI/BI Taxable income-to-book income,

Thomas and Zhang (2011) Green, Hand, and Zhang (2013)
RS Revenue surprise, NEI Number of consecutive quarters with earnings

Jegadeesh and Livnat (2006) increases, Barth, Elliott, and Finn (1999)
FP Failure probability, O O-score, Dichev (1998)

Campbell, Hilscher, and Szilagyi (2008)

Panel E: Intangibles

OC/A Organizational capital-to-assets, BC/A Brand capital-to-assets,
Eisfeldt and Papanikolaou (2013) Belo, Lin, and Vitorino (2014)

Ad/M Advertisement expense-to-market, RD/S R&D-to-sales,
Chan, Lakonishok, and Sougiannis (2001) Chan, Lakonishok, and Sougiannis (2001)

RD/M R&D-to-market, RC/A R&D capital-to-assets, Li (2011)
Chan, Lakonishok, and Sougiannis (2001)

H/N Hiring rate, Belo, Lin, and Bazdresch (2014) OL Operating leverage, Novy-Marx (2011)
G Corporate governance, AccQ Accrual quality,

Gompers, Ishii, and Metrick (2003) Francis, Lafond, Olsson, and Schipper (2005)

Panel F: Trading frictions

ME The market equity, Banz (1981) Ivol Idiosyncratic volatility,
Ang, Hodrick, Xing, and Zhang (2006)

Tvol Total volatility, Svol Systematic volatility,
Ang, Hodrick, Xing, and Zhang (2006) Ang, Hodrick, Xing, and Zhang (2006)

MDR Maximum daily return, β Market beta, Frazzini and Pedersen (2014)
Bali, Cakici, and Whitelaw (2011)

D-β Dimson’s beta, Dimson (1979) S-Rev Short-term reversal, Jegadeesh (1990)
Disp Dispersion of analysts’ earnings forecasts, Turn Share turnover,

Diether, Malloy, and Scherbina (2002) Datar, Naik, and Radcliffe (1998)
1/P 1/share price, Miller and Scholes (1982) Dvol Dollar trading volume,

Brennan, Chordia, and Subrahmanyam (1998)
Illiq Illiquidity as absolute return-to-volume,

Amihud (2002)
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Table 5 : Insignificant Anomalies in the Broad Cross Section

We report the average returns (m) of the high-minus-low deciles and their t-statistic (tm) adjusted for heteroscedasticity and autocorrelations.

Table 4 provides a brief description of the symbols. The deciles in Panel A are formed with NYSE breakpoints and value-weighted returns, and

those in Panel B with all-but-micro breakpoints and equal-weighted returns. Appendix C details variable definition and portfolio construction.

Panel A: NYSE breakpoints, value-weighted decile returns

SUE-6 R6-1 A/ME EF/P D/P O/P SG LTG NXF TA RNA PM ATO

m 0.17 0.57 0.41 0.45 0.19 0.33 −0.24 0.07 −0.27 −0.21 0.11 −0.02 0.30
tm 1.68 1.88 1.89 1.82 0.75 1.49 −1.29 0.18 −1.42 −1.57 0.57 −0.08 1.67

CTO F TES TI/BI FP O BC/A RD/S RC/A H/N G AccQ ME

m 0.27 0.34 0.30 0.18 −0.55 −0.09 0.21 0.04 0.34 −0.28 0.03 −0.04 −0.33
tm 1.58 1.21 1.85 1.31 −1.72 −0.46 0.85 0.15 1.40 −1.82 0.09 −0.19 −1.32

Ivol Tvol MDR β D-β S-Rev Disp Turn 1/P Dvol Illiq

m −0.49 −0.36 −0.32 −0.16 0.07 −0.30 −0.27 −0.15 0.09 −0.32 0.34
tm −1.55 −1.01 −1.04 −0.47 0.31 −1.50 −1.05 −0.57 0.29 −1.71 1.54

Panel B: All-but-micro breakpoints, equal-weighted decile returns

EF/P D/P O/P SG LTG RNA PM ATO TI/BI FP BC/A RD/S RC/A

m 0.47 0.18 0.39 −0.27 −0.47 0.19 0.21 0.16 0.19 −0.49 0.32 −0.04 0.37
tm 1.47 0.87 1.94 −1.70 −1.01 1.18 0.88 0.98 1.82 −1.76 1.45 −0.12 1.11

G AccQ ME Ivol Tvol β D-β Turn 1/P Illiq

m −0.02 −0.06 −0.22 −0.61 −0.65 −0.25 −0.09 −0.44 −0.05 0.29
tm −0.08 −0.30 −1.25 −1.87 −1.80 −0.70 −0.41 −1.65 −0.21 1.92
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Table 6 : Significant Anomalies with NYSE Breakpoints and Value-weighted Returns

For each anomaly variable, m,αFF , αC , αq, and a are the average return, the FF three-factor alpha, the Carhart alpha, the q-model alpha,

and the FF five-factor alpha for the high-minus-low decile, and tm, tFF , tC , tq, and ta are their t-statistics adjusted for heteroscedasticity and

autocorrelations, respectively. |αFF |, |αC |, |αq|, and |a| are the average magnitude of the alphas, and pFF , pC , pq, and pa are the p-values of the

GRS test that all the alphas are jointly zero across a given set of deciles. Table 4 provides a brief description of the symbols.

SUE-1 Abr-1 Abr-6 RE-1 RE-6 R6-6 R11-1 I-Mom B/M Rev E/P CF/P NO/P Dur ACI I/A NOA △PI/A

m 0.41 0.73 0.30 0.78 0.52 0.83 1.20 0.58 0.64 −0.46 0.55 0.46 0.65 −0.46 −0.31 −0.46 −0.39 −0.50
αFF 0.53 0.84 0.37 1.13 0.87 1.10 1.54 0.74 −0.05 0.06 0.02 −0.04 0.53 0.03 −0.31 −0.21 −0.53 −0.39
αC 0.35 0.62 0.18 0.49 0.31 0.07 0.18 −0.11 −0.05 −0.07 −0.02 −0.10 0.51 0.01 −0.19 −0.17 −0.43 −0.34
αq 0.15 0.64 0.26 0.06 −0.02 0.22 0.26 0.03 0.16 −0.16 0.11 0.15 0.36 −0.18 −0.17 0.09 −0.39 −0.23
a 0.44 0.85 0.44 0.86 0.66 0.97 1.25 0.61 −0.02 0.08 0.05 0.01 0.22 −0.05 −0.30 0.04 −0.44 −0.31

tm 3.65 5.58 3.10 3.05 2.35 3.44 4.00 2.91 2.88 −2.02 2.67 2.30 3.27 −2.39 −2.12 −2.86 −2.82 −3.67
tFF 4.79 6.01 3.91 4.75 4.41 4.91 5.72 3.84 −0.39 0.32 0.15 −0.33 3.63 0.27 −2.03 −1.63 −3.68 −3.01
tC 2.95 4.40 2.04 2.38 1.83 0.70 1.41 −0.72 −0.42 −0.39 −0.13 −0.76 3.45 0.09 −1.23 −1.20 −3.08 −2.55
tq 1.12 4.21 2.25 0.22 −0.07 0.68 0.65 0.11 0.96 −0.93 0.53 0.77 2.45 −0.92 −0.96 0.72 −2.10 −1.81
ta 3.74 5.87 4.23 3.23 2.86 3.38 3.45 2.45 −0.17 0.45 0.37 0.09 1.57 −0.34 −1.91 0.34 −2.62 −2.61

|αFF | 0.16 0.16 0.11 0.25 0.22 0.18 0.25 0.16 0.07 0.10 0.09 0.08 0.17 0.09 0.12 0.12 0.16 0.12

|αC | 0.10 0.12 0.08 0.10 0.09 0.09 0.13 0.05 0.07 0.10 0.08 0.07 0.15 0.06 0.11 0.10 0.14 0.11

|αq| 0.06 0.13 0.07 0.11 0.12 0.09 0.15 0.12 0.09 0.08 0.12 0.15 0.12 0.08 0.13 0.10 0.10 0.13

|a| 0.11 0.16 0.08 0.20 0.17 0.17 0.23 0.21 0.06 0.05 0.09 0.13 0.11 0.05 0.15 0.11 0.10 0.11

pFF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.046 0.08 0.045 0.10 0.00 0.20 0.00 0.00 0.00 0.00
pC 0.00 0.00 0.00 0.05 0.06 0.00 0.00 0.41 0.08 0.26 0.15 0.11 0.00 0.43 0.00 0.01 0.00 0.01
pq 0.39 0.00 0.01 0.16 0.02 0.00 0.00 0.03 0.13 0.25 0.04 0.00 0.00 0.36 0.00 0.00 0.00 0.00
pa 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.44 0.42 0.13 0.03 0.00 0.72 0.00 0.00 0.02 0.01

IG NSI CEI IvG IvC OA POA PTA ROE ROA GP/A RS NEI OC/A Ad/M RD/M OL Svol

m −0.42 −0.72 −0.57 −0.38 −0.46 −0.28 −0.43 −0.42 0.68 0.58 0.40 0.31 0.38 0.58 0.78 0.64 0.46 −0.55
αFF −0.27 −0.70 −0.54 −0.27 −0.40 −0.37 −0.31 −0.33 1.09 0.97 0.58 0.63 0.60 0.62 0.15 0.21 0.42 −0.63
αC −0.21 −0.61 −0.45 −0.19 −0.31 −0.33 −0.24 −0.31 0.79 0.64 0.51 0.49 0.42 0.41 0.31 0.31 0.39 −0.59
αq 0.02 −0.31 −0.25 −0.01 −0.28 −0.54 −0.09 −0.15 −0.03 0.06 0.20 0.21 0.18 0.13 0.11 0.60 0.02 −0.34
a −0.08 −0.32 −0.25 −0.12 −0.38 −0.52 −0.12 −0.11 0.51 0.50 0.21 0.53 0.46 0.33 −0.06 0.38 0.09 −0.34

tm −3.33 −4.56 −3.18 −2.72 −3.30 −2.24 −3.08 −3.03 2.95 2.54 2.75 2.15 3.34 4.59 2.99 2.40 2.65 −2.46
tFF −2.33 −5.04 −4.52 −2.08 −2.95 −3.02 −2.56 −2.57 5.60 5.27 3.98 4.72 6.17 5.00 0.79 0.93 2.43 −2.82
tC −1.84 −4.35 −3.71 −1.37 −2.23 −2.46 −2.01 −2.29 4.15 3.46 3.51 3.41 3.92 3.34 1.38 1.43 2.28 −2.51
tq 0.18 −2.22 −1.85 −0.09 −1.95 −3.81 −0.68 −1.03 −0.24 0.49 1.39 1.41 1.72 1.03 0.40 2.46 0.14 −1.37
ta −0.75 −2.43 −2.33 −0.99 −2.92 −4.10 −1.03 −0.87 3.57 3.43 1.58 3.73 4.57 2.61 −0.32 1.57 0.56 −1.36

|αFF | 0.12 0.17 0.15 0.11 0.11 0.13 0.12 0.11 0.24 0.22 0.15 0.16 0.20 0.16 0.13 0.18 0.12 0.19

|αC | 0.10 0.15 0.14 0.09 0.10 0.11 0.12 0.11 0.15 0.13 0.15 0.12 0.13 0.12 0.19 0.21 0.12 0.16

|αq| 0.09 0.11 0.12 0.10 0.07 0.14 0.12 0.08 0.10 0.07 0.12 0.08 0.09 0.11 0.11 0.27 0.11 0.11

|a| 0.06 0.10 0.10 0.10 0.08 0.12 0.12 0.08 0.11 0.15 0.10 0.15 0.15 0.11 0.12 0.21 0.09 0.11

pFF 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.01 0.01 0.00
pC 0.00 0.00 0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.08 0.00 0.02 0.03
pq 0.02 0.01 0.01 0.08 0.45 0.00 0.00 0.01 0.01 0.79 0.19 0.04 0.03 0.01 0.09 0.00 0.03 0.13
pa 0.28 0.01 0.01 0.04 0.20 0.00 0.00 0.02 0.01 0.06 0.08 0.00 0.00 0.00 0.28 0.00 0.06 0.25
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Table 7 : Factor Loadings for the q-factor Model and the FF Five-factor Model, Significant Anomalies with NYSE Breakpoints
and Value-weighted Returns

For the high-minus-low decile formed on each anomaly variable, βMKT, βME, βI/A, and βROE are the loadings on the market, size, investment, and

ROE factors in the q-factor model, and tβMKT
, tβME

, tβI/A
, and tβROE

are their t-statistics, respectively. b, s, h, r, and c are the loadings on MKT,

SMB, HML, RMW, and CMA in the FF five-factor model, and tb, ts, th, tr, and tc are their t-statistics, respectively. All t-statistics are adjusted

for heteroscedasticity and autocorrelations. Table 4 provides a brief description of the symbols.

SUE-1 Abr-1 Abr-6 RE-1 RE-6 R6-6 R11-1 I-Mom B/M Rev E/P CF/P NO/P Dur ACI I/A NOA △PI/A

βMKT −0.09 −0.06 −0.03 −0.06 −0.06 −0.08 −0.12 −0.08 −0.01 0.05 −0.08 −0.12 −0.17 0.07 0.01 0.03 −0.01 0.04
βME 0.10 0.07 0.08 −0.19 −0.18 0.22 0.33 0.25 0.48 −0.64 0.29 0.20 −0.32 −0.26 −0.29 −0.14 0.10 −0.08
βI/A 0.03 −0.14 −0.17 0.09 −0.07 0.01 0.12 0.09 1.40 −1.17 1.01 1.00 1.03 −0.86 0.13 −1.37 −0.07 −0.79

βROE 0.46 0.28 0.18 1.31 1.10 1.01 1.46 0.82 −0.53 0.72 −0.11 −0.26 0.02 0.27 −0.19 0.17 0.01 0.16
tβMKT

−2.18 −1.37 −1.30 −0.98 −1.15 −1.04 −1.28 −1.19 −0.18 1.08 −1.47 −1.90 −3.78 1.12 0.24 0.92 −0.21 1.13
tβME

1.88 0.70 1.81 −2.11 −1.98 1.25 1.53 1.55 5.86 −7.83 2.34 1.91 −4.31 −1.93 −4.99 −2.35 1.01 −1.63
tβI/A

0.32 −1.31 −2.27 0.52 −0.45 0.06 0.39 0.39 13.01 −10.49 6.27 7.31 10.33 −6.36 1.01 −16.71 −0.48 −7.70

tβROE
5.76 3.18 2.86 9.82 9.36 5.40 5.80 4.95 −6.24 7.47 −0.78 −2.03 0.21 2.22 −2.10 2.58 0.08 2.02

b −0.11 −0.08 −0.07 −0.16 −0.15 −0.16 −0.22 −0.13 0.07 −0.02 −0.02 −0.05 −0.10 0.01 0.03 −0.01 0.00 0.03
s −0.03 −0.05 0.01 −0.42 −0.40 −0.08 −0.05 0.01 0.52 −0.67 0.32 0.25 −0.25 −0.32 −0.26 −0.10 0.16 −0.03
h −0.17 −0.20 −0.12 −0.16 −0.27 −0.54 −0.71 −0.37 1.16 −0.47 1.38 1.29 0.46 −1.18 0.16 −0.18 0.46 0.01
r 0.14 −0.11 −0.12 0.55 0.41 0.11 0.35 0.12 −0.27 0.39 0.16 0.00 0.51 0.02 −0.03 0.03 0.08 0.25
c 0.18 0.13 −0.07 −0.02 0.02 0.39 0.67 0.39 0.33 −0.77 −0.38 −0.24 0.54 0.29 −0.02 −1.14 −0.52 −0.75
tb −2.45 −1.94 −2.51 −1.97 −2.22 −1.77 −1.86 −1.66 2.29 −0.37 −0.58 −1.12 −2.75 0.32 0.70 −0.47 −0.08 0.94
ts −0.45 −0.63 0.16 −3.79 −4.23 −0.56 −0.27 0.06 10.93 −6.65 5.96 4.92 −3.96 −5.04 −4.15 −1.52 2.25 −0.58
th −1.67 −1.80 −1.74 −0.94 −1.76 −2.44 −2.47 −1.79 15.84 −3.70 14.16 14.05 5.57 −11.93 1.58 −2.56 5.11 0.16
tr 1.75 −1.15 −1.73 3.28 2.80 0.44 1.13 0.51 −3.80 4.44 2.14 0.01 6.83 0.25 −0.33 0.34 0.64 3.62
tc 1.25 0.84 −0.60 −0.05 0.07 1.25 1.62 1.24 3.06 −4.57 −3.00 −1.93 4.33 2.28 −0.10 −10.88 −3.58 −6.88

IG NSI CEI IvG IvC OA POA PTA ROE ROA GP/A RS NEI OC/A Ad/M RD/M OL Svol

βMKT −0.03 0.03 0.23 −0.02 0.04 0.05 −0.02 0.05 −0.09 −0.14 0.03 −0.04 0.01 −0.10 0.04 0.15 −0.04 0.04
βME −0.15 0.17 0.25 0.08 −0.01 0.29 0.14 0.15 −0.39 −0.38 0.04 −0.13 −0.09 0.24 0.51 0.66 0.30 0.31
βI/A −0.76 −0.72 −1.04 −0.94 −0.68 −0.05 −0.94 −0.86 0.08 −0.09 −0.31 −0.40 −0.32 0.29 1.40 0.20 0.11 −0.21

βROE −0.07 −0.30 −0.11 0.05 0.18 0.27 0.06 0.05 1.50 1.32 0.54 0.61 0.65 0.51 −0.26 −0.58 0.54 −0.42
tβMKT

−0.86 0.91 6.43 −0.73 1.31 1.56 −0.62 1.47 −2.50 −4.41 0.92 −0.95 0.37 −2.86 0.48 2.44 −0.82 0.53
tβME

−2.60 2.41 3.92 1.80 −0.13 4.85 3.32 2.44 −6.44 −6.50 0.76 −2.41 −2.32 5.66 2.92 6.84 3.10 2.32
tβI/A

−10.41 −6.96 −14.03 −12.40 −6.09 −0.51 −10.91 −8.76 0.88 −1.12 −3.21 −4.56 −4.36 2.98 6.01 1.13 0.95 −1.32

tβROE
−1.18 −3.85 −1.44 0.60 1.98 4.16 1.21 0.62 21.14 17.12 7.58 7.99 11.41 6.92 −1.34 −4.08 4.88 −3.53

b −0.03 −0.01 0.18 −0.03 0.05 0.07 −0.05 0.02 −0.12 −0.16 0.04 −0.09 −0.04 −0.09 0.13 0.21 −0.02 0.03
s −0.13 0.12 0.24 0.11 0.07 0.31 0.18 0.11 −0.48 −0.48 0.11 −0.25 −0.17 0.21 0.65 0.60 0.37 0.25
h −0.08 −0.12 −0.41 −0.08 0.03 0.01 −0.16 −0.23 −0.27 −0.25 −0.45 −0.47 −0.35 −0.13 1.03 0.05 0.04 −0.06
r −0.14 −0.66 −0.41 0.07 0.35 0.40 −0.04 −0.23 1.43 1.25 0.89 0.28 0.45 0.55 0.47 −0.52 0.89 −0.56
c −0.60 −0.57 −0.60 −0.74 −0.64 0.01 −0.75 −0.57 0.20 0.03 0.19 −0.02 −0.08 0.40 0.14 0.41 0.06 −0.12
tb −1.16 −0.17 6.01 −0.74 1.37 2.08 −1.71 0.56 −2.42 −3.73 1.09 −1.83 −1.39 −2.38 2.09 3.40 −0.55 0.49
ts −2.53 2.58 4.82 2.12 1.29 5.90 4.41 1.76 −6.22 −6.13 2.25 −4.12 −3.67 4.49 6.93 6.96 5.75 2.35
th −1.23 −1.89 −6.50 −0.91 0.39 0.14 −2.94 −2.36 −2.57 −2.95 −4.46 −5.53 −5.45 −1.70 7.17 0.33 0.44 −0.39
tr −1.90 −9.56 −5.71 0.72 3.77 6.18 −0.63 −2.76 12.18 10.52 9.56 3.33 6.49 5.13 4.41 −2.86 10.50 −4.02
tc −5.45 −5.36 −6.39 −7.32 −4.66 0.10 −8.47 −4.67 1.27 0.18 1.46 −0.17 −0.77 2.92 0.68 1.99 0.45 −0.57

50



Table 8 : Significant Anomalies with All-but-micro Breakpoints and Equal-weighted Returns

For each variable, m,αFF , αC , αq, and a are the average return, the three-factor alpha, the Carhart alpha,

the q-model alpha, and the five-factor alpha for the high-minus-low decile, and tm, tFF , tC , tq, and ta are

their t-statistics adjusted for heteroscedasticity and autocorrelations, respectively. |αFF |, |αC |, |αq|, and |a|

are the average magnitude of the alphas, and pFF , pC , pq, and pa are the p-values of the GRS test that all

the alphas are jointly zero across a given set of deciles. Table 4 provides a brief description of the symbols.

SUE-1 SUE-6 Abr-1 Abr-6 RE-1 RE-6 R6-1 R6-6 R11-1 I-Mom B/M E/P CF/P

m 0.72 0.30 0.97 0.46 0.79 0.44 1.08 0.92 1.24 0.68 0.77 0.65 0.73
αFF 0.85 0.43 1.05 0.52 0.95 0.61 1.34 1.12 1.56 0.77 0.25 0.33 0.33
αC 0.58 0.21 0.87 0.31 0.47 0.20 0.16 0.03 0.23 −0.01 0.17 0.29 0.25
αq 0.31 −0.04 0.85 0.31 0.26 −0.06 0.34 0.04 0.37 0.13 0.06 0.25 0.20
a 0.70 0.31 1.02 0.52 0.86 0.48 1.12 0.90 1.35 0.62 −0.01 0.18 0.13

tm 6.39 3.36 8.74 5.61 4.08 2.65 3.86 3.82 4.27 3.47 3.29 3.20 3.46
tFF 8.51 5.26 9.08 6.16 5.33 4.08 5.24 4.78 5.67 4.01 2.58 2.89 2.88
tC 5.40 2.60 8.54 3.47 2.78 1.41 0.84 0.19 1.77 −0.08 1.35 2.48 1.87
tq 3.06 −0.53 5.55 2.14 1.53 −0.37 0.84 0.11 0.88 0.48 0.27 1.33 0.96
ta 6.50 3.41 7.94 4.68 4.62 2.87 3.10 2.68 3.62 2.44 −0.12 1.46 0.95

|αFF | 0.23 0.11 0.20 0.11 0.24 0.17 0.20 0.21 0.31 0.18 0.06 0.07 0.08

|αC | 0.16 0.13 0.19 0.14 0.15 0.12 0.13 0.10 0.09 0.04 0.13 0.15 0.15

|αq| 0.11 0.10 0.19 0.17 0.13 0.15 0.16 0.14 0.11 0.10 0.14 0.06 0.06

|a| 0.19 0.08 0.19 0.11 0.23 0.14 0.18 0.16 0.27 0.21 0.04 0.06 0.05

pFF 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.44 0.12 0.14
pC 0.00 0.00 0.00 0.00 0.01 0.16 0.00 0.00 0.03 0.30 0.09 0.11 0.10
pq 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.20 0.21 0.42 0.23
pa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.49 0.63

NO/P Dur A/ME Rev ACI I/A NOA △PI/A IG NSI CEI NXF IvG

m 0.64 −0.64 0.67 −0.64 −0.32 −0.72 −0.56 −0.64 −0.41 −0.82 −0.65 −0.67 −0.50
αFF 0.57 −0.33 0.04 −0.26 −0.32 −0.56 −0.75 −0.62 −0.32 −0.79 −0.70 −0.70 −0.47
αC 0.42 −0.17 0.02 −0.22 −0.19 −0.47 −0.63 −0.50 −0.22 −0.62 −0.54 −0.54 −0.34
αq 0.20 −0.01 −0.17 −0.30 −0.13 −0.30 −0.71 −0.34 −0.03 −0.26 −0.28 −0.23 −0.29
a 0.24 −0.06 −0.26 −0.20 −0.26 −0.34 −0.79 −0.45 −0.12 −0.34 −0.43 −0.33 −0.38

tm 3.46 −2.93 2.56 −3.50 −3.74 −4.84 −3.40 −5.07 −4.30 −5.49 −3.90 −3.80 −4.32
tFF 4.72 −2.58 0.28 −1.70 −3.62 −4.72 −4.45 −5.26 −3.66 −6.32 −6.75 −5.47 −4.26
tC 3.41 −1.15 0.10 −1.31 −2.10 −3.84 −3.94 −4.28 −2.43 −4.73 −4.69 −4.34 −3.24
tq 1.46 −0.04 −0.69 −1.89 −1.32 −2.52 −3.26 −2.72 −0.34 −2.02 −2.12 −1.70 −2.35
ta 1.94 −0.49 −1.85 −1.30 −2.85 −3.21 −4.89 −4.27 −1.45 −3.04 −3.99 −2.55 −3.55

|αFF | 0.13 0.09 0.05 0.09 0.09 0.15 0.17 0.15 0.09 0.16 0.16 0.17 0.12

|αC | 0.19 0.14 0.13 0.13 0.17 0.19 0.21 0.21 0.15 0.20 0.20 0.22 0.18

|αq| 0.11 0.11 0.14 0.08 0.10 0.14 0.17 0.17 0.12 0.14 0.12 0.13 0.10

|a| 0.06 0.04 0.08 0.04 0.07 0.08 0.15 0.12 0.04 0.10 0.07 0.09 0.08

pFF 0.00 0.09 0.55 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
pC 0.00 0.08 0.18 0.047 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pq 0.048 0.06 0.10 0.12 0.15 0.01 0.00 0.00 0.41 0.00 0.00 0.00 0.00
pa 0.03 0.48 0.25 0.39 0.09 0.01 0.00 0.00 0.89 0.00 0.00 0.00 0.00

51



IvC OA POA TA PTA ROE ROA GP/A RS NEI CTO F TES

m −0.50 −0.30 −0.43 −0.46 −0.51 1.00 0.90 0.65 0.57 0.47 0.36 0.58 0.32
αFF −0.49 −0.31 −0.35 −0.35 −0.46 1.20 1.09 0.63 0.83 0.62 0.24 0.73 0.39
αC −0.43 −0.33 −0.24 −0.38 −0.43 0.91 0.82 0.53 0.67 0.44 0.23 0.49 0.27
αq −0.42 −0.53 −0.14 −0.45 −0.35 0.10 0.12 −0.06 0.26 0.05 −0.15 0.25 0.03
a −0.50 −0.51 −0.23 −0.38 −0.33 0.56 0.51 0.00 0.59 0.36 −0.18 0.48 0.32

tm −4.30 −2.50 −3.88 −3.99 −5.06 4.60 4.03 3.67 4.49 4.28 1.98 2.57 2.52
tFF −4.44 −2.55 −3.99 −3.24 −5.33 6.01 5.34 3.65 7.49 6.03 1.40 4.33 3.23
tC −3.80 −2.35 −2.63 −2.89 −4.82 4.42 3.87 3.15 5.61 4.25 1.29 2.72 2.25
tq −3.37 −4.05 −1.51 −4.13 −3.88 0.71 0.89 −0.41 2.39 0.70 −0.79 1.28 0.28
ta −5.12 −4.79 −2.74 −3.68 −3.62 4.14 3.52 0.01 5.07 4.02 −1.32 2.67 2.65

|αFF | 0.11 0.13 0.12 0.09 0.09 0.24 0.24 0.14 0.18 0.23 0.09 0.19 0.13

|αC | 0.17 0.18 0.18 0.17 0.19 0.19 0.18 0.16 0.16 0.21 0.15 0.18 0.14

|αq| 0.11 0.16 0.16 0.13 0.14 0.12 0.14 0.14 0.09 0.11 0.12 0.12 0.10

|a| 0.10 0.12 0.13 0.07 0.09 0.12 0.14 0.08 0.12 0.19 0.09 0.13 0.09

pFF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
pC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
pq 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.08 0.54
pa 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.01 0.19

O OC/A Ad/M RD/M H/N OL Svol MDR S-Rev Disp Dvol

m −0.28 0.35 0.64 0.94 −0.50 0.41 −0.45 −0.66 −0.57 −0.44 −0.37
αFF −0.55 0.45 0.22 0.66 −0.37 0.39 −0.52 −0.87 −0.36 −0.83 −0.11
αC −0.42 0.38 0.20 0.65 −0.28 0.38 −0.47 −0.73 −0.67 −0.63 −0.15
αq −0.23 0.39 −0.25 0.78 −0.05 −0.04 −0.15 −0.16 −0.62 −0.04 0.03
a −0.31 0.45 −0.32 0.69 −0.11 −0.01 −0.18 −0.28 −0.43 −0.33 0.08

tm −1.98 3.72 2.15 3.69 −3.62 2.18 −2.18 −2.14 −2.61 −1.98 −2.64
tFF −4.27 4.89 0.97 2.86 −3.64 2.06 −2.63 −4.76 −1.51 −4.62 −1.08
tC −3.23 3.67 0.84 2.70 −2.68 2.14 −2.23 −3.62 −2.94 −3.47 −1.32
tq −1.51 3.12 −0.84 2.66 −0.44 −0.22 −0.76 −0.76 −1.74 −0.25 0.20
ta −2.21 4.38 −1.45 2.70 −1.19 −0.08 −0.92 −2.02 −1.45 −2.32 0.73

|αFF | 0.11 0.13 0.07 0.16 0.10 0.06 0.15 0.20 0.14 0.17 0.05

|αC | 0.17 0.15 0.23 0.27 0.16 0.15 0.17 0.19 0.20 0.16 0.08

|αq| 0.13 0.17 0.23 0.36 0.12 0.13 0.16 0.12 0.19 0.10 0.12

|a| 0.08 0.10 0.14 0.22 0.08 0.07 0.08 0.09 0.15 0.07 0.06

pFF 0.01 0.00 0.68 0.07 0.00 0.19 0.048 0.00 0.03 0.00 0.13
pC 0.00 0.00 0.10 0.01 0.00 0.05 0.06 0.00 0.02 0.01 0.02
pq 0.02 0.00 0.047 0.00 0.00 0.11 0.04 0.03 0.00 0.29 0.00
pa 0.08 0.00 0.23 0.04 0.01 0.18 0.31 0.04 0.03 0.07 0.15

52



Table 9 : Factor Loadings for the q-factor Model and the FF Five-factor Model, Significant
Anomalies with All-but-micro Breakpoints and Equal-weighted Returns

For the high-minus-low decile formed on each anomaly variable, βMKT, βME, βI/A, and βROE are the loadings

on the market, size, investment, and ROE factors in the q-factor model, and tβMKT
, tβME

, tβI/A
, and tβROE

are their t-statistics, respectively. b, s, h, r, and c are the loadings on MKT, SMB, HML, RMW, and CMA

in the FF five-factor model, and tb, ts, th, tr, and tc are their t-statistics, respectively. All t-statistics are

adjusted for heteroscedasticity and autocorrelations. Table 4 provides a brief description of the symbols.

SUE-1 SUE-6 Abr-1 Abr-6 RE-1 RE-6 R6-1 R6-6 R11-1 I-Mom B/M E/P CF/P

βMKT −0.02 0.00 −0.07 −0.01 0.01 0.02 −0.21 −0.04 −0.09 −0.06 −0.15 −0.20 −0.17
βME 0.01 −0.03 0.10 0.13 0.04 −0.01 0.53 0.47 0.52 0.33 0.11 0.00 0.01
βI/A 0.13 0.07 0.00 −0.05 −0.15 −0.09 0.02 0.12 −0.06 0.16 1.82 1.15 1.33

βROE 0.62 0.56 0.22 0.25 0.94 0.87 1.16 1.21 1.36 0.70 −0.10 −0.01 0.04
tβMKT

−0.72 −0.04 −1.95 −0.46 0.19 0.57 −2.09 −0.49 −0.92 −0.93 −2.80 −3.57 −2.66
tβME

0.26 −0.91 1.35 2.07 0.72 −0.21 1.85 2.30 2.13 1.88 0.99 0.00 0.04
tβI/A

2.17 1.35 0.01 −0.48 −1.35 −1.03 0.04 0.41 −0.17 0.69 8.32 7.92 7.82

tβROE
8.42 12.45 2.80 3.12 8.78 11.16 4.07 5.10 5.14 4.02 −0.59 −0.11 0.26

b −0.05 −0.04 −0.08 −0.04 −0.07 −0.05 −0.28 −0.12 −0.19 −0.10 −0.05 −0.13 −0.09
s −0.13 −0.15 0.01 0.03 −0.12 −0.16 0.20 0.11 0.14 0.11 0.15 0.03 0.06
h −0.21 −0.19 −0.19 −0.14 −0.08 −0.13 −0.67 −0.60 −0.87 −0.35 1.29 1.12 1.26
r 0.25 0.23 −0.07 −0.02 0.30 0.32 0.22 0.26 0.19 0.10 0.39 0.38 0.53
c 0.26 0.15 0.23 0.04 −0.23 −0.13 0.65 0.57 0.65 0.49 0.51 −0.01 0.04
tb −1.40 −1.23 −2.43 −1.47 −1.11 −0.90 −2.38 −1.20 −1.71 −1.26 −1.99 −4.17 −2.86
ts −2.58 −3.43 0.19 0.66 −1.38 −2.34 0.91 0.74 0.76 0.74 3.66 0.72 1.21
th −2.32 −2.66 −2.20 −1.93 −0.56 −1.10 −1.95 −2.23 −2.83 −1.60 23.11 16.35 18.64
tr 4.00 4.25 −0.72 −0.19 2.89 3.58 0.47 0.76 0.50 0.36 3.93 4.75 6.28
tc 2.46 1.62 1.88 0.26 −1.07 −0.70 1.30 1.38 1.47 1.55 4.32 −0.06 0.40

NO/P Dur A/ME Rev ACI I/A NOA △PI/A IG NSI CEI NXF IvG

βMKT −0.22 0.22 −0.02 0.06 0.01 0.07 0.12 0.10 0.00 0.11 0.24 0.20 0.07
βME −0.25 −0.07 0.07 −0.36 −0.14 0.02 −0.03 0.01 0.01 0.07 0.29 0.23 0.08
βI/A 1.08 −1.18 1.97 −1.13 −0.15 −1.25 0.00 −0.82 −0.77 −0.90 −0.94 −0.89 −0.68

βROE 0.27 −0.34 −0.08 0.44 −0.15 0.15 0.18 0.02 −0.08 −0.43 −0.31 −0.38 0.05
tβMKT

−6.79 3.15 −0.27 1.46 0.29 3.19 2.03 3.16 0.06 4.16 7.25 7.50 3.14
tβME

−5.48 −0.61 0.48 −5.74 −3.78 0.46 −0.19 0.11 0.29 1.19 6.47 5.09 1.94
tβI/A

10.01 −7.43 8.40 −9.19 −2.09 −15.01 −0.01 −8.50 −12.00 −8.86 −10.62 −8.09 −7.46

tβROE
2.66 −1.88 −0.40 4.13 −2.19 2.09 1.47 0.25 −1.30 −5.10 −3.64 −4.26 0.79

b −0.16 0.15 0.08 0.01 0.02 0.03 0.14 0.08 −0.02 0.07 0.22 0.16 0.06
s −0.25 −0.09 0.13 −0.36 −0.10 0.08 0.11 0.08 0.05 0.04 0.33 0.27 0.13
h 0.44 −1.11 1.49 −0.45 0.11 −0.20 0.61 0.06 −0.09 −0.21 −0.41 −0.14 −0.03
r 0.57 −0.71 0.52 0.21 −0.03 0.02 0.51 0.06 −0.13 −0.80 −0.45 −0.59 0.10
c 0.54 −0.05 0.42 −0.65 −0.24 −0.97 −0.65 −0.82 −0.63 −0.65 −0.40 −0.68 −0.58
tb −5.46 3.96 2.45 0.28 0.64 1.31 3.65 2.79 −0.84 2.68 7.84 5.69 2.80
ts −4.66 −1.55 2.78 −4.44 −2.67 1.75 1.68 1.83 1.29 0.92 5.62 5.17 3.03
th 6.55 −12.35 20.90 −4.02 1.76 −2.97 5.91 0.81 −1.96 −3.98 −5.75 −2.02 −0.49
tr 6.51 −6.44 5.35 1.64 −0.41 0.19 4.32 0.89 −2.01 −9.90 −5.67 −5.96 1.49
tc 4.98 −0.30 3.45 −3.74 −2.60 −8.90 −5.41 −8.64 −6.75 −7.02 −4.28 −6.19 −6.31
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IvC OA POA TA PTA ROE ROA GP/A RS NEI CTO F TES

βMKT 0.06 0.00 0.00 0.06 0.09 −0.02 −0.05 0.11 −0.03 0.02 0.15 −0.30 0.13
βME 0.10 0.22 0.18 0.05 0.09 −0.12 −0.12 0.25 −0.11 −0.03 0.44 −0.23 0.10
βI/A −0.55 −0.19 −0.77 −0.65 −0.58 0.24 0.12 0.23 −0.17 −0.08 −0.18 0.38 −0.32

βROE 0.17 0.43 −0.01 0.42 0.04 1.50 1.40 0.84 0.76 0.80 0.64 0.68 0.51
tβMKT

2.78 −0.01 −0.21 1.71 3.78 −0.52 −1.31 2.66 −1.10 1.23 2.89 −5.68 4.65
tβME

2.38 4.07 5.60 1.16 2.14 −1.11 −1.28 2.98 −2.61 −1.13 4.19 −3.03 2.01
tβI/A

−6.07 −1.69 −12.18 −7.89 −9.28 2.24 1.08 1.75 −2.69 −2.20 −1.47 2.46 −2.93

tβROE
2.85 4.84 −0.22 4.90 0.72 20.45 18.27 8.00 13.52 26.12 6.84 5.60 6.97

b 0.07 0.02 −0.02 0.05 0.07 −0.02 −0.03 0.14 −0.06 −0.01 0.18 −0.29 0.08
s 0.17 0.25 0.23 0.05 0.06 −0.15 −0.17 0.35 −0.20 −0.12 0.59 −0.28 0.02
h 0.00 0.01 −0.21 −0.12 −0.18 −0.03 −0.07 −0.19 −0.35 −0.25 −0.08 0.27 −0.27
r 0.32 0.62 −0.02 0.38 −0.14 1.59 1.48 1.44 0.56 0.65 1.16 0.68 0.22
c −0.47 −0.13 −0.47 −0.48 −0.35 0.20 0.14 0.45 0.11 0.10 0.01 0.00 −0.13
tb 2.66 0.61 −0.68 1.22 2.63 −0.45 −0.72 5.27 −1.78 −0.21 5.57 −4.99 2.60
ts 5.27 6.22 6.71 0.93 1.50 −1.98 −2.25 7.73 −4.24 −2.72 13.27 −2.93 0.34
th 0.07 0.15 −4.71 −1.32 −2.99 −0.22 −0.69 −2.80 −4.90 −4.00 −1.31 2.22 −3.67
tr 5.21 8.35 −0.33 4.71 −2.46 16.11 14.48 18.02 6.98 10.97 16.02 5.20 2.32
tc −5.68 −1.08 −6.42 −3.26 −3.53 1.32 0.90 3.84 1.09 1.01 0.06 0.01 −1.01

O OC/A Ad/M RD/M H/N OL Svol MDR S-Rev Disp Dvol

βMKT 0.15 −0.16 −0.10 0.10 0.07 −0.07 0.00 0.50 −0.29 0.29 0.26
βME 0.16 0.00 0.14 0.63 0.09 0.26 0.18 0.67 0.05 0.28 −0.64
βI/A 0.29 0.04 1.67 0.28 −1.14 0.29 −0.16 −1.19 0.16 −0.14 −0.74

βROE −0.54 0.03 0.27 −0.37 −0.02 0.47 −0.52 −0.78 0.19 −1.04 0.02
tβMKT

4.34 −6.24 −1.24 1.56 2.50 −1.47 0.00 7.60 −2.89 7.59 6.87
tβME

2.89 0.07 1.02 4.61 2.39 3.82 1.19 4.65 0.20 4.61 −6.85
tβI/A

2.37 0.34 8.52 1.05 −15.65 2.29 −0.87 −6.23 0.58 −2.08 −8.45

tβROE
−5.74 0.35 1.38 −2.02 −0.32 4.51 −4.00 −4.44 0.98 −14.58 0.20

b 0.14 −0.16 0.02 0.15 0.03 −0.03 0.00 0.42 −0.30 0.29 0.22
s 0.17 −0.02 0.25 0.50 0.13 0.30 0.15 0.65 −0.06 0.28 −0.69
h 0.27 −0.07 0.98 −0.28 −0.25 −0.07 0.09 −0.64 −0.31 0.02 −0.43
r −0.60 −0.02 1.01 −0.39 −0.20 0.86 −0.60 −1.24 −0.13 −1.06 −0.33
c −0.07 0.07 0.55 0.76 −0.82 0.41 −0.23 −0.53 0.50 −0.02 −0.32
tb 3.94 −6.14 0.36 2.52 1.07 −0.81 0.01 7.66 −3.47 7.21 7.95
ts 3.45 −0.56 3.16 5.07 2.89 5.45 1.23 10.53 −0.37 5.32 −12.70
th 3.17 −1.06 10.27 −2.08 −4.82 −0.88 0.62 −4.86 −1.31 0.25 −6.24
tr −4.95 −0.26 9.44 −1.67 −2.63 8.81 −3.78 −12.43 −0.42 −16.58 −5.39
tc −0.60 0.59 3.95 2.73 −7.73 2.98 −1.23 −3.54 1.86 −0.17 −3.68
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Table 10 : Empirical Properties of the New Factors, Alternative Factor Constructions,
January 1967 to December 2013

rME, rI/A, and rROE are the size, investment, ROE factors from the q-factor model, respectively. 2×3 denotes

the q-factors from double sorts (two-by-three) on size and I/A as well as on size and ROE, 2× 2 from double

sorts (two-by-two) on size and I/A as well as on size and ROE, and 2 × 2 × 2 from a triple sort (two-by-

three-by-three) on size, I/A, and ROE. SMB, HML, RMW, and CMA are the size, value, profitability, and

investment factors from the FF five-factor model, respectively. 2 × 2 denotes the factors from double sorts

(two-by-two) by interacting size, separately, with book-to-market, Inv, and OP, and 2 × 2 × 2 × 2 from a

quadruple sort (two-by-two-by-two-by-two) on size, book-to-market, Inv, and OP. MKT is the value-weighted

market return minus the one-month Treasury bill rate from CRSP. We obtain the data for UMD as well as

the benchmark and alternative versions of SMB, HML, RMW, and CMA from Kenneth French’s Web site.

m is the average return. In Panel A, α is the Carhart alpha, and a is the five-factor alpha, b, s, h, r, and c are

factor loadings, and the five-factor regressions use the benchmark FF five factors from two-by-three sorts.

In Panel B, α is the Carhart alpha, αq the q-model alpha, and the q-factor regressions use the benchmark

factors from a triple two-by-three-by-three sort.

Panel A: The q-factors

2× 2× 2 m α βMKT βSMB βHML βUMD R2

rME 0.33 −0.03 0.05 1.03 0.19 0.02 0.94
(2.27) (−0.79) (4.82) (74.66) (6.66) (1.24)

rI/A 0.26 0.18 −0.07 −0.02 0.28 0.03 0.48
(3.90) (3.63) (−5.38) (−0.56) (10.14) (1.31)

rROE 0.40 0.36 −0.01 −0.20 −0.08 0.18 0.33
(5.00) (4.99) (−0.63) (−3.53) (−1.52) (5.50)

a b s h r c R2

rME −0.01 0.05 1.03 0.02 0.01 0.08 0.96
(−0.39) (5.32) (76.52) (0.88) (0.24) (2.19)

rI/A 0.07 −0.02 −0.04 0.01 0.00 0.59 0.78
(2.20) (−2.47) (−2.94) (0.61) (0.21) (22.79)

rROE 0.29 −0.01 −0.05 −0.17 0.59 0.10 0.52
(4.80) (−0.51) (−1.67) (−3.23) (12.90) (1.26)

2× 3 m α βMKT βSMB βHML βUMD R2

rME 0.30 −0.05 0.04 1.03 0.19 0.01 0.95
(2.07) (−1.49) (4.54) (87.41) (6.85) (0.53)

rI/A 0.29 0.13 −0.08 0.01 0.48 0.02 0.55
(3.07) (1.88) (−4.57) (0.45) (15.75) (0.76)

rROE 0.57 0.52 −0.03 −0.31 −0.10 0.27 0.32
(4.44) (4.40) (−0.89) (−3.51) (−1.06) (5.04)

a b s h r c R2

rME −0.02 0.04 1.02 0.05 −0.03 0.02 0.97
(−0.79) (5.29) (100.22) (3.31) (−1.22) (0.78)

rI/A −0.04 0.00 −0.03 0.07 −0.04 0.90 0.92
(−1.34) (0.52) (−1.89) (3.07) (−2.03) (31.81)

rROE 0.37 −0.02 −0.06 −0.24 0.97 0.16 0.57
(4.02) (−0.63) (−1.22) (−3.09) (12.90) (1.41)
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2× 2 m α βMKT βSMB βHML βUMD R2

rME 0.29 −0.07 0.06 1.05 0.19 0.00 0.95
(1.96) (−1.91) (6.34) (88.91) (6.57) (0.15)

rI/A 0.19 0.10 −0.08 0.01 0.32 0.01 0.51
(2.68) (1.99) (−5.47) (0.32) (13.36) (0.30)

rROE 0.40 0.35 0.00 −0.21 −0.07 0.19 0.27
(4.36) (4.04) (0.17) (−3.07) (−1.06) (4.61)

a b s h r c R2

rME −0.04 0.05 1.05 0.04 −0.03 0.03 0.98
(−1.61) (8.20) (103.46) (2.83) (−1.36) (1.20)

rI/A 0.00 −0.03 −0.03 0.05 −0.08 0.59 0.84
(0.05) (−3.09) (−2.95) (3.00) (−4.48) (24.00)

rROE 0.23 0.01 −0.02 −0.16 0.72 0.09 0.57
(3.59) (0.55) (−0.64) (−2.97) (12.82) (1.04)

Panel B: The FF five factors

2× 2× 2× 2 m α βMKT βSMB βHML βUMD R2

SMB 0.29 0.03 −0.02 0.94 0.08 0.00 0.97
(2.23) (1.26) (−3.18) (66.68) (5.26) (0.52)

HML 0.29 0.06 −0.02 −0.06 0.69 0.00 0.90
(2.74) (1.66) (−1.82) (−3.73) (47.39) (0.10)

RMW 0.27 0.25 −0.02 −0.16 0.20 0.00 0.34
(3.78) (3.97) (−1.24) (−3.35) (6.09) (0.00)

CMA 0.16 0.14 −0.08 −0.03 0.15 0.02 0.33
(2.84) (2.88) (−5.51) (−1.55) (6.23) (0.97)

αq βMKT βME βI/A βROE R2

SMB 0.07 −0.03 0.89 −0.11 −0.05 0.92
(1.88) (−1.89) (48.08) (−3.89) (−2.38)

HML 0.09 −0.06 −0.05 0.65 −0.07 0.39
(0.89) (−1.90) (−0.81) (8.97) (−1.05)

RMW 0.13 −0.03 −0.10 0.16 0.21 0.30
(1.68) (−1.19) (−1.82) (2.84) (4.33)

CMA −0.00 −0.04 −0.02 0.44 −0.02 0.63
(−0.01) (−3.79) (−1.09) (19.61) (−0.68)

2× 2 m α βMKT βSMB βHML βUMD R2

SMB 0.28 −0.03 0.02 1.01 0.14 0.00 0.98
(2.03) (−1.45) (3.20) (92.98) (8.18) (0.05)

HML 0.27 0.03 −0.02 −0.03 0.71 0.00 0.96
(2.58) (1.17) (−3.37) (−3.99) (68.49) (0.22)

RMW 0.19 0.23 −0.01 −0.19 −0.02 0.01 0.15
(2.56) (3.27) (−0.37) (−2.94) (−0.32) (0.44)

CMA 0.24 0.14 −0.08 0.02 0.32 0.02 0.55
(3.33) (2.90) (−5.38) (0.69) (12.31) (1.08)

αq βMKT βME βI/A βROE R2

SMB 0.05 0.01 0.95 −0.08 −0.10 0.95
(1.40) (0.71) (59.89) (−4.16) (−5.71)

HML 0.04 −0.06 −0.03 0.76 −0.12 0.52
(0.51) (−2.09) (−0.58) (11.78) (−2.12)

RMW 0.03 0.00 −0.09 −0.05 0.36 0.45
(0.50) (0.07) (−1.78) (−0.89) (7.87)

CMA 0.03 −0.06 0.03 0.63 −0.09 0.79
(0.93) (−5.34) (1.28) (30.82) (−3.76)
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Table 11 : Significant Anomalies with NYSE Breakpoints and Value-weighted Decile Returns, Alternative Factor Constructions

αq
2×2×2, α

q
2×3, and αq

2×2 are the high-minus-low q-model alphas from the alternative 2 × 2 × 2, 2 × 3, and 2 × 2 constructions of the q-factors,

respectively. a2×2×2×2 and a2×2 are the high-minus-low five-factor alphas from the alternative 2× 2× 2× 2 and 2× 2 constructions of the FF five

factors, respectively. tq2×2×2, t
q
2×3, t

q
2×2, t

a
2×2×2×2, and ta2×2 are their corresponding t-statistics adjusted for heteroscedasticity and autocorrelations.

|αq
2×2×2|, |α

q
2×3|, |α

q
2×2|, |a2×2×2×2|, and |a2×2| are the average magnitude of the alphas across a given set of deciles, and pq2×2×2, p

q
2×3, p

q
2×2,

pa2×2×2×2, and pa2×2 are the corresponding p-values of the GRS test. Table 4 provides a brief description of the symbols.

SUE-1 Abr-1 Abr-6 RE-1 RE-6 R6-6 R11-1 I-Mom B/M Rev E/P CF/P NO/P Dur ACI I/A NOA △PI/A

αq
2×2×2 0.14 0.61 0.24 0.23 0.12 0.31 0.39 0.07 0.31 −0.22 0.31 0.33 0.42 −0.34 −0.19 −0.04 −0.37 −0.30

αq
2×3 0.21 0.66 0.30 0.24 0.13 0.43 0.51 0.19 0.18 −0.18 0.13 0.16 0.39 −0.17 −0.23 0.01 −0.45 −0.32

αq
2×2 0.20 0.67 0.29 0.33 0.21 0.49 0.60 0.21 0.23 −0.15 0.23 0.25 0.40 −0.25 −0.24 −0.04 −0.43 −0.34

a2×2×2×2 0.48 0.88 0.43 0.95 0.75 1.11 1.45 0.74 0.02 0.05 0.00 −0.03 0.26 −0.02 −0.26 −0.07 −0.46 −0.36
a2×2 0.45 0.86 0.45 0.95 0.75 1.05 1.36 0.64 −0.02 0.10 0.02 0.00 0.22 −0.04 −0.31 0.02 −0.42 −0.32
tq2×2×2 1.12 4.34 2.21 0.86 0.53 1.07 1.08 0.29 1.70 −1.21 1.43 1.59 2.71 −1.71 −1.09 −0.31 −2.21 −2.42
tq2×3 1.62 4.27 2.54 0.91 0.56 1.33 1.25 0.72 1.08 −1.05 0.62 0.83 2.64 −0.94 −1.35 0.05 −2.47 −2.57
tq2×2 1.66 4.56 2.67 1.28 0.96 1.66 1.62 0.84 1.34 −0.89 1.08 1.25 2.68 −1.28 −1.42 −0.33 −2.50 −2.78
ta2×2×2×2 4.21 6.22 4.48 3.82 3.52 4.15 4.35 3.22 0.15 0.29 0.00 −0.23 1.90 −0.11 −1.77 −0.63 −2.87 −3.03
ta2×2 3.80 6.18 4.45 3.73 3.41 3.90 3.98 2.69 −0.19 0.61 0.18 0.03 1.61 −0.32 −1.96 0.18 −2.67 −2.66

|αq
2×2×2| 0.06 0.13 0.07 0.10 0.11 0.08 0.12 0.10 0.10 0.10 0.13 0.13 0.11 0.11 0.12 0.08 0.10 0.13

|αq
2×3| 0.05 0.13 0.07 0.09 0.10 0.09 0.13 0.14 0.09 0.09 0.11 0.15 0.12 0.07 0.14 0.08 0.11 0.13

|αq
2×2| 0.06 0.13 0.07 0.08 0.10 0.09 0.12 0.14 0.09 0.08 0.12 0.13 0.11 0.09 0.13 0.08 0.10 0.13

|a2×2×2×2| 0.13 0.16 0.09 0.20 0.18 0.19 0.27 0.23 0.06 0.05 0.07 0.09 0.10 0.05 0.12 0.08 0.10 0.10

|a2×2| 0.12 0.16 0.09 0.21 0.18 0.18 0.26 0.22 0.05 0.05 0.08 0.12 0.11 0.05 0.14 0.10 0.09 0.11
pq2×2×2 0.24 0.00 0.01 0.14 0.03 0.00 0.00 0.09 0.11 0.23 0.03 0.00 0.00 0.36 0.01 0.01 0.01 0.00
pq2×3 0.29 0.00 0.00 0.17 0.04 0.00 0.00 0.02 0.11 0.17 0.04 0.00 0.00 0.41 0.00 0.00 0.00 0.00
pq2×2 0.22 0.00 0.01 0.11 0.04 0.00 0.00 0.04 0.15 0.24 0.04 0.00 0.00 0.47 0.00 0.00 0.00 0.00
pa2×2×2×2 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.41 0.70 0.30 0.22 0.00 0.76 0.02 0.07 0.00 0.01
pa2×2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.43 0.16 0.05 0.00 0.84 0.00 0.00 0.01 0.00
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IG NSI CEI IvG IvC OA POA PTA ROE ROA GP/A RS NEI OC/A Ad/M RD/M OL Svol

αq
2×2×2 −0.03 −0.41 −0.39 −0.14 −0.36 −0.53 −0.16 −0.23 0.05 0.10 0.15 0.17 0.14 0.18 0.28 0.57 0.09 −0.34

αq
2×3 −0.06 −0.37 −0.31 −0.10 −0.36 −0.58 −0.15 −0.20 0.06 0.14 0.22 0.25 0.24 0.18 0.16 0.56 0.05 −0.30

αq
2×2 −0.05 −0.42 −0.39 −0.14 −0.37 −0.57 −0.18 −0.21 0.13 0.18 0.20 0.24 0.22 0.22 0.22 0.55 0.10 −0.31

a2×2×2×2 −0.14 −0.36 −0.32 −0.18 −0.38 −0.49 −0.22 −0.13 0.61 0.58 0.20 0.56 0.47 0.40 −0.07 0.43 0.14 −0.35
a2×2 −0.07 −0.34 −0.31 −0.14 −0.35 −0.52 −0.13 −0.09 0.55 0.55 0.18 0.56 0.46 0.34 −0.09 0.34 0.10 −0.36
tq2×2×2 −0.25 −2.81 −2.71 −1.06 −2.52 −3.78 −1.22 −1.61 0.39 0.88 1.05 1.24 1.45 1.43 1.02 2.39 0.51 −1.42
tq2×3 −0.50 −2.66 −2.38 −0.84 −2.63 −4.36 −1.16 −1.39 0.53 1.33 1.56 1.68 2.33 1.49 0.58 2.34 0.32 −1.20
tq2×2 −0.46 −2.85 −2.71 −1.13 −2.67 −4.20 −1.42 −1.56 1.09 1.70 1.43 1.74 2.26 1.77 0.82 2.30 0.61 −1.25
ta2×2×2×2 −1.22 −3.06 −2.73 −1.46 −2.94 −3.91 −1.85 −1.04 3.91 3.66 1.44 3.97 4.62 3.27 −0.34 1.71 0.91 −1.48
ta2×2 −0.65 −2.74 −2.68 −1.06 −2.70 −4.17 −1.12 −0.70 3.75 3.63 1.39 4.05 4.50 2.73 −0.45 1.37 0.65 −1.48

|αq
2×2×2| 0.07 0.10 0.12 0.09 0.08 0.14 0.12 0.09 0.10 0.05 0.10 0.07 0.08 0.10 0.12 0.26 0.10 0.11

|αq
2×3| 0.08 0.11 0.12 0.09 0.08 0.14 0.13 0.09 0.08 0.06 0.12 0.08 0.09 0.11 0.11 0.26 0.11 0.10

|αq
2×2| 0.07 0.11 0.12 0.09 0.08 0.14 0.12 0.09 0.09 0.06 0.12 0.07 0.09 0.11 0.11 0.26 0.10 0.11

|a2×2×2×2| 0.06 0.09 0.10 0.10 0.09 0.12 0.12 0.08 0.14 0.16 0.09 0.15 0.17 0.11 0.10 0.21 0.07 0.11

|a2×2| 0.06 0.11 0.10 0.10 0.08 0.12 0.12 0.07 0.12 0.15 0.10 0.15 0.16 0.12 0.11 0.20 0.09 0.11
pq2×2×2 0.06 0.00 0.00 0.11 0.16 0.00 0.00 0.01 0.00 0.86 0.24 0.11 0.09 0.01 0.09 0.00 0.06 0.17
pq2×3 0.04 0.00 0.00 0.15 0.24 0.00 0.00 0.01 0.0498 0.68 0.12 0.048 0.02 0.00 0.07 0.00 0.01 0.20
pq2×2 0.06 0.00 0.00 0.13 0.15 0.00 0.00 0.01 0.03 0.73 0.13 0.11 0.03 0.00 0.12 0.00 0.02 0.18
pa2×2×2×2 0.25 0.02 0.01 0.04 0.14 0.00 0.00 0.03 0.02 0.07 0.12 0.00 0.00 0.00 0.56 0.01 0.19 0.18
pa2×2 0.20 0.01 0.01 0.07 0.26 0.00 0.00 0.04 0.00 0.04 0.06 0.00 0.00 0.00 0.39 0.00 0.03 0.26
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Table 12 : Significant Anomalies with All-but-micro Breakpoints and Equal-weighted Decile
Returns, Alternative Factor Constructions

αq
2×2×2, α

q
2×3, and αq

2×2 are the high-minus-low q-model alphas from the alternative 2×2×2, 2×3, and 2×2

constructions of the q-factors, respectively. a2×2×2×2 and a2×2 are the high-minus-low five-factor alphas from

the alternative 2× 2× 2× 2 and 2× 2 constructions of the FF five factors, respectively. tq2×2×2, t
q
2×3, t

q
2×2,

ta2×2×2×2, and ta2×2 are their corresponding t-statistics adjusted for heteroscedasticity and autocorrelations.

|αq
2×2×2|, |α

q
2×3|, |α

q
2×2|, |a2×2×2×2|, and |a2×2| are the average magnitude of the alphas across a given set of

deciles, and pq2×2×2, p
q
2×3, p

q
2×2, p

a
2×2×2×2, and pa2×2 are the corresponding p-values of the GRS test. Table

4 provides a brief description of the symbols.

SUE-1 SUE-6 Abr-1 Abr-6 RE-1 RE-6 R6-1 R6-6 R11-1 I-Mom B/M E/P CF/P

αq
2×2×2 0.37 −0.01 0.87 0.32 0.37 0.04 0.43 0.16 0.49 0.17 0.21 0.37 0.35

αq
2×3 0.40 0.03 0.87 0.37 0.39 0.05 0.54 0.26 0.62 0.26 0.11 0.28 0.25

αq
2×2 0.43 0.04 0.89 0.38 0.46 0.10 0.61 0.32 0.68 0.29 0.16 0.32 0.29

a2×2×2×2 0.78 0.36 1.07 0.55 0.90 0.54 1.38 1.13 1.55 0.79 0.08 0.19 0.12
a2×2 0.74 0.33 1.03 0.53 0.92 0.54 1.19 0.98 1.44 0.65 −0.03 0.15 0.09
tq2×2×2 3.75 −0.16 6.14 2.53 2.07 0.22 1.21 0.47 1.31 0.68 0.93 1.88 1.57
tq2×3 3.82 0.33 5.82 2.63 2.18 0.28 1.32 0.66 1.44 0.97 0.58 1.55 1.22
tq2×2 4.49 0.45 6.34 2.94 2.60 0.64 1.66 0.92 1.75 1.13 0.79 1.74 1.40
ta2×2×2×2 7.78 4.14 8.25 5.83 5.27 3.62 4.10 3.82 4.51 3.30 0.71 1.60 0.98
ta2×2 7.30 3.78 8.13 5.18 5.16 3.38 3.55 3.14 4.11 2.67 −0.24 1.25 0.69

|αq
2×2×2| 0.12 0.12 0.20 0.17 0.14 0.16 0.15 0.14 0.11 0.08 0.15 0.09 0.09

|αq
2×3| 0.11 0.09 0.19 0.16 0.13 0.13 0.15 0.12 0.12 0.12 0.12 0.06 0.05

|αq
2×2| 0.12 0.09 0.20 0.16 0.14 0.13 0.15 0.12 0.13 0.12 0.12 0.07 0.07

|a2×2×2×2| 0.21 0.10 0.21 0.11 0.23 0.15 0.22 0.21 0.32 0.24 0.03 0.05 0.05

|a2×2| 0.20 0.09 0.20 0.11 0.24 0.16 0.19 0.18 0.29 0.22 0.03 0.05 0.04
pq2×2×2 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.23 0.12 0.28 0.08
pq2×3 0.00 0.06 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.18 0.32 0.44 0.20
pq2×2 0.00 0.05 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.17 0.32 0.45 0.18
pa2×2×2×2 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.72 0.67 0.70
pa2×2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.69 0.77

NO/P Dur A/ME Rev ACI I/A NOA △PI/A IG NSI CEI NXF IvG

αq
2×2×2 0.27 −0.15 −0.03 −0.34 −0.15 −0.37 −0.70 −0.41 −0.08 −0.35 −0.37 −0.27 −0.36

αq
2×3 0.27 −0.07 −0.12 −0.36 −0.19 −0.39 −0.76 −0.45 −0.10 −0.35 −0.38 −0.29 −0.38

αq
2×2 0.28 −0.13 −0.10 −0.32 −0.19 −0.38 −0.75 −0.45 −0.09 −0.37 −0.42 −0.30 −0.39

a2×2×2×2 0.28 −0.07 −0.19 −0.20 −0.28 −0.43 −0.85 −0.51 −0.18 −0.37 −0.46 −0.42 −0.42
a2×2 0.23 −0.05 −0.30 −0.16 −0.27 −0.33 −0.80 −0.46 −0.12 −0.34 −0.43 −0.34 −0.39
tq2×2×2 1.89 −0.70 −0.13 −2.08 −1.55 −3.13 −3.52 −3.30 −0.78 −2.64 −2.75 −2.00 −2.94
tq2×3 2.01 −0.39 −0.51 −2.31 −1.89 −3.53 −3.66 −3.65 −1.06 −2.90 −2.99 −2.30 −3.26
tq2×2 2.13 −0.64 −0.43 −2.10 −1.95 −3.49 −3.73 −3.71 −1.00 −3.01 −3.19 −2.41 −3.29
ta2×2×2×2 2.38 −0.54 −1.31 −1.38 −3.14 −3.86 −4.80 −4.79 −2.11 −3.42 −4.21 −3.23 −3.84
ta2×2 1.92 −0.40 −2.23 −1.07 −2.99 −3.06 −5.10 −4.16 −1.34 −3.22 −3.93 −2.56 −3.42

|αq
2×2×2| 0.13 0.12 0.15 0.11 0.13 0.17 0.19 0.19 0.14 0.16 0.14 0.16 0.13

|αq
2×3| 0.10 0.09 0.12 0.08 0.09 0.14 0.18 0.17 0.10 0.14 0.12 0.13 0.11

|αq
2×2| 0.11 0.09 0.12 0.09 0.10 0.14 0.18 0.17 0.10 0.14 0.12 0.14 0.11

|a2×2×2×2| 0.07 0.04 0.06 0.05 0.07 0.09 0.15 0.12 0.05 0.10 0.08 0.10 0.09

|a2×2| 0.06 0.04 0.08 0.04 0.07 0.08 0.15 0.12 0.04 0.10 0.07 0.09 0.08
pq2×2×2 0.01 0.08 0.11 0.05 0.08 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00
pq2×3 0.02 0.14 0.17 0.08 0.08 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00
pq2×2 0.01 0.19 0.22 0.10 0.10 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00
pa2×2×2×2 0.01 0.40 0.54 0.36 0.10 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.00
pa2×2 0.03 0.42 0.18 0.43 0.10 0.01 0.00 0.00 0.85 0.00 0.00 0.00 0.00
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IvC OA POA TA PTA ROE ROA GP/A RS NEI CTO F TES

αq
2×2×2 −0.45 −0.54 −0.20 −0.50 −0.39 0.21 0.19 −0.01 0.30 0.07 −0.12 0.33 0.05

αq
2×3 −0.50 −0.58 −0.22 −0.50 −0.39 0.15 0.16 −0.01 0.31 0.10 −0.13 0.31 0.08

αq
2×2 −0.48 −0.57 −0.22 −0.50 −0.39 0.22 0.19 0.02 0.34 0.12 −0.11 0.37 0.08

a2×2×2×2 −0.51 −0.49 −0.27 −0.39 −0.33 0.64 0.58 0.04 0.65 0.40 −0.20 0.56 0.30
a2×2 −0.48 −0.50 −0.23 −0.36 −0.31 0.61 0.57 0.02 0.64 0.39 −0.17 0.54 0.33
tq2×2×2 −3.74 −4.20 −2.03 −4.65 −4.40 1.63 1.51 −0.08 2.84 1.08 −0.69 1.69 0.48
tq2×3 −4.31 −4.91 −2.39 −4.73 −4.23 1.28 1.26 −0.06 2.76 1.55 −0.74 1.69 0.71
tq2×2 −4.09 −4.72 −2.32 −4.80 −4.44 1.84 1.62 0.12 3.16 1.79 −0.65 1.97 0.71
ta2×2×2×2 −4.73 −4.50 −3.24 −3.92 −3.98 4.07 3.62 0.32 5.69 4.35 −1.44 3.16 2.47
ta2×2 −4.61 −4.60 −2.69 −3.53 −3.54 4.47 3.87 0.17 5.47 4.27 −1.34 3.00 2.70

|αq
2×2×2| 0.14 0.18 0.17 0.15 0.16 0.12 0.13 0.15 0.10 0.15 0.13 0.13 0.12

|αq
2×3| 0.12 0.16 0.16 0.12 0.14 0.12 0.13 0.13 0.08 0.13 0.11 0.11 0.09

|αq
2×2| 0.12 0.16 0.16 0.12 0.14 0.11 0.12 0.12 0.09 0.14 0.11 0.12 0.10

|a2×2×2×2| 0.11 0.11 0.12 0.08 0.09 0.13 0.14 0.08 0.13 0.21 0.10 0.14 0.09

|a2×2| 0.10 0.12 0.12 0.07 0.09 0.12 0.14 0.09 0.13 0.20 0.09 0.14 0.10
pq2×2×2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.44
pq2×3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.04 0.61
pq2×2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.60
pa2×2×2×2 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.10
pa2×2 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.04 0.00 0.00 0.02 0.00 0.11

O OC/A Ad/M RD/M H/N OL Svol MDR S-Rev Disp Dvol

αq
2×2×2 −0.24 0.40 −0.15 0.78 −0.13 0.02 −0.18 −0.25 −0.62 −0.10 −0.04

αq
2×3 −0.23 0.45 −0.19 0.75 −0.11 0.01 −0.13 −0.17 −0.62 −0.09 −0.01

αq
2×2 −0.27 0.45 −0.19 0.77 −0.13 0.04 −0.15 −0.22 −0.58 −0.15 −0.03

a2×2×2×2 −0.34 0.42 −0.27 0.88 −0.17 0.03 −0.21 −0.39 −0.34 −0.39 0.03
a2×2 −0.34 0.44 −0.38 0.67 −0.10 −0.01 −0.20 −0.31 −0.40 −0.38 0.06
tq2×2×2 −1.69 3.47 −0.52 2.80 −1.06 0.09 −0.93 −1.22 −1.96 −0.68 −0.33
tq2×3 −1.55 3.96 −0.66 2.68 −1.14 0.07 −0.65 −0.89 −1.83 −0.70 −0.05
tq2×2 −1.88 4.06 −0.68 2.82 −1.19 0.21 −0.77 −1.13 −1.82 −1.09 −0.21
ta2×2×2×2 −2.47 4.26 −1.28 3.55 −1.79 0.15 −1.10 −2.27 −1.11 −2.53 0.31
ta2×2 −2.46 4.42 −1.80 2.75 −1.00 −0.06 −1.07 −2.07 −1.37 −2.55 0.59

|αq
2×2×2| 0.14 0.17 0.24 0.36 0.13 0.13 0.17 0.14 0.20 0.11 0.13

|αq
2×3| 0.11 0.16 0.22 0.33 0.11 0.11 0.16 0.12 0.19 0.09 0.12

|αq
2×2| 0.11 0.15 0.21 0.33 0.11 0.10 0.17 0.13 0.19 0.10 0.12

|a2×2×2×2| 0.08 0.10 0.10 0.22 0.08 0.08 0.09 0.10 0.13 0.08 0.05

|a2×2| 0.09 0.10 0.13 0.22 0.08 0.07 0.09 0.10 0.14 0.08 0.06
pq2×2×2 0.03 0.00 0.12 0.00 0.00 0.12 0.04 0.01 0.00 0.13 0.00
pq2×3 0.03 0.00 0.06 0.00 0.00 0.15 0.03 0.01 0.00 0.14 0.00
pq2×2 0.04 0.00 0.22 0.00 0.00 0.20 0.03 0.01 0.00 0.07 0.00
pa2×2×2×2 0.10 0.00 0.69 0.01 0.01 0.18 0.51 0.07 0.03 0.03 0.26
pa2×2 0.04 0.00 0.34 0.06 0.01 0.20 0.31 0.03 0.03 0.04 0.15
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A Estimating the Internal Rate of Return

A.1 The Gebhardt, Lee, and Swaminathan (2001, GLS) Model

At the end of June in each year t, we estimate the internal rate of returns (IRR) from:

Pt = Bt +

11
∑

τ=1

(Et[ROEt+τ ]− IRR)×Bt+τ−1

(1 + IRR)τ
+

(Et[ROEt+12]− IRR)×Bt+11

IRR× (1 + IRR)11
, (A1)

in which Pt is the market equity in year t, Bt+τ is the book equity, and Et[ROEt+τ ] is the expected
return on equity (ROE) for year t+ τ based on information available in year t.

We measure current book equity, Bt, using the latest accounting data from the fiscal year
ending between March of year t − 1 to February of t. This practice implies that for the IRR
estimates at the end of June in t, we impose at least a four-month lag to ensure that the ac-
counting information is released to the public. The definition of book equity follows Davis,
Fama, and French (2000). We apply clean surplus accounting to construct future book equity
as Bt+τ = Bt+τ−1 +Bt+τ−1Et[ROEt+τ ](1− k), 1 ≤ τ ≤ 11, in which k is the dividend payout ratio
in year t. Dividend payout ratio is dividends (Compustat annual item DVC) divided by earnings
(item IB) for profitable firms, or dividends divided by 6% of total assets (item AT) for firms with
zero or negative earnings. We drop a firm if its book equity is zero or negative in any year.

We construct the expected ROE for the first three years ahead, using analyst earnings forecasts
from the Institutional Brokers’ Estimated System (IBES) or forecasts from cross-sectional regres-
sions. After year t + 3, we assume that the expected firm-level ROE mean-reverts linearly to the
historical industry median ROE by year t+ 12, and becomes a perpetuity afterwards. We use the
FF (1997) 48 industry classification. We use at least five and up to ten years of past ROE data
from non-loss firms to compute the industry median ROE.

The Baseline Procedure with Analysts’ Earnings Forecasts from IBES Following GLS
(2001), we implement the GLS model on a per share basis with analysts’ earnings forecasts. Pt is
the June-end share price from CRSP. Bt is book equity per share calculated as book equity divided
by the number of shares outstanding reported in June from IBES (unadjusted file, item SHOUT).
When IBES shares are not available, we use shares from CRSP (daily item SHROUT) on the IBES
pricing date (item PRDAYS) that corresponds to the IBES report.

At the end of June in each year t, we construct the expected ROE for year t + 1 to t + 3 as
Et[ROEt+τ ] = FEPSt+τ/Bt+τ−1, in which FEPSt+τ is the consensus mean forecast of earnings
per share from IBES (unadjusted file, item MEANEST) for year t + τ (fiscal period indicator
= τ) reported in June of t. We require the availability of earnings forecast for years t + 1 and
t + 2. When the forecast for year t + 3 is not available, we use the long-term growth rate (item
LTG) to compute a three-year-ahead forecast: FEPSt+3 = FEPSt+2 × (1 + LTG). If the long-
term growth rate is missing, we replace it with the growth rate implied by the first two forecasts:
FEPSt+3 = FEPSt+2 × (FEPSt+2/FEPSt+1), when FEPSt+1 and FEPSt+2 are both positive.

As noted, we measure current book equity Bt based on the latest accounting data from the
fiscal year ending between March of year t− 1 and February of t. However, firms with fiscal years
ending between March of t and May of t can announce their latest earnings before the IBES report
in June of t. In response to earnings announcement for the current fiscal year, the analyst forecasts
would “roll forward” to the next year. As such, we also need to roll forward book equity by one
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year for these firms to match with the updated analyst forecasts. In particular, we roll forward
their book equity using clean surplus accounting as: Bt−1 + Yt −Dt, in which Bt−1 is the lagged
book equity (relative to the announced earnings), Yt is the earnings announced after February of t
but before the IBES report in June of t, and Dt is dividends.

The Modified Procedure with Regression-based Earnings Forecasts Following Hou, van
Dijk, and Zhang (2012), we estimate the IRRs at the firm level (not the per share basis), when-
ever regression-based earnings forecasts (not analysts’ earnings forecasts) are used. We use pooled
cross-sectional regressions to forecast future earnings for up to three years ahead:

Yis+τ = a+ b1Ais + b2Dis + b3DDis + b4Yis + b5Y
−
is + b6ACis + ǫis+τ , (A2)

for 1 ≤ τ ≤ 3, in which Yis is earnings (Compustat annual item IB) of firm i for fiscal year s, Ais

is total assets (item AT), Dis is dividends (item DVC), and DDis is a dummy variable that equals
one for dividend payers, and zero otherwise. Y −

is is a dummy variable that equals one for negative
earnings, and zero otherwise, and ACis is operating accruals.

Prior to 1988, we use the balance-sheet approach of Sloan (1996) to measure operating accruals
as changes in noncash working capital minus depreciation, in which the noncash working capital is
changes in noncash current assets minus changes in current liabilities less short-term debt and taxes
payable. In particular, AC = (△CA−△CASH)−(△CL−△STD−△TP )−DP , in which △CA is
the change in current assets (Compustat annual item ACT), △CASH is the change in cash or cash
equivalents (item CHE), △CL is the change in current liabilities (item LCT), △STD is the change
in debt included in current liabilities (item DLC, zero if missing), △TP is the change in income
taxes payable (item TXP, zero if missing), and DP is depreciation and amortization (item DP,
zero if missing). Starting from 1988, we follow Hribar and Collins (2002) to measure AC using the
statement of cash flows as net income (item NI) minus net cash flow from operations (item OANCF).

In equation (A2), regressors with time subscript s are from the fiscal year ending between March
of year s and February of s+ 1. Following Hou, van Dijk, and Zhang (2012), we winsorize all the
level variables in equation (A2) at the 1st and 99th percentiles of their cross-sectional distributions
each year. In June of each year t, we estimate the regressions using the pooled panel data from
the previous ten years. With a minimum four-month lag, the accounting data are from fiscal years
ending between March of t− 10 and February of t. Differing from the baseline GLS procedure, we
forecast the expected earnings as the estimated regression coefficients times the latest values of the
(unwinsorized) predictors from the fiscal year ending between March of t− 1 and February of t.

The Modified Procedure with Regression-based ROE Forecasts Instead of analysts’ earn-
ings forecasts, we use annual cross-sectional regressions per Tang, Wu, and Zhang (2014) to forecast
the future ROE for up to three years, ROEis+τ ≡ Yis+τ/Bis+τ−1:

ROEis+τ = a+ b1 log

(

Bis

Pis

)

+ b2 log(Pis) + b3Y
−
is + b4ROEis + b5

Ais −Ais−1

Ais−1

+ ǫis+τ , (A3)

for 1 ≤ τ ≤ 3, in which ROEis is return on equity of firm i for fiscal year s, Yis is earnings (Com-
pustat annual item IB), Bis is the book equity, Pis is the market equity at the fiscal year end
from Compustat or CRSP, Y −

is is a dummy variable that equals one for negative earnings and zero
otherwise, and Ais is total assets (item AT). Regression variables with time subscript s are from
the fiscal year ending between March of year s and February of s+ 1.
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Extremely small firms tend to have extreme regression variables which can affect the ROE regres-
sion estimates significantly. To alleviate this problem, we exclude firm-years with total assets less
than $5 million or book equity less than $2.5 million. FF (2006, p. 496) require firms to have at least
$25 million total assets and $12.5 million book equity, but state that their results are robust to using
the $5 million total assets and $2.5 million book equity cutoff. We choose the less restrictive cutoff
to enlarge the sample coverage. We also winsorize each variable (except for Y −

it ) at the 1st and 99th
percentiles of its cross-sectional distribution each year to further alleviate the impact of outliers.

In June of each year t, we run the regression (A3) using the previous ten years of data. With
a minimum four-month information lag, the accounting data are from fiscal years ending between
March of t− 10 and February of t. Differing from the baseline GLS procedure, we directly forecast
the expected ROE, Et[ROEt+τ ], as the average cross-sectional regression coefficients times the lat-
est values of the predictors from fiscal years ending between March of t− 1 and February of t. We
implement this modified GLS procedure at the firm level.

A.2 The Claus and Thomas (2001, CT) Model

At the end of June in each year t, we estimate the internal rate of returns (IRR) from:

Pt = Bt +

5
∑

τ=1

(Et[ROEt+τ ]− IRR)×Bt+τ−1

(1 + IRR)τ
+

(Et[ROEt+5]− IRR)×Bt+4 × (1 + g)

(IRR− g)× (1 + IRR)5
, (A4)

in which Pt is the market equity in year t, Bt+τ is the book equity, Et[ROEt+τ ] is the expected
ROE for year t+ τ based on information available in year t, and g is the long-term growth rate of
abnormal earnings. Abnormal earnings are defined as (Et[ROEt+τ ]− IRR)×Bt+τ−1.

We measure book equity, Bt, using the latest accounting data from the fiscal year ending between
March of year t−1 and February of t. The definition of book equity follows Davis, Fama, and French
(2000). We apply clean surplus accounting to construct future book equity as Bt+τ = Bt+τ−1 +
Bt+τ−1Et[ROEt+τ ](1 − k), 1 ≤ τ ≤ 4, in which k is the dividend payout ratio in year t. Dividend
payout ratio is dividends (Compustat annual item DVC) divided by earnings (item IB) for profitable
firms, or dividends divided by 6% of total assets (item AT) for firms with zero or negative earnings.
We drop a firm if its book equity is zero or negative in any year. We construct the expected ROE,
Et[ROEt+τ ], for up to five years ahead, using analysts’ earnings forecasts from IBES or regression-
based forecasts. Following CT (2001), we set g to the ten-year Treasury bond rate minus 3%.

The Baseline Procedure with Analysts’ Earnings Forecasts from IBES Following CT
(2001), we implement the CT model on the per share basis when using analysts’ earnings forecasts.
We measure Pt as the June-end share price from CRSP. Book equity per share, Bt, is book equity
divided by the number of shares outstanding reported in June from IBES (unadjusted file, item
SHOUT). When IBES shares are not available, we use shares from CRSP (daily item SHROUT)
on the IBES pricing date (item PRDAYS) that corresponds to the IBES report. As noted, current
book equity Bt is based on the latest accounting data from the fiscal year ending between March
of t − 1 and February of t. However, firms with fiscal year ending in March of t to May of t can
announce their latest earnings before the IBES report in June of t. To match the updated analyst
forecasts, we roll forward their book equity using clean surplus accounting as: Bt−1 + Yt − Dt,
in which Bt−1 is the lagged book equity (relative to the announced earnings), Yt is the earnings
announced after February of t but before the IBES report in June of t, and Dt is dividends.
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At the end of June in each year t, we construct the expected ROE for year t + 1 to t + 5 as
Et[ROEt+τ ] = FEPSt+τ/Bt+τ−1, in which FEPSt+τ is the consensus mean forecast of earnings per
share from IBES (unadjusted file, item MEANEST) for year t + τ (fiscal period indicator = τ)
reported in June of t. We require the availability of earnings forecast for years t + 1 and t + 2.
When the forecast after year t+ 2 is not available, we use the long-term growth rate (item LTG)
to construct it as FEPSt+τ = FEPSt+τ−1 × (1 + LTG). If the long-term growth rate is missing,
we replace it with the growth rate implied by the forecasts for the previous two years: FEPSt+τ =
FEPSt+τ−1 × (FEPSt+τ−1/FEPSt+τ−2), when FEPSt+τ−2 and FEPSt+τ−1 are both positive.

Regression-based Earnings Forecasts Instead of analysts’ earnings forecasts, we use pooled
cross-sectional regressions in equation (A2) to forecast future earnings for up to five years ahead.
In June of each year t, we estimate the regression using the pooled panel data from the previous ten
years. With a four-month information lag, the accounting data are from fiscal years ending between
March of t−10 and February of t. We forecast the expected earnings as the estimated regression co-
efficients times the latest values of the (unwinsorized) predictors from the fiscal year ending between
March of t− 1 and February of t. We implement this modified CT procedure at the firm level.

Regression-based ROE Forecasts Instead of analysts’ earnings forecasts, we use annual cross-
sectional regressions in equation (A3) to forecast future ROE for up to five years ahead. In June
of each year t, we estimate the regression using the previous ten years of data. With a four-month
information lag, the accounting data are from fiscal years ending between March of t − 10 and
February of t. We directly forecast the expected ROE, Et[ROEt+τ ], as the average cross-sectional
regression coefficients times the latest values of the predictors from fiscal years ending between
March of t− 1 and February of t. We implement the modified CT procedure at the firm level.

A.3 The Ohlson and Juettner-Nauroth (2005, OJ) Model

At the end of June in each year t, we construct the internal rate of returns (IRR) as:

IRR = A+

√

A2 +
Et[Yt+1]

Pt
× (g − (γ − 1)), (A5)

in which

A ≡
1

2

(

(γ − 1) +
Et[Dt+1]

Pt

)

, (A6)

g ≡
1

2

(

Et[Yt+3]− Et[Yt+2]

Et[Yt+2]
+

Et[Yt+5]− Et[Yt+4]

Et[Yt+4]

)

. (A7)

Pt is the market equity in year t, Et[Yt+τ ] is the expected earnings for year t+τ based on information
available in t, and Et[Dt+1] is the expected dividends for year t+1. Expected earnings are based on
analyst forecasts from IBES or forecasts from regression models. Expected dividends are expected
earnings times the current dividend payout ratio, which is computed as dividends (Compustat an-
nual item DVC) divided by earnings (item IB) for profitable firms, or dividends divided by 6% of to-
tal assets (item AT) for firms with zero or negative earnings. We follow Gode and Mohanram (2003)
and use the average of forecasted near-term growth rate and five-year growth rate as an estimate of
g. We require Et[Yt+2] and Et[Yt+4] to be positive so that g is well defined. γ − 1 is the perpetual
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growth rate of abnormal earnings and is assume to be the ten-year Treasury bond rate minus 3%.

The Baseline OJ Procedure with Analysts’ Earnings Forecasts from IBES Following
Gode and Mohanram (2003), we implement the OJ model on the per share basis with analysts’
earnings forecasts. We measure Pt as the June-end share price from CRSP. At the end of June
in year t, the expected earnings per share for year t + τ is the consensus mean forecast from
IBES (unadjusted file, item MEANEST) for year t + τ (fiscal period indicator = τ) reported
in June of t. We require the availability of earnings forecast for years t + 1 and t + 2. When
the forecast after year t + 2 is not available, we use the long-term growth rate (item LTG) to
construct it as: FEPSt+τ = FEPSt+τ−1 × (1 + LTG). If the long-term growth rate is missing, we
replace it with the growth rate implied by the forecasts for the previous two years: FEPSt+τ =
FEPSt+τ−1 × (FEPSt+τ−1/FEPSt+τ−2), when FEPSt+τ−2 and FEPSt+τ−1 are both positive.

Regression-based Earnings Forecasts Instead of analysts’ earnings forecasts, we use pooled
cross-sectional regressions in equation (A2) to forecast future earnings for up to five years ahead.
In June of each year t, we estimate the regression using the pooled panel data from the previous ten
years. With a four-month information lag, the accounting data are from fiscal years ending between
March of t− 10 and February of t. We construct the expected earnings as the estimated regression
coefficients times the latest values of the (unwinsorized) predictors from the fiscal year ending
between March of t−1 and February of t. We implement the modified OJ procedure at the firm level.

Regression-based ROE Forecasts We also use annual cross-sectional regressions in equation
(A3) to forecast future ROE for up to five years ahead. In June of each year t, we estimate the
regression using the previous ten years of data. With a four-month information lag, the accounting
data are from fiscal years ending between March of t − 10 and February of t. We forecast the
expected ROE, Et[ROEt+τ ], as the average cross-sectional regression coefficients times the latest
values of the predictors from fiscal years ending between March of t−1 and February of t. Expected
earnings are then constructed as: Et[Yt+τ ] = Et[ROEt+τ ] × Bt+τ−1, in which Bt+τ−1 is the book
equity in year t+τ−1. We measure current book equity Bt based on the latest accounting data from
the fiscal year ending in March of t−1 to February of t, and impute future book equity by applying
clean surplus accounting recursively. We implement the modified OJ procedure at the firm level.

A.4 The MPEG Model from Easton (2004)

At the end of June in each year t, we estimate the internal rate of returns (IRR) from:

Pt =
Et[Yt+2] + IRR× Et[Dt+1]− Et[Yt+1]

IRR2
, (A8)

in which Pt is the market equity in year t, Et[Yt+τ ] is the expected earnings for year t + τ based
on information available in year t, and Et[Dt+1] is the expected dividends for year t+1. Expected
earnings are based on analyst forecasts from IBES or forecasts from regression models. Expected
dividends are expected earnings times the current dividend payout ratio, which is computed as
dividends (Compustat annual item DVC) divided by earnings (item IB) for profitable firms, or
dividends divided by 6% of total assets (item AT) for firms with zero or negative earnings. When
equation (A9) has two positive roots (in very few cases), we use the average as the IRR estimate.
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The Baseline Procedure with Analysts’ Earnings Forecasts from IBES Following Eas-
ton (2004), we implement the MPEG model on the per share basis with analysts’ earnings forecasts.
We measure Pt as the June-end share price from CRSP. At the end of June in year t, the expected
earnings per share for year t + τ is the consensus mean forecast from IBES (unadjusted file, item
MEANEST) for year t+ τ (fiscal period indicator = τ) reported in June of t.

Regression-based Earnings Forecasts Instead of analysts’ earnings forecasts, we use pooled
cross-sectional regressions in equation (A2) to forecast future earnings for up to two years ahead.
In June of each year t, we estimate the regression using the pooled panel data from the previous ten
years. With a four-month information lag, the accounting data are from fiscal years ending between
March of t−10 and February of t. We construct the expected earnings as the estimated regression co-
efficients times the latest values of the (unwinsorized) predictors from the fiscal year ending between
March of t− 1 and February of t. We implement the modified MPEG procedure at the firm level.

Regression-based ROE Forecasts Instead of analysts’ earnings forecasts, we use annual cross-
sectional regressions in equation (A3) to forecast future ROE for up to two years ahead. In June of
each year t, we estimate the regression using the previous ten years of data. With a four-month infor-
mation lag, the accounting data are from fiscal years ending between March of t−10 and February of
t. We forecast the expected ROE, Et[ROEt+τ ], as the average regression coefficients times the latest
values of the predictors from fiscal years ending between March of t−1 and February of t. Expected
earnings are then constructed as: Et[Yt+τ ] = Et[ROEt+τ ] × Bt+τ−1, in which Bt+τ−1 is the book
equity in year t+τ−1. We measure current book equity Bt based on the latest accounting data from
the fiscal year ending in March of t−1 to February of t, and impute future book equity by applying
clean surplus accounting recursively. We implement the modified MPEG procedure at the firm level.

A.5 The Gordon and Gordon (1997, GG) Model

At the end of June in each year t, we estimate the internal rate of returns (IRR) from:

Pt =
Et[Yt+1]

IRR
, (A9)

in which Pt is the market equity in year t, and Et[Yt+1] is the expected earnings for year t+1 based
on information available in year t. Expected earnings are based on analysts’ earnings forecasts
from IBES or forecasts from regression models. Following GG (1997), we require the IRRs to be
positive and drop firms with zero or negative expected earnings.

The Baseline Procedure with Analysts’ Earnings Forecasts from IBES Following GG
(1997), we implement the GG model on the per share basis with analysts’ earnings forecasts. We
measure Pt as the June-end share price from CRSP. At the end of June in year t, the expected
earnings per share for year t+ 1 is the consensus mean forecast from IBES (unadjusted file, item
MEANEST) for year t+ 1 (fiscal period indicator = 1) reported in June of t.

Regression-based Earnings Forecasts Instead of analysts’ earnings forecasts, we use pooled
cross-sectional regressions in equation (A2) to forecast future earnings for one year ahead. In June
of each year t, we estimate the regression using the pooled panel data from the previous ten years.
With a four-month information lag, the accounting data are from fiscal years ending between March
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of t− 10 and February of t. We construct the expected earnings as the estimated regression coeffi-
cients times the latest values of the (unwinsorized) predictors from the fiscal year ending between
March of t− 1 and February of t. We implement this modified GG procedure at the firm level.

Regression-based ROE Forecasts Instead of analysts’ earnings forecasts, we use annual cross-
sectional regressions in equation (A3) to forecast future ROE for one year ahead. In June of each
year t, we estimate the regression using the previous ten years of data. With a four-month infor-
mation lag, the accounting data are from fiscal years ending between March of t− 10 and February
of t. We calculate the expected ROE for year t+ 1 as the average cross-sectional regression coeffi-
cients times the latest values of the predictors from fiscal years ending between March of t− 1 and
February of t. Expected earnings are constructed as the current book equity times the expected
ROE. We implement this modified GG procedure at the firm level.

B A Dynamic Investment Model

The model is adapted from Liu, Whited, and Zhang (2009). Time is discrete and the horizon
infinite. Let Π(Ait,Xit) denote the operating profits of firm i at time t, in which Ait is productive
assets, and Xit is a vector of exogenous aggregate and firm-specific shocks. Π(Ait,Xit) exhibits
constant returns to scale. Assets evolve as Ait+1 = Iit + Ait, in which the rate of depreciation is
assumed to be zero. Firms incur adjustment costs when investing. The adjustment costs func-
tion, which is given by Φ(Iit, Ait) = (a/2)(Iit/Ait)

2Ait with a > 0, is increasing and convex in Iit,
decreasing in Ait, and of constant returns to scale in Iit and Ait.

Let Mt+1 be the stochastic discount factor from t to t + 1 and Dit = Π(Kit,Xit) −
(a/2)(Iit/Ait)

2Ait − Iit be dividends. Taking Mt+1 as given, firm i maximizes its cum-dividend
market value of equity, Vit ≡ max{Iit+s,Kit+s+1}∞s=0

Et [
∑∞

s=0 Mt+sDit+s], subject to a transversal-
ity condition: limT→∞Et [Mt+T Bit+T+1] = 0, meaning that the firm cannot run a Ponzi game
by borrowing forever to pay dividends. Let qit be the Lagrangian multiplier associated with
Ait+1 = Iit +Ait. The first-order conditions with respect to Iit and Ait+1 are, respectively,

qit = 1 + a
Iit
Ait

; (C1)

qit = Et

[

Mt+1

[

Πit+1

Ait+1

+
a

2

(

Iit+1

Ait+1

)2

+ qit+1

]]

. (C2)

Combining the two equations, we obtain Et[Mt+1r
I
it+1] = 1, in which rIit+1 is the investment return:

rIit+1 ≡
Πit+1/Ait+1 + (a/2) (Iit+1/Ait+1)

2 + [1 + a (Iit+1/Ait+1)]

1 + a (Iit/Ait)
. (C3)

Define Pit ≡ Vit−Dit as the ex-dividend market value of equity, and rSit+1 ≡ (Pit+1+Dit+1)/Pit
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as the stock return. We start with Pit +Dit = Vit and expand Vit as follows:

Pit +Π(Ait,Xit)−
a

2

(

Iit
Ait

)2

Ait − Iit =

[

Π(Ait,Xit)− a
Iit
Ait

Iit +
a

2

(

Iit
Ait

)2

Ait

]

− Iit

− qit(Ait+1 −Ait − Iit) + Et

[

Mt+1

([

Π(Ait+1,Xit+1)− a
Iit+1

Ait+1

Iit+1

+
a

2

(

Iit+1

Ait+1

)2

Ait+1

]

− Iit+1 − qit+1(Ait+2 −Ait+1 − Iit+1) + . . .

)]

. (C4)

Recursively substituting equations (C1) and (C2), and using the linear homogeneity of Φ(Iit,Kit):

Pit =

(

1 + a
Iit
Ait

)

Iit + qitAit = qitAit+1. (C5)

Finally,

rSit+1 =
Pit+1 +Π(Ait+1,Xit+1)− (a/2) (Iit+1/Ait+1)

2 Ait+1 − Iit+1

Pit

=
qit+1(Iit+1 +Ait+1) + Π(Ait+1,Xit+1)− (a/2) (Iit+1/Ait+1)

2 Ait+1 − Iit+1

qitAit+1

=
qit+1 +Π(Ait+1,Xit+1)/Ait+1 + (a/2) (Iit+1/Ait+1)

2

qit
= rIit+1. (C6)

Taking the conditional expectation on both sides of equation (C3) yields equation (10).

C Variable Definition and Portfolio Construction

As noted, we construct two sets of testing deciles for each anomaly variable: (i) NYSE-breakpoints
and value-weighted returns; and (ii) all-but-micro breakpoints and equal-weighted returns.

C.1 Momentum

This category includes ten momentum variables, including SUE-1, SUE-6, Abr-1, Abr-6, RE-1,
RE-6, R6-1, R6-6, R11-1, and I-Mom.

SUE-1 and SUE-6 SUE stands for Standardized Unexpected Earnings, and is calculated as the
change in quarterly earnings per share (Compustat quarterly item EPSPXQ) from its value four
quarters ago divided by the standard deviation of this change in quarterly earnings over the prior
eight quarters (six quarters minimum).

At the beginning of each month t, we split all NYSE, Amex, and NASDAQ stocks into deciles
based on their most recent past SUE. Before 1972, we use the most recent SUE computed with
quarterly earnings from fiscal quarters ending at least four months prior to the portfolio formation.
Starting from 1972, we use SUE computed with quarterly earnings from the most recent quarterly
earnings announcement dates (Compustat quarterly item RDQ). For a firm to enter our portfolio
formation, we require the end of the fiscal quarter that corresponds to its most recent SUE to
be within six months prior to the portfolio formation. We do so to exclude stale information on
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earnings. To avoid potentially erroneous records, we also require the earnings announcement date to
be after the corresponding fiscal quarter end. Monthly portfolio returns are calculated, separately,
for the current month t (SUE-1) and from month t to t+5 (SUE-6). The holding period that is longer
than one month as in, for instance, SUE-6, means that for a given SUE-6 decile in each month there
exist six sub-deciles, each of which is initiated in a different month in the prior six-month period.
We take the simple average of the sub-decile returns as the monthly return of the SUE-6 decile.

R6-1, R6-6, and R11-1 At the beginning of each month t, we split all stocks into deciles based
on their prior six-month returns from month t − 7 to t − 2. Skipping month t − 1, we calculate
monthly decile returns, separately, for month t (R6-1) and from month t to t + 5 (R6-6). The
deciles are rebalanced at the beginning of month t+1. The holding period that is longer than one
month as in, for instance, R6-6, means that for a given R6-6 decile in each month there exist six
sub-deciles, each of which is initiated in a different month in the prior six-month period. We take
the simple average of the sub-deciles returns as the monthly return of the R6-6 decile.

When equal-weighting the returns of price momentum portfolios with all-but-micro breakpoints
and equal-weighted returns, we do not impose a separate screen to exclude stocks with prices per
share below $5 as in Jegadeesh and Titman (1993). These stocks are mostly microcaps that are ab-
sent in the all-but-micro sample. Also, value-weighting returns assigns only small weights to these
stocks, which do not need to be excluded with NYSE breakpoints and value-weighted returns.

To construct the R11-1 deciles as in FF (1996), we split all stocks into deciles at the beginning
of each month t based on their prior 11-month returns from month t− 12 to t− 2. Skipping month
t − 1, we calculate monthly decile returns for month t, and the deciles are rebalanced at the be-
ginning of month t+ 1. Because we exclude financial firms, these decile returns are different from
those posted on Kenneth French’s Web site.

Abr-1 and Abr-6 Following Chan, Jegadeesh, and Lakonishok (1996), we also measure earnings
surprise as cumulative abnormal stock return (Abr) around the latest quarterly earnings announce-
ment date (Compustat quarterly item RDQ):

Abri =

+1
∑

d=−2

rid − rmd, (D1)

in which rid is stock i’s return on day d (with the earnings announced on day 0) and rmd is the
market index return. We cumulate returns until one (trading) day after the announcement date to
account for the one-day-delayed stock price reaction to earnings news. rmd is the value-weighted
market return for the Abr deciles with NYSE breakpoints and value-weighted returns, but is the
equal-weighted market return with all-but-micro breakpoints and equal-weighted returns.

At the beginning of each month t, we split all stocks into deciles based on their most recent
past Abr. For a firm to enter our portfolio formation, we require the end of the fiscal quarter that
corresponds to its most recent Abr to be within six months prior to the portfolio formation. We
do so to exclude stale information on earnings. To avoid potentially erroneous records, we also
require the earnings announcement date to be after the corresponding fiscal quarter end. Monthly
decile returns are calculated for the current month t (Abr-1), and, separately, from month t to t+5
(Abr-6). The deciles are rebalanced monthly. The six-month holding period for Abr-6 means that
for a given decile in each month there exist six sub-deciles, each of which is initiated in a different
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month in the prior six-month period. We take the simple average of the sub-decile returns as the
monthly return of the Abr-6 decile. Because quarterly earnings announcement dates are largely
unavailable before 1972, the sample for Abr-1 and Abr-6 decile returns starts in January 1972.

RE-1 and RE-6 Following Chan, Jegadeesh, and Lakonishok (1996), we also measure earnings
surprise as changes in analysts’ forecasts of earnings. The earnings forecast data are from the Insti-
tutional Brokers’ Estimate System (IBES). Because analysts’ forecasts are not necessarily revised
each month, we construct a six-month moving average of past changes in analysts’ forecasts:

REit =

6
∑

j=1

fit−j − fit−j−1

pit−j−1

, (D2)

in which fit−j is the consensus mean forecast (IBES unadjusted file, item MEANEST) issued in
month t− j for firm i’s current fiscal year earnings (fiscal period indicator = 1), and pit−j−1 is the
prior month’s share price (unadjusted file, item PRICE). We adjust for any stock splits and require
a minimum of four monthly forecast changes when constructing RE.

At the beginning of each month t, we split all stocks into deciles based on their RE. Monthly
decile returns are calculated for the current month t (RE-1), and, separately, from month t to t+5
(RE-6). The deciles are rebalanced monthly. The six-month holding period for RE-6 means that
for a given decile in each month there exist six sub-deciles, each of which is initiated in a different
month in the prior six-month period. We take the simple average of the sub-decile returns as the
monthly return of the RE-6 decile. Due to the availability of analysts’ forecasts data, the sample
for RE-1 and RE-6 decile returns starts in July 1976.

I-Mom We start with the FF 49-industry classifications. Excluding financial firms from the sam-
ple leaves 45 industries. At the beginning of each month t, we sort industries based on their prior
six-month value-weighted returns from t−6 to t−1. Following Moskowitz and Grinblatt (1999), we
do not skip month t−1 when measuring industry momentum. We form nine portfolios (9×5 = 45),
each of which contains five different industries. We define the return of a given portfolio as the
simple average of the five industry returns within the portfolio. We calculate value-weighted (and
equal-weighted) returns for the nine portfolios for six months from t to t + 5, and rebalance the
portfolios at the beginning of t+1. For a given I-Mom portfolio in each month there exist six sub-
portfolios, each of which is initiated in a different month in the prior six-month period. We take
the simple average of the six sub-portfolio returns as the monthly return of the I-Mom portfolio.

C.2 Value-versus-Growth

There are 12 anomaly variables in this category including B/M, A/ME, Rev, E/P, EF/P, CF/P,
D/P, O/P, NO/P, SG, LTG, and Dur.

B/M At the end of June of each year t, we split stocks into deciles based on B/M, which is the
book equity for the fiscal year ending in calendar year t− 1 divided by the ME (from Compustat
or CRSP) at the end of December of t− 1. We calculate monthly decile returns from July of year
t to June of t + 1, and the deciles are rebalanced in June of t + 1. Following Davis, Fama, and
French (2000), we measure book equity as stockholders’ book equity, plus balance sheet deferred
taxes and investment tax credit (Compustat annual item TXDITC) if available, minus the book
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value of preferred stock. Stockholders’ equity is the value reported by Compustat (item SEQ), if
it is available. If not, we measure stockholders’ equity as the book value of common equity (item
CEQ) plus the par value of preferred stock (item PSTK), or the book value of assets (item AT)
minus total liabilities (item LT). Depending on availability, we use redemption (item PSTKRV),
liquidating (item PSTKL), or par value (item PSTK) for the book value of preferred stock.

A/ME We follow FF (1992) and measure A/ME as the ratio of total book assets to market
equity. At the end of June of each year t, we split stocks into deciles based on A/ME. Total assets
(Compustat annual item AT) are from the fiscal year ending in calendar year t− 1 and the market
equity (price per share times shares outstanding from Compustat or CRSP) is at the end of De-
cember of t− 1. Monthly decile returns are calculated from July of year t to June of t+1, and the
deciles are rebalanced in June of t+ 1.

Rev To capture the De Bondt and Thaler (1985) long-term reversal (Rev) effect, at the beginning
of each month t, we split stocks into deciles based on the prior returns from month t− 60 to t− 13.
Monthly decile returns are computed for month t, and the deciles are rebalanced at the beginning
of t + 1. To be included in a portfolio for month t, a stock must have a valid price at the end of
t− 61 and a valid return for t− 13. In addition, any missing returns from month t− 60 to t− 14
must be −99.0, which is the CRSP code for a missing price.

E/P To construct the Basu (1983) earnings-to-price (E/P) deciles, we split stocks into deciles
based on E/P at the end of June of each year t. E/P is calculated as income before extraordinary
items (Compustat annual item IB) for the fiscal year ending in calendar year t− 1 divided by the
market equity (from Compustat or CRSP) at the end of December of t− 1. Stocks with negative
earnings are excluded. Monthly decile returns are calculated from July of year t to June of t+ 1,
and the deciles are rebalanced in June of t+ 1.

EF/P Following Elgers, Lo, and Pfeiffer (2001), we measure analysts’ earnings forecasts-to-price
(EF/P) as the consensus median forecasts (IBES unadjusted file, item MEDEST) for the current
fiscal year (fiscal period indicator = 1) divided by share price (unadjusted file, item PRICE). At
the beginning of each month t, we sort stocks into deciles based on EF/P estimated with forecasts
in month t− 1. Monthly decile returns are calculated for the current month t, and the deciles are
rebalanced at the beginning of t+1. Because the earnings forecast data start in January 1976, the
EF/P decile returns start in February 1976.

CF/P We measure cash flows (CF) as income before extraordinary items (Compustat annual
item IB), plus equity’s share of depreciation (item DP), plus deferred taxes (if available, item
TXDI). The equity’s share is defined as market equity divided by total assets (item AT) minus
book equity plus market equity. Market equity is share price times shares outstanding from Com-
pustat or CRSP. Book equity is the stockholder’s book equity, plus balance sheet deferred taxes
and investment tax credit (if available, item TXDITC), minus the book value of preferred stock.
Depending on availability, we use redemption (item PSTKRV), liquidating (item PSTKL), or par
value (item PSTK) for the book value of preferred stock. Stockholder’s equity is the value reported
by Compustat (item SEQ), or the book value of common equity (item CEQ) plus the par value of
preferred stock (item PSTK), or total assets minus total liabilities (item LT).
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At the end of June of each year t, we split stocks into deciles based on CF for the fiscal year
ending in calendar year t − 1 divided by the market equity (from Compustat or CRSP) at the
end of December of t− 1. We exclude firms with negative cash flows. Monthly decile returns are
calculated from July of year t to June of t+ 1, and the deciles are rebalanced in June of t+ 1.

D/P At the end of June of each year t, we sort stocks into deciles based on their dividend yields,
which are the total dividends paid out from July of year t− 1 to June of t divided by the market
equity (from CRSP) at the end of June of t. We calculate monthly dividends as the begin-of-month
market equity times the difference between cum- and ex-dividend returns. Monthly dividends are
then accumulated from July of t − 1 to June of t. We exclude firms that do not pay dividends.
Monthly decile returns are calculated from July of year t to June of t + 1, and the deciles are
rebalanced in June of t+ 1.

O/P and NO/P As in Boudoukh, Michaely, Richardson, and Roberts (2007), total payouts
are dividends on common stock (Compustat annual item DVC) plus repurchases. Repurchases are
the total expenditure on the purchase of common and preferred stocks (item PRSTKC) plus any
reduction (negative change over the prior year) in the value of the net number of preferred stocks
outstanding (item PSTKRV). Net payouts equal total payouts minus equity issuances, which are
the sale of common and preferred stock (item SSTK) minus any increase (positive change over the
prior year) in the value of the net number of preferred stocks outstanding (item PSTKRV).

At the end of June of each year t, we sort stocks into deciles based on total payouts (O/P) (or net
payouts, NO/P) for the fiscal year ending in calendar year t−1 divided by the market equity (from
Compustat or CRSP) at the end of December of t − 1. We exclude firms with non-positive total
payouts (zero net payouts). Monthly decile returns are calculated from July of year t to June of t+1,
and the deciles are rebalanced in June of t+1. Because the data on total expenditure and the sale
of common and preferred stocks start in 1971, the O/P (NO/P) decile returns start in July 1972.

SG Following Lakonishok, Shleifer, and Vishny (1994), we measure sales growth (SG) in June
of year t as the weighted average of the annual sales growth ranks for the prior five years,
∑5

j=1 (6− j) × Rank(t− j). The sales growth for year t − j is the growth rate in sales (COM-
PUSTAT annual item SALE) from fiscal year ending in t− j−1 to fiscal year ending in t− j. Only
firms with data for all five prior years are used to determine the annual sales growth ranks. For
each year from t− 5 to t− 1, we rank stocks into deciles based on their annual sales growth, and
then assign rank i (i = 1, . . . , 10) to a firm if its annual sales growth falls into the ith decile. At the
end of June of each year t, we assign stocks into deciles based on SG, and calculate monthly decile
returns from July of year t to June of t+ 1.

LTG At the beginning of each month t, we sort stocks into deciles based on analysts’ consensus
median forecast of the long-term earnings growth rate (IBES item MEDEST, fiscal period indictor
= 0). Monthly decile returns are calculated for the current month t, and the deciles are rebalanced
at the beginning of t+1. Because the long-term growth forecast data start in December 1981, the
LTG decile returns start in January 1982.
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Dur Following Dechow, Sloan, and Soliman (2004), we calculate firm-level equity duration as:

Dur =

∑T
t=1 t×CDt/(1 + r)t

ME
+

(

T +
1 + r

r

)

ME−
∑T

t=1 CDt/(1 + r)t

ME
, (D3)

in which CDt is the net cash distribution in year t, ME is market equity, T is the length
of forecasting period, and r is the cost of equity. Market equity is price per share times
shares outstanding (Compustat annual item PRCC F times item CSHO). Net cash distribution,
CDt = BEt−1(ROEt − gt), in which BEt−1 is the book equity at the end of year t − 1, ROEt is
return on equity in year t, and gt is the book equity growth in t. Following Dechow et al., we use
autoregressive processes to forecast ROE and book equity growth in future years. We model ROE as
a first-order autoregressive process with an autocorrelation coefficient of 0.57 and a long-run mean
of 0.12, and the growth in book equity as a first-order autoregressive process with an autocorrelation
coefficient of 0.24 and a long-run mean of 0.06. For the starting year (t = 0), we measure ROE as
income before extraordinary items (item IB) divided by one-year lagged book equity (item CEQ),
and the book equity growth rate as the annual change in sales (item SALE). Nissim and Penman
(2001) show that past sales growth is a better indicator of future book equity growth than past book
equity growth. Finally, we use a forecasting period of T = 10 years and a cost of equity of r = 0.12.

At the end of June of each year t, we split stocks into deciles based on Dur for the fiscal year
ending in calendar year t− 1. Monthly decile returns are calculated from July of year t to June of
t+ 1, and the deciles are rebalanced in June of t+ 1.

C.3 Investment

There are 14 anomaly variables in this category, including ACI, I/A, NOA, △PI/A, IG, NSI, CEI,
NXF, IvG, IvC, OA, TA, POA, and PTA.

ACI Following Titman, Wei, and Xie (2004), we measure ACI at the end of June of year t as
CEt−1/[(CEt−2 +CEt−3 +CEt−4)/3]−1, in which CEt−j is capital expenditure (Compustat annual
item CAPX) scaled by sales (item SALE) for the fiscal year ending in calendar year t − j. The
last three-year average capital expenditure is designed to project the benchmark investment at the
portfolio formation year. We exclude firms with sales less than ten million dollars. At the end
of June of each year t, we sort stocks into deciles based on their ACI. Monthly decile returns are
computed from July of year t to June of t+ 1.

I/A Following Cooper, Gulen, and Schill (2008), we measure investment-to-assets, I/A, for the
portfolio formation year t as total assets (Compustat annual item AT) for the fiscal year ending
in calendar year t− 1 divided by total assets for the fiscal year ending in t− 2 minus one. At the
end of June of each year t, we split stocks into deciles based on I/A, and calculate monthly decile
returns from July of year t to June of t+ 1.

NOA and △NOA Following Hirshleifer, Hou, Teoh, and Zhang (2004), we define net operat-
ing assets (NOA) as operating assets minus operating liabilities. Operating assets are total assets
(COMPUSTAT annual item AT) minus cash and short-term investment (item CHE). Operating
liabilities are total assets minus debt included in current liabilities (item DLC, zero if missing),
minus long-term debt (item DLTT, zero if missing), minus minority interests (item MIB, zero if
missing), minus preferred stocks (item PSTK, zero if missing), and minus common equity (item
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CEQ). At the end of June of each year t, we assign stocks into deciles based on NOA for the fiscal
year ending in calendar year t − 1 scaled by total assets for the fiscal year ending in t − 2, and
calculate monthly decile returns from July of year t to June of t+ 1. Relatedly, we define △NOA
for the portfolio formation year t as the change in NOA from the fiscal year ending in calendar year
t− 2 to the fiscal year ending in t− 1, scaled by total assets for fiscal year ending in t− 2. At the
end of June of each year t, we split stocks into deciles based on △NOA. Monthly decile returns are
calculated from July of year t to June of t+ 1, and the deciles are rebalanced in June of t+ 1.

△PI/A Following Lyandres, Sun, and Zhang (2008), we measure △PI/A as changes in gross
property, plant, and equipment (Compustat annual item PPEGT) plus changes in inventory (item
INVT) scaled by lagged total assets (item AT). At the end of June of each year t, we assign stocks
into deciles based on △PI/A for the fiscal year ending in calendar year t−1, and calculate monthly
decile returns from July of year t to June of t+ 1.

IG Following Xing (2008), we measure investment growth, IG, for the portfolio formation year t as
the growth rate in capital expenditure (Compustat annual item CAPX) from the fiscal year ending
in calendar year t−2 to the fiscal year ending in t−1. At the end of June of each year t, we split stocks
into deciles based on IG, and calculate monthly decile returns from July of year t to June of t+ 1.

NSI Following FF (2008), at the end of June of year t, we measure net stock issues (NSI) as
the natural log of the ratio of the split-adjusted shares outstanding at the fiscal year ending in
calendar year t− 1 to the split-adjusted shares outstanding at the fiscal year ending in t− 2. The
split-adjusted shares outstanding is shares outstanding (Compustat annual item CSHO) times the
adjustment factor (item AJEX). At the end of June of each year t, we assign all stocks into deciles
based on NSI. We exclude firms with zero NSI. Monthly decile returns are from July of year t to
June of t+ 1, and the deciles are rebalanced in June of t+ 1.

CEI Following Daniel and Titman (2006), we measure CEI as the growth rate in the market eq-
uity not attributable to the stock return, log (MEt/MEt−5)−r(t−5, t). For the portfolio formation
at the end of June of year t, r(t−5, t) is the cumulative log return on the stock from the last trading
day of June in year t− 5 to the last trading day of June in year t, and MEt is the market equity on
the last trading day of June in year t from CRSP. Equity issuance such as seasoned equity issues,
employee stock option plans, and share-based acquisitions increase the composite issuance, whereas
repurchase activities such as share repurchases and cash dividends reduce the composite issuance.
At the end of June of each year t, we sort stocks into deciles on CEI, and calculate monthly decile
returns from July of year t to June of year t+ 1.

NXF Following Bradshaw, Richardson, and Sloan (2006), we measure net external financing
(NXF) as the sum of net equity financing and net debt financing. Net equity financing is the
proceeds from the sale of common and preferred stocks (Compustat annual item SSTK) less cash
payments for the repurchases of common and preferred stocks (item PRSTKC) less cash payments
for dividends (item DV). Net debt financing is the cash proceeds from the issuance of long-term debt
(item DLTIS) less cash payments for long-term debt reductions (item DLTR) plus the net changes
in current debt (item DLCCH, zero if missing). At the end of June of each year t, we sort stocks into
deciles based on NXF for the fiscal year ending in calendar year t− 1 scaled by the average of total
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assets for fiscal years ending in t−2 and t−1. We exclude firms with zero NXF. Monthly decile re-
turns are calculated from July of year t to June of t+1, and the deciles are rebalanced in June of t+1.
Because the coverage of the financing data starts in 1971, the NXF decile returns start in July 1972.

IvG Following Belo and Lin (2011), we define inventory growth (IvG) for the portfolio formation
year t as the growth rate in inventory (Compustat annual item INVT) from the fiscal year ending
in calendar year t− 2 to the fiscal year ending in t− 1. At the end of June of each year t, we split
stocks into deciles based on IvG. Monthly decile returns are calculated from July of year t to June
of t+ 1, and the decile returns are rebalanced in June of t+ 1.

IvC Following Thomas and Zhang (2002), we define inventory changes (IvC) for the portfolio for-
mation year t as the change in inventory (Compustat annual item INVT) from the fiscal year ending
in calendar year t−2 to the fiscal year ending in t−1, scaled by the average of total assets for fiscal
years ending in t−2 and t−1. At the end of June of each year t, we split stocks into deciles based on
IvC.We exclude firms with zero IvC (most of these firms carry no inventory). Monthly decile returns
are calculated from July of year t to June of t+ 1, and the deciles are rebalanced in June of t+ 1.

OA Prior to 1988, we use the balance sheet approach of Sloan (1996) to measure operating accru-
als (OA) as changes in noncash working capital minus depreciation, in which the noncash working
capital is changes in noncash current assets minus changes in current liabilities less short-term debt
and taxes payable. In particular, OA equals (△CA−△CASH)− (△CL−△STD−△TP )−DP,
in which △CA is the change in current assets (Compustat annual item ACT), △CASH is the
change in cash or cash equivalents (item CHE), △CL is the change in current liabilities (item
LCT), △STD is the change in debt included in current liabilities (item DLC, zero if missing),
△TP is the change in income taxes payable (item TXP, zero if missing), and DP is depreciation
and amortization (item DP, zero if missing). Starting from 1988, we follow Hribar and Collins
(2002) to measure OA using the statement of cash flows as net income (item NI) minus net cash
flow from operations (item OANCF). Doing so helps mitigate measurement errors that can arise
from nonoperating activities such as acquisitions and divestitures. Data from the statement of cash
flows are only available since 1988. To construct the OA deciles, at the end of June of each year
t, we sort stocks into deciles based on OA for the fiscal year ending in calendar year t − 1 scaled
by total assets (item AT) for the fiscal year ending in t− 2. Monthly decile returns are calculated
from July of year t to June of t+ 1, and the deciles are rebalanced in June of t+ 1.

TA Prior to 1988, we use the balance sheet approach in Richardson, Sloan, Soliman, and Tuna
(2005) to measure total accruals (TA) as △WC+△NCO+△FIN . △WC is the change in net non-
cash working capital. Net non-cash working capital is current operating asset (COA) minus current
operating liabilities (COL), with COA = current assets (Compustat annual item ACT) − cash and
short term investments (item CHE) and COL = current liabilities (item LCT) − debt in current li-
abilities (item DLC, zero if missing). △NCO is the change in net non-current operating assets. Net
non-current operating assets is non-current operating assets (NCOA) minus non-current operating
liabilities (NCOL), with NCOA = total assets (item AT) − current assets (item ACT) − invest-
ments and advances (item IVAO, zero if missing), and NCOL = total liabilities (item LT) − current
liabilities (item LCT) − long-term debt (item DLTT, zero if missing). △FIN is the change in net
financial assets. Net financial assets is financial assets (FINA) minus financial liabilities (FINL),
with FINA = short term investments (item IVST, zero if missing) + long term investments (item
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IVAO, zero if missing), and FINL = long term debt (item DLTT, zero if missing) + debt in current
liabilities (item DLC, zero if missing) + preferred stock (item PSTK, zero if missing).

Starting from 1988, we use the cash flow approach to measure TA as net income (Compustat
annual item NI) minus total operating, investing, and financing cash flows (items OANCF, IVNCF,
and FINCF) plus sales of stocks (item SSTK, zero if missing) minus stock repurchases and divi-
dends (items PRSTKC and DV, zero if missing). Data from the statement of cash flows are only
available since 1988. To construct the TA deciles, we sort stocks at the end of June of each year
t into deciles based on TA for the fiscal year ending in calendar year t − 1 scaled by total assets
(Compustat annual item AT) for the fiscal year ending in t−2. We calculate monthly decile returns
from July of year t to June of t+ 1, and rebalance the deciles in June of t+ 1.

POA Accruals are traditionally scaled by total assets. Hafzalla, Lundholm, and Van Winkle
(2011) show that scaling accruals by the absolute value of earnings (percent accruals) is more effec-
tive in selecting firms for which the differences between sophisticated and naive forecasts of earnings
are the most extreme. To construct the percent operating accruals (POA) deciles, at the end of June
of each year t, we sort stocks into deciles based on OA scaled by the absolute value of net income
(Compustat annual item NI) for the fiscal year ending in calendar year t−1. Monthly decile returns
are calculated from July of year t to June of t+ 1, and the deciles are rebalanced in June of t+ 1.

PTA We sort stocks at the end of June of each year t into deciles based on total accurals (TA)
scaled by the absolute value of net income (Compustat annual item NI) for the fiscal year ending in
calendar year t− 1. We calculate decile returns from July of year t to June of t+ 1, and rebalance
the deciles in June of t+ 1.

C.4 Profitability

There are 14 anomaly variables in this category, including ROE, ROA, RNA, PM, ATO, CTO,
GP/A, F , TES, TI/BI, RS, NEI, FP, and O.

ROE We measure ROE as income before extraordinary items (Compustat quarterly item IBQ)
divided by one-quarter-lagged book equity. Book equity is shareholders’ equity, plus balance sheet
deferred taxes and investment tax credit (item TXDITCQ) if available, minus the book value of
preferred stock. Depending on availability, we use stockholders’ equity (item SEQQ), or common
equity (item CEQQ) plus the carrying value of preferred stock (item PSTKQ), or total assets (item
ATQ) minus total liabilities (item LTQ) in that order as shareholders’ equity. We use redemption
value (item PSTKRQ) if available, or carrying value for the book value of preferred stock.

Before 1972, the sample coverage is limited for quarterly book equity in Compustat quarterly
files. We expand the coverage by using book equity from Compustat annual files as well as by
imputing quarterly book equity with clean surplus accounting. Specifically, whenever available we
first use quarterly book equity from Compustat quarterly files. We then supplement the coverage
for fiscal quarter four with annual book equity from Compustat annual files. Following Davis, Fama,
and French (2000), we measure annual book equity as stockholders’ book equity, plus balance sheet
deferred taxes and investment tax credit (Compustat annual item TXDITC) if available, minus
the book value of preferred stock. Stockholders’ equity is the value reported by Compustat (item
SEQ), if available. If not, stockholders’ equity is the book value of common equity (item CEQ) plus
the par value of preferred stock (item PSTK), or the book value of assets (item AT) minus total
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liabilities (item LT). Depending on availability, we use redemption (item PSTKRV), liquidating
(item PSTKL), or par value (item PSTK) for the book value of preferred stock.

If both approaches are unavailable, we apply the clean surplus relation to impute the book
equity. First, if available, we backward impute the beginning-of-quarter book equity as the end-
of-quarter book equity minus quarterly earnings plus quarterly dividends. Quarterly earnings are
income before extraordinary items (Compustat quarterly item IBQ). Quarterly dividends are zero
if dividends per share (item DVPSXQ) are zero. Otherwise, total dividends are dividends per share
times beginning-of-quarter shares outstanding adjusted for stock splits during the quarter. Shares
outstanding are from Compustat (quarterly item CSHOQ supplemented with annual item CSHO
for fiscal quarter four) or CRSP (item SHROUT), and the share adjustment factor is from Com-
pustat (quarterly item AJEXQ supplemented with annual item AJEX for fiscal quarter four) or
CRSP (item CFACSHR). Because we impose a four-month lag between earnings and the holding
period month (and the book equity in the denominator of ROE is one-quarter-lagged relative to
earnings), all the Compustat data in the backward imputation are at least four-month lagged prior
to the portfolio formation. If data are unavailable for the backward imputation, we impute the
book equity for quarter t forward based on book equity from prior quarters. Let BEQt−j , 1 ≤ j ≤ 4
denote the latest available quarterly book equity as of quarter t, and IBQt−j+1,t and DVQt−j+1,t

be the sum of quarterly earnings and quarterly dividends from quarter t− j + 1 to t, respectively.
BEQt can then be imputed as BEQt−j+IBQt−j+1,t−DVQt−j+1,t. We do not use prior book equity
from more than four quarters ago (i.e., 1 ≤ j ≤ 4) to reduce imputation errors.

At the beginning of each month t, we sort all stocks into deciles based on their most recent
past ROE. Before 1972, we use the most recent ROE computed with quarterly earnings from fiscal
quarters ending at least four months prior to the portfolio formation. Starting from 1972, we use
ROE computed with quarterly earnings from the most recent quarterly earnings announcement
dates (Compustat quarterly item RDQ). For a firm to enter the portfolio formation, we require the
end of the fiscal quarter that corresponds to its most recent ROE to be within six months prior
to the portfolio formation. This restriction is imposed to exclude stale earnings information. To
avoid potentially erroneous records, we also require the earnings announcement date to be after
the corresponding fiscal quarter end. Monthly decile returns are calculated for the current month
t, and the deciles are rebalanced monthly.

ROA We measure ROA as income before extraordinary items (Compustat quarterly item IBQ)
divided by one-quarter-lagged total assets (item ATQ). At the beginning of each month t, we sort
all stocks into deciles based on their ROA computed with quarterly earnings from the most recent
earnings announcement dates (Compustat quarterly item RDQ). For a firm to enter the portfolio
formation, we require the end of the fiscal quarter that corresponds to its most recent ROA to
be within six months prior to the portfolio formation. This restriction is imposed to exclude stale
earnings information. To avoid potentially erroneous records, we also require the earnings announce-
ment date to be after the corresponding fiscal quarter end. Monthly decile returns are calculated
for month t, and the deciles are rebalanced at the beginning of t+1. Because of insufficient coverage
for quarterly total assets before 1972, the sample for ROA decile returns starts in January 1972.

RNA, PM, and ATO Following Soliman (2008), we use DuPont analysis to decompose ROE
as RNA + FLEV × SPREAD, in which ROE is return on equity, RNA is return on net operating
assets, FLEV is financial leverage, and SPREAD is the difference between return on net operating
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assets and borrowing costs. We further decompose RNA = PM × ATO, in which PM is profit
margin (operating income/sales) and ATO is asset turnover (sales/net operating assets).

Following Soliman (2008), we use annual sorts to form RNA, PM, and ATO deciles. At the end
of June of year t, we measure RNA as operating income after depreciation (Compustat annual item
OIADP) for the fiscal year ending in calendar year t− 1 divided by net operating assets (NOA) for
the fiscal year ending in t−2. NOA is operating assets minus operating liabilities. Operating assets
are total assets (item AT) less cash and short-term investments (item CHE) less other investment
and advances (item IVAO, zero if missing). Operating liabilities are total assets (item AT), less the
long- and short-term portions of debt (items DLTT and DLC, zero if missing), less minority interest
(item MIB, zero if missing), less book value of preferred equity (items PSTK, zero if missing),
less book value of common equity (items CEQ). PM is operating income after depreciation (item
OIADP) divided by sales (item SALE) for the fiscal year ending in calendar year t−1. ATO is sales
(item SALE) for the fiscal year ending in calendar year t−1 divided by net operating assets (NOA)
for the fiscal year ending in t−2. At the end of June of each year t, we sort stocks into three sets of
deciles based on RNA, PM, and ATO. We exclude firms with non-positive NOA for the fiscal year
ending in calendar year t− 2 when forming the RNA and the ATO deciles. Monthly decile returns
are calculated from July of year t to June of t+ 1, and the deciles are rebalanced in June of t+ 1.

CTO To construct the capital turnover (CTO) deciles, at the end of June of each year t, we
split stocks into deciles based on sales (Compustat annual item SALE) divided by one-year-lagged
total assets (item AT) for the fiscal year ending in calendar year t− 1. Monthly decile returns are
calculated from July of year t to June of t+ 1, and the deciles are rebalanced in June of t+ 1.

GP/A Following Novy-Marx (2013), we measure gross profits-to-assets (GP/A) as total revenue
(Compustat annual item REVT) minus cost of goods sold (item COGS) divided by total assets (item
AT, the denominator is current, not lagged, total assets). At the end of June of each year t, we sort
stocks into deciles based on GP/A for the fiscal year ending in calendar year t−1. Monthly decile re-
turns are calculated from July of year t to June of t+1, and the deciles are rebalanced in June of t+1.

F Piotroski (2000) classifies each firm’s fundamental signal as either good or bad depending on
the signal’s implication for future stock prices and profitability. An indicator variable for a partic-
ular signal is one if its realization is good and zero if it is bad. The aggregate signal, denoted F , is
the sum of the nine binary signals. F is designed to measure the overall quality, or strength, of the
firm’s financial position. Nine fundamental signals are chosen to measure three areas of a firm’s
financial condition, profitability, liquidity, and operating efficiency.

Four variables are selected to measure profitability-related factors:

• ROA is income before extraordinary items (Compustat annual item IB) scaled by one-year-
lagged total assets (item AT). If the firm’s ROA is positive, the indicator variable FROA equals
one and zero otherwise.

• CFO is cash flow from operation scaled by one-year-lagged total assets (Compustat annual
item AT). Cash flow from operation is item OANCF, available after 1988. Prior to that, we use
funds from operation (item FOPT) minus the annual change in working capital (item WCAP).
If the firm’s CFO is positive, the indicator variable FCFO equals one and zero otherwise.
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• ∆ROA is the current year’s ROA less the prior year’s ROA. If ∆ROA is positive, the indicator
variable F∆ROA is one and zero otherwise.

• Sloan (1996) shows that earnings driven by positive accrual adjustments is a bad signal about
future earnings. As such, the indicator FACC equals one if CFO > ROA and zero otherwise.

Three variables are selected to measure changes in capital structure and a firm’s ability to meet
future debt obligations. Piotroski (2000) assumes that an increase in leverage, a deterioration of
liquidity, or the use of external financing is a bad signal about financial risk.

• ∆LEVER is the change in the ratio of total long-term debt (Compustat annual item DLTT)
to average total assets over the prior two years. F∆LEVER is one if the firm’s leverage ratio
falls, i.e., ∆LEVER < 0, in the year preceding portfolio formation, and zero otherwise.

• ∆LIQUID measures the change in a firm’s current ratio between the current and prior years,
in which the current ratio is the ratio of current assets (Compustat annual item ACT) to
current liabilities (item LCT). An improvement in liquidity (∆LIQUID > 0) is a good signal
about the firm’s ability to service current debt obligations. The indicator F∆LIQUID equals
one if the firm’s liquidity improves and zero otherwise.

• The indicator, EQ, equals one if the firm does not issue common equity in the year prior to
portfolio formation and zero otherwise. The issuance of common equity is sales of common
and preferred stocks (Compustat annual item SSTK) minus any increase in preferred stock
(item PSTK). Issuing equity is interpreted as a bad signal (inability to generate sufficient
internal funds to service future obligations).

The remaining two signals are designed to measure changes in the efficiency of the firm’s oper-
ations that reflect two key constructs underlying the decomposition of return on assets.

• ∆MARGIN is the firm’s current gross margin ratio, measured as gross margin (Compustat
annual item SALE minus item COGS) scaled by sales (item SALE), less the prior year’s
gross margin ratio. An improvement in margins signifies a potential improvement in factor
costs, a reduction in inventory costs, or a rise in the price of the firm’s product. The indictor
F∆MARGIN equals one if ∆MARGIN > 0 and zero otherwise.

• ∆TURN is the firm’s current year asset turnover ratio, measured as total sales (Compustat
annual item SALE) scaled by one-year-lagged total assets (item AT), minus the prior year’s
asset turnover ratio. An improvement in asset turnover ratio signifies greater productivity
from the asset base. The indicator, F∆TURN, equals one of ∆TURN > 0 and zero otherwise.

Piotroski (2000) forms a composite score, F , as the sum of the individual binary signals:

F = FROA +F∆ROA +FCFO +FACC +F∆MARGIN +F∆TURN +F∆LEVER +F∆LIQUID +EQ. (D4)

At the end of June of each year t, we sort stocks based on F for the fiscal year ending in calender
year t − 1 to form seven portfolios: low (F = 0, 1, 2), 3, 4, 5, 6, 7, and high (F = 8, 9). Because
extreme F scores are rare, we combine scores 0, 1, and 2 into the low portfolio and scores 8 and
9 into the high portfolio. Monthly portfolio returns are calculated from July of year t to June of
t+ 1, and the portfolios are rebalanced in June of t+ 1. Because the data on equity offering start
in 1971, the F portfolio returns start in July 1972.
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TES Following Thomas and Zhang (2011), we measure tax expense surprise (TES) as changes
in tax expense, which is tax expense per share (Compustat quarterly item TXTQ/(item CSHPRQ
times item AJEXQ)) in quarter q minus tax expense per share in quarter q − 4, scaled by assets
per share (item ATQ/(item CSHPRQ times item AJEXQ)) in quarter q − 4. At the beginning of
each month t, we sort stocks into deciles based on their TES calculated with Compustat quarterly
data items from at least four months ago. We exclude firms with zero TES (most of these firms
pay no taxes). We calculate decile returns for the subsequent three months from t to t + 2, and
the portfolios are rebalanced at the beginning of month t + 1. The three-month holding period
means that in each month for any given TES decile there exist three sub-deciles. We take the
simple average of the sub-decile returns as the monthly return of the TES decile. For sufficient
data coverage, we start the TES deciles in January 1976.

TI/BI Following Green, Hand, and Zhang (2013), we measure taxable income-to-book income
(TI/BI) as pretax income (Compustat annual item PI) divided by net income (item NI). At the
end of June of each year t, we sort stocks into deciles based on TI/BI for the fiscal year ending in
calendar year t− 1. We exclude firms with negative or zero net income. Monthly decile returns are
calculated from July of year t to June of t+ 1.

RS Following Jegadeesh and Livnat (2006), we measure revenue surprise (RS) as the change in
revenue per share (Compustat quarterly item SALEQ/(item CSHPRQ times item AJEXQ)) from
its value four quarters ago divided by the standard deviation of this change in quarterly revenue
per share over the prior eight quarters (six quarters minimum). At the beginning of each month t,
we split stocks into deciles based on their most recent past RS. Before 1972, we use the most recent
RS computed with quarterly revenue from fiscal quarters ending at least four months prior to the
portfolio formation. Starting from 1972, we use RS computed with quarterly revenue from the
most recent quarterly earnings announcement dates (Compustat quarterly item RDQ). Jegadeesh
and Livnat argue that quarterly revenue data are available when earnings are announced. For a
firm to enter the portfolio formation, we require the end of the fiscal quarter that corresponds
to its most recent RS to be within six months prior to the portfolio formation. This restriction
is imposed to exclude stale revenue information. To avoid potentially erroneous records, we also
require the earnings announcement date to be after the corresponding fiscal quarter end. Monthly
deciles returns are calculated for the current month t.

NEI We follow Barth, Elliott, and Finn (1999) and Green, Hand, and Zhang (2013) in measuring
NEI as the number of consecutive quarters (up to eight quarters) with an increase in earnings (Com-
pustat quarterly item IBQ) over the same quarter in the prior year.At the beginning of each month t,
we sort stocks into nine portfolios (with NEI = 0, 1, 2, . . . , 7, and 8, respectively) based on their most
recent past NEI. Before 1972, we use NEI computed with quarterly earnings from fiscal quarters end-
ing at least four months prior to the portfolio formation. Starting from 1972, we use NEI computed
with earnings from the most recent quarterly earnings announcement dates (Compustat quarterly
item RDQ). For a firm to enter the portfolio formation, we require the end of the fiscal quarter that
corresponds to its most recent NEI to be within six months prior to the portfolio formation. This
restriction is imposed to exclude stale earnings information. To avoid potentially erroneous records,
we also require the earnings announcement date to be after the corresponding fiscal quarter end.
We calculate monthly portfolio returns for the current month t and rebalance the portfolios at the
beginning of t+ 1. For sufficient data coverage, we start the NEI deciles in January 1969.
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FP We construct failure probability (FP) following Campbell, Hilscher, and Szilagyi (2008, the
third column in Table IV):

FPt ≡ −9.164− 20.264NIMTAAV Gt + 1.416TLMTAt − 7.129EXRETAV Gt

+1.411SIGMAt − 0.045RSIZEt − 2.132CASHMTAt + 0.075MBt − 0.058PRICEt(D5)

in which

NIMTAAV Gt−1,t−12 ≡
1− φ3

1− φ12

(

NIMTAt−1,t−3 + · · ·+ φ9NIMTAt−10,t−12

)

(D6)

EXRETAV Gt−1,t−12 ≡
1− φ

1− φ12

(

EXRETt−1 + · · ·+ φ11EXRETt−12

)

, (D7)

and φ = 2−1/3. NIMTA is net income (Compustat quarterly item NIQ) divided by the sum of
market equity (share price times the number of shares outstanding from CRSP) and total liabilities
(item LTQ). The moving average NIMTAAV G captures the idea that a long history of losses is a
better predictor of bankruptcy than one large quarterly loss in a single month. EXRET ≡ log(1+
Rit)− log(1+RS&P500,t) is the monthly log excess return on each firm’s equity relative to the S&P
500 index. The moving average EXRETAV G captures the idea that a sustained decline in stock
market value is a better predictor of bankruptcy than a sudden stock price decline in a single month.

TLMTA is the ratio of total liabilities divided by the sum of market equity and to-
tal liabilities. SIGMA is the annualized three-month rolling sample standard deviation:
√

252
N−1

∑

k∈{t−1,t−2,t−3} r
2
k, in which k is the index of trading days in months t − 1, t − 2, and

t−3, rk is the firm-level daily return, and N is the total number of trading days in the three-month
period. SIGMA is treated as missing if there are less than five nonzero observations over the three
months in the rolling window. RSIZE is the relative size of each firm measured as the log ratio
of its market equity to that of the S&P 500 index. CASHMTA, used to capture the liquidity
position of the firm, is the ratio of cash and short-term investments (Compustat quarterly item
CHEQ) divided by the sum of market equity and total liabilities (item LTQ).

MB is the market-to-book equity, in which book equity is measured in the same way as the
denominator of ROE. Following Campbell et al., we add 10% of the difference between the market
equity and the book equity to the book equity to alleviate measurement issues for extremely small
book equity values. For firm-month observations that still have negative book equity after this
adjustment, we replace these negative values with $1 to ensure that the market-to-book ratios for
these firms are in the right tail of the distribution. PRICE is each firm’s log price per share,
truncated above at $15. We further eliminate stocks with prices less than $1 at the portfolio for-
mation date. We winsorize the variables on the right-hand side of equation (D5) at the 5th and
95th percentiles of their pooled distributions each month.

To construct the FP deciles, at the beginning of each month t, we split stocks into deciles based
on FP calculated with accounting data from the fiscal quarter ending at least four months ago.
Because unlike earnings, other quarterly data items in the definition of FP might not be available
upon earnings announcement, we impose a four-month gap between the fiscal quarter end and port-
folio formation to guard against look-ahead bias. We calculate decile returns for the subsequent
six months after the portfolio formation from month t to t + 5 and rebalance the deciles at the
beginning of t+ 1. Because of the six-month holding period, there exist six sub-deciles for a given
FP decile in each month. We take the simple average of the sub-decile returns as the monthly
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return of the FP decile. Due to limited data coverage, we start the FP deciles in February 1976.

O We follow Ohlson (1980, Model One in Table 4) and Dichev (1998) to construct O-score:

−1.32 − 0.407 log(TA) + 6.03TLTA − 1.43WCTA+ 0.076CLCA

− 1.72OENEG − 2.37NITA − 1.83FUTL + 0.285 INTWO − 0.521CHIN

in which TA is total assets (Compustat annual item AT). TLTA is the leverage ratio defined as the
book value of debt (item DLC plus item DLTT) divided by total assets. WCTA is working capital
divided by total assets, (item ACT minus item LCT)/item AT. CLCA is current liability (item
LCT) divided by current assets (item ACT). OENEG is one if total liabilities (item LT) exceeds
total assets (item AT) and is zero otherwise. NITA is net income (item NI) divided by total assets.
FUTL is the fund provided by operations (item PI) divided by liability (item LT). INTWO is
equal to one if net income (item NI) is negative for the last two years and zero otherwise. CHIN
is (NIt −NIt−1)/(|NIt|+ |NIt−1|), in which NIt is net income (item NI).

At the end of June of each year t, we split stocks into deciles based on O-score for the fiscal
year ending in calendar year t − 1. Monthly decile returns are calculated from July of year t to
June of t+ 1, and the deciles are rebalanced in June of t+ 1.

C.5 Intangibles

There are ten anomaly variables in this category, including OC/A, BC/A, Ad/M, RD/S, RD/M,
RC/A, H/N, OL, G, and AccQ.

OC/A Following Eisfeldt and Papanikolaou (2013), we construct a measure of organization capi-
tal using Selling, General, and Administrative (SG&A) expenses (Compustat annual item XSGA).
The stock of organization capital, OC, is constructed with the perpetual inventory method:

OCit = (1− δ)OCit−1 + SG&Ait/CPIt, (D8)

in which CPIt is the consumer price index during year t and δ is the annual depreciation rate of
OC. The initial stock of OC is OCi0 = SG&Ai0/(g + δ), in which SG&Ai0 is the first valid SG&A
observation (zero or positive) for firm i and g is the long-term growth rate of SG&A. Following Eis-
feldt and Papanikolaou, we assume a depreciation rate of 15% for OC and a long-term growth rate
of 10% for SG&A. Missing SG&A values after the starting date are treated as zero. For portfolio
formation at the end of June of year t, we require SG&A to be nonmissing for the fiscal year ending
in calendar year t− 1 because this SG&A value receives the highest weight in OC. In addition, we
exclude firms with zero OC. We form organization capital-to-assets (OC/A) by scaling OC with
total assets (item AT) from the same fiscal year.

Following Eisfeldt and Papanikolaou (2013), we industry-standardize OC/A using the FF (1997)
17-industry classification. We demean a firm’s OC/A by its industry mean and then divide the de-
meaned OC/A by the standard deviation of OC/A within its industry. When computing industry
mean and standard deviation, we winsorize OC/A at the 1 and 99 percentiles of all firms each year.
At the end of June of each year t, we sort stocks into deciles based on OC/A for the fiscal year
ending in calendar year t− 1. Monthly decile returns are calculated from July of year t to June of
t+ 1, and the deciles are rebalanced in June of t+ 1.
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BC/A Following Belo, Lin, and Vitorino (2014), we construct brand capital (BC) by accumulat-
ing advertising expenses (Compustat annual item XAD) via the perpetual inventory method:

BCit = (1− δ)BCit−1 +XADit. (D9)

in which δ is the annual depreciation rate of BC. The initial stock of BC is BCi0 = XADi0/(g+ δ),
in which XADi0 is first valid XAD (zero or positive) for firm i and g is the long-term growth rate of
XAD. Following Belo et al., we assume a depreciation rate of 50% for BC and a long-term growth
rate of 10% for XAD. Missing values of XAD after the starting date are treated as zero. For the
portfolio formation at the end of June of year t, we exclude firms with zero BC and require XAD
to be nonmissing for the fiscal year ending in calendar year t− 1. We form brand capital-to-assets
(BC/A) by scaling BC with total assets (item AT) from the same fiscal year.

At the end of June of each year t, we sort stocks into deciles based on BC/A for the fiscal year
ending in calendar year t− 1. Monthly decile returns are calculated from July of year t to June of
t+ 1, and the deciles are rebalanced in June of t + 1. Because sufficient XAD data start in 1972,
the BC/A decile returns start in July 1973.

Ad/M At the end of June of each year t, we sort stocks into deciles based on advertising expenses-
to-market (Ad/M), which is advertising expenses (Compustat annual item XAD) for the fiscal year
ending in calendar year t− 1 divided by the market equity (from Compustat or CRSP) at the end
of December of t−1. We keep only firms with positive advertising expenses. Monthly decile returns
are calculated from July of year t to June of t+ 1. Because sufficient XAD data start in 1972, the
BC/A decile returns start in July 1973.

RD/S At the end of June of each year t, we sort stocks into deciles based on R&D-to-sales
(RD/S), which is R&D expenses (Compustat annual item XRD) divided by sales (item SALE) for
the fiscal year ending in calendar year t − 1. We keep only firms with positive R&D expenses.
Monthly decile returns are calculated from July of year t to June of t+ 1. Because the accounting
treatment of R&D expenses was standardized in 1975 (by Financial Accounting Standards Board
Statement No. 2), the RD/S decile returns start in July 1976.

RD/M At the end of June of each year t, we split stocks into deciles based on R&D-to-market
(RD/M), which is R&D expenses (Compustat annual item XRD) for the fiscal year ending in
calendar year t−1 divided by the market equity (from Compustat or CRSP) at the end of December
of t−1. We keep only firms with positive R&D expenses. Monthly decile returns are calculated from
July of year t to June of t+1, and the deciles are rebalanced in June of t+1. Because the accounting
treatment of R&D expenses was standardized in 1975, the RD/M decile returns start in July 1976.

RC/A Following Li (2011), we measure R&D capital (RC) as a weighted average of annual R&D
expenses (Compustat annual item XRD) over the last five years with a depreciation rate of 20%:

RCit = XRDit + 0.8XRDit−1 + 0.6XRDit−2 + 0.4XRDit−3 + 0.2XRDit−4. (D10)

We scale RC with total assets (item AT) to form R&D capital-to-assets (RC/A). At the end of
June of each year t, we split stocks into deciles based on RC/A for the fiscal year ending in calendar
year t− 1. We keep only firms with positive RC. Monthly decile returns are calculated from July
of year t to June of t+1, and the deciles are rebalanced in June of t+1. For portfolio formation at
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the end of June of year t, we require R&D expenses to be nonmissing for the fiscal year ending in
calendar year t− 1, because this value of R&D expenses receives the highest weight in RC. Finally,
because RC requires past five years of R&D expenses data and the accounting treatment of R&D
expenses was standardized in 1975, the RC/A decile returns start in July 1980.

H/N Following Belo, Lin, and Bazdresch (2014), at the end of June of year t, we measure the
firm-level hiring rate (H/N) as (Nt−1 − Nt−2)/(0.5Nt−1 + 0.5Nt−2), in which Nt−j is the number
of employees (Compustat annual item EMP) from the fiscal year ending in calendar year t− j. At
the end of June of year t, we sort stocks into deciles based on H/N. We exclude firms with zero
H/N (these observations are often due to stale information on firm employment). Monthly decile
returns are calculated from July of year t to June of t+ 1.

OL Operating leverage (OL) is operating costs scaled by total assets (Compustat annual item
AT, the denominator is current, not lagged, assets per Novy-Marx (2011)). Operating costs are the
cost of goods sold (item COGS) plus selling, general, and administrative expenses (item XSGA).
At the end of June of year t, we sort stocks into deciles based on OL for the fiscal year ending in
calendar year t− 1, and calculate monthly decile returns from July of year t to June of t+ 1.

G The data for Gompers, Ishii, and Metrick’s (2003) firm-level corporate governance index (G,
from September 1990 to December 2006) are from Andrew Metrick’s Web site. To form the G
portfolios, we use the following breakpoints: G ≤ 5, 6, 7, 8, 9, 10, 11, 12, 13, and ≥ 14 (see Table
VI, Gompers et al.). We rebalance the portfolios in the months immediately following each pub-
lication of the G-index, and calculate monthly portfolio returns between two adjacent publication
dates. The first months following the publication dates are September 1990, July 1993, July 1995,
February 1998, November 1999, January 2002, January 2004, and January 2006.

AccQ Following Francis, Lafond, Olsson, and Schipper (2005), we estimate accrual quality
(AccQ) with the following cross-sectional regression (all variables are scaled by lagged total assets):

TCAit = φ0,i + φ1,iCFOit−1 + φ2,iCFOit + φ3,iCFOit+1 + φ4,i△REVit + φ5,iPPEit + vit, (D11)

in which TCAit is firm i’s total current accruals in year t, CFOit is cash flow from operations
in t, △REVit is change in revenues (Compustat annual item SALE) between t − 1 and t, and
PPEit is gross property, plant, and equipment (item PPEGT) in t. TCAit = △CAit −△CLit −
△CASHit+△STDEBTit, in which △CAit is firm i’s change in current assets (item ACT) between
year t − 1 and t, △CLit is change in current liabilities (item LCT), △CASHit is change in cash
(item CHE), and △STDEBTit is change in debt in current liabilities (item DLC, zero if miss-
ing). CFOit = NIBEit − TAit, in which NIBEit is income before extraordinary items (item IB).
TAit = △CAit−△CLit−△CASHit+△STDEBTit−DEPNit, in which DEPNit is depreciation
and amortization expense (item DP, zero if missing).

Following Francis, Lafond, Olsson, and Schipper (2005), we estimate annual cross-sectional re-
gressions in equation (D11) for each of FF (1997) 48 industries (excluding four financial industries)
with at least 20 firms in year t. We winsorize the regressors at the 1 and 99 percentiles of all
firms each year. The annual cross-sectional regressions yield firm- and year-specific residuals, vit.
We measure accrual quality, AccQit = σ(vi)t as the standard deviation of firm i’s residuals, vit,
calculated over years t− 4 through t.
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At the end of June of each year t, we sort stocks into deciles based on AccQ for the fiscal year end-
ing in calendar year t−2. To avoid look-ahead bias, we do not sort on AccQ for the fiscal year ending
in t− 1, because the regression in equation (D11) requires the next year’s CFO. Monthly decile re-
turns are calculated from July of year t to June of t+1, and the deciles are rebalanced in June of t+1.

C.6 Trading Frictions

There are 13 anomaly variables in this category, including ME, Ivol, Tvol, Svol, MDR, β, D-β,
S-Rev, Disp, Turn, 1/P, Dvol, and Illiq.

ME Market equity (ME) is price times shares outstanding from CRSP. At the end of June of
each year t, we sort stocks into deciles based on the June-end ME, and calculate monthly decile
returns from July of year t to June of t+ 1.

Ivol Following Ang, Hodrick, Xing, and Zhang (2006), we measure a stock’s idiosyncratic volatil-
ity (Ivol) as the standard deviation of the residuals from regressing the stock’s returns in excess of
one-month Treasury bill rates on the FF (1993) three factors. At the beginning of each month t,
we sort stocks into deciles based on the Ivol estimated with daily returns from month t − 1. We
require a minimum of 15 daily returns. Monthly decile returns are calculated for the current month
t, and the deciles are rebalanced at the beginning of month t+ 1.

Tvol Following Ang, Hodrick, Xing, and Zhang (2006), we measure a stock’s total volatility
(Tvol) as the standard deviation of its daily returns. At the beginning of each month t, we sort
stocks into deciles based on the Tvol estimated with the daily returns from month t−1. We require
a minimum of 15 daily returns. Monthly decile returns are calculated for the current month t, and
the deciles are rebalanced at the beginning of month t+ 1.

Svol Following Ang, Hodrick, Xing, and Zhang (2006), we measure systematic volatility (Svol)
as βi

△VXO from the bivariate regression:

rid = βi
0 + βi

MKTMKTd + βi
△VXO△VXOd + ǫid, (D12)

in which rid is stock i’s excess return on day d, MKTd is the market factor return, and △VXOd

is the aggregate volatility shock measured as the daily change in the Chicago Board Options Ex-
change S&P 100 volatility index (VXO). At the beginning of each month t, we sort stocks into
deciles based on βi

△VXO estimated with the daily returns from month t−1. We require a minimum
of 15 daily returns. Monthly decile returns are calculated for the current month t, and the deciles
are rebalanced at the beginning of month t+ 1. Because the VXO data start in January 1986, the
Svol decile returns start in February 1986.

MDR Following Bali, Cakici, and Whitelaw (2011), at the beginning of each month t, we sort
stocks into deciles based on the maximal daily return (MDR) in month t−1. We require a minimum
of 15 daily returns. Monthly decile returns are calculated for the current month t, and the deciles
are rebalanced at the beginning of month t+ 1.
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β Following Frazzini and Pedersen (2013), we estimate β for firm i as:

β̂i = ρ̂
σ̂i

σ̂m
, (D13)

in which σ̂i and σ̂m are the estimated volatilities for stock i and the market, and ρ̂ is their corre-
lation. To estimate the volatilities, we compute the standard deviation of daily log returns over a
one-year rolling window (with at least 120 daily returns). To estimate correlations, we use over-
lapping three-day log returns, r3dit =

∑2
k=0 log(1 + rit+k), over a five-year rolling window (with at

least 750 daily returns). At the beginning of each month t, we sort stocks into deciles based on β̂i

estimated at the end of month t− 1. Monthly decile returns are calculated for the current month
t, and the deciles are rebalanced at the beginning of month t+ 1.

D-β Following Dimson (1979), we use the lead and the lag of the market return, along with the
current market return, when estimating beta (D-β):

rid − rfd = αi + βi1(rmd−1 − rfd−1) + βi2(rmd − rfd) + βi3(rmd+1 − rfd+1) + ǫid, (D14)

in which rid is the return on stock i on day d, rmd is the market return, and rfd is the risk-free
rate. We estimate the Dimson market regression for each stock using daily returns from the prior
month. We require a minimum of 15 daily returns. The market beta of stock i is calculated as
D-βi ≡ β̂i1+ β̂i2+ β̂i3. At the beginning of each month t, we sort stocks into deciles based on D-βi

estimated with the daily returns from month t− 1, and calculate monthly decile returns for month
t. The deciles are rebalanced at the beginning of month t+ 1.

S-Rev To construct the Jegadeesh (1990) short-term reversal (S-Rev) deciles, at the beginning
of each month t, we sort stocks into deciles based on the return in month t− 1. To be included in
a decile in month t, a stock must have a valid price at the end of month t − 2 and a valid return
for month t− 1. Monthly decile returns are calculated for the current month t, and the deciles are
rebalanced at the beginning of month t+ 1.

Disp Following Diether, Malloy, and Scherbina (2002), we measure analyst earnings forecasts
dispersion (Disp) as the ratio of the standard deviation of earnings forecast (IBES unadjusted file,
item STDEV) to the absolute value of the consensus mean forecast (unadjusted file, item MEAN-
EST). We use the earnings forecast for the current fiscal year (fiscal period indicator = 1). Stocks
with a mean forecast of zero are assigned to the highest dispersion group. In addition, we exclude
stocks with a price less than $5. At the beginning of each month t, we sort stocks into deciles based
on Disp in month t − 1. Monthly decile returns are calculated for the current month t, and the
deciles are rebalanced at the beginning of month t+ 1. Because the forecast data start in January
1976, the Disp decile returns start in February 1976.

Turn Following Datar, Naik, and Radcliffe (1998), at the beginning of month t, we calculate a
stock’s share turnover (Turn) as its average daily share turnover over the prior six months from t−6
to t − 1. We require a minimum of 50 daily observations. Daily turnover is the number of shares
traded on a given day divided by the number of shares outstanding on that day.14 At the beginning

14Following Gao and Ritter (2010), we adjust the trading volume for NASDAQ stocks to account for the
institutional features of the way that NASDAQ and NYSE-Amex volume are reported. Prior to February 1, 2001,
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of month t, we sort stocks into deciles based on Turn and calculate decile returns for month t.

1/P At the beginning of each month t, we sort stocks into deciles based on the reciprocal of the
share price (1/P) at the end of month t − 1. We calculate decile returns for the current month t
and rebalance the deciles at the beginning of month t+ 1.

Dvol At the beginning of each month t, we sort stocks into deciles based on their average daily
dollar trading volume (Dvol) over the prior six months from t−6 to t−1. We require a minimum of
50 daily observations. Dollar trading volume is share price times the number of shares traded. We
adjust the trading volume of NASDAQ stocks per Gao and Ritter (2010). Monthly decile returns
are calculated for the current month t, and the deciles are rebalanced at the beginning of month t+1.

Illiq We calculate the Amihud (2002) illiquidity measure (Illiq) as the ratio of absolute daily stock
return to daily dollar trading volume, averaged over the prior six months. We require a minimum
of 50 daily observations. Dollar trading volume is share price times the number of shares traded.
We adjust the trading volume of NASDAQ stocks per Gao and Ritter (2010). At the beginning of
each month t, we sort stocks into deciles based on Illiq over the prior six months from t−6 to t−1.
We calculate decile returns for month t and rebalance the deciles at the beginning of month t+ 1.

we divide NASDAQ volume by 2.0. This adjustment accounts for the practice of counting as trades both trades
with market makers and trades among market makers. On February 1, 2001, according to the director of research
of NASDAQ and Frank Hathaway (the chief economist of NASDAQ), a “riskless principal” rule goes into effect
and results in a reduction of approximately 10% in reported volume. As such, from February 1, 2001 to December
31, 2001, we divide NASDAQ volume by 1.8. During 2002, securities firms began to charge institutional investors
commissions on NASDAQ trades, rather than the prior practice of marking up or down the net price. This practice
results in a further reduction in reported volume of approximately 10%. As such, for 2002 and 2003, we divide
NASDAQ volume by 1.6. For 2004 and later years, in which the volume of NASDAQ (and NYSE) stocks has mostly
been occurring on crossing networks and other venues, we use a divisor of 1.0. This practice reflects the fact that
there are no longer important differences in the NASDAQ and NYSE volume.
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