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Abstract

Soft tissue deformation is often modelled using incompressible nonlin-

ear elasticity, with solutions computed using the finite element method.

There are a range of options available when using the finite element

method, in particular, the polynomial degree of the basis functions used

for interpolating position and pressure, and the type of element making

up the mesh. We investigate the effect of these choices on the accuracy

of the computed solution, using a selection of model problems motivated

by typical deformations seen in soft tissue modelling. We set up model

problems with discontinuous material properties (as is the case for the

breast), steeply changing gradients in the body force (as found in con-
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tracting cardiac tissue), and discontinuous first derivatives in the solution

at the boundary, caused by a discontinuous applied force (as in the breast

during mammography). We find that the choice of pressure basis func-

tions are vital in the presence of a material interface, higher-order schemes

do not perform as well as may be expected when there are sharp gradients,

and in general that it is important to take the expected regularity of the

solution into account when choosing a numerical scheme.

Keywords: Finite element method, nonlinear elasticity, basis func-

tions, breast, heart.

1 Introduction

Simulating soft tissue deformation is a rapidly developing field in computational

biology. Although linear elasticity is sometimes used in such models [1, 2, 3], the

strains exhibited by soft tissues are typically of magnitudes which necessitate

the use of the more complex, nonlinear, theory of elasticity [4, 5]. Two organs

which have received particular attention using nonlinear elasticity are the breast

and the heart. The breast shape varies significantly between different clinical

imaging situations—for example, hanging under gravity during magnetic reso-

nance imaging, compared to heavily compressed during mammography (X-ray

imaging)—and a model of the deformation undergone by the breast can be used

for image-based guidance or to aid image-based diagnosis [6, 7, 8]. Computa-

tional modelling of the electro-mechanical behaviour of the heart is an impor-

tant tool in investigating normal and aberrant cardiac function [9, 10, 11]. Such

models are typically extremely complex, coupling cell-level models of electrical

excitation and active tension generation with tissue-level models of electrical

conductance and mechanical deformation. The deformation of various other
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(a) (b) (c)

Figure 1: Simulating the compression of the breast during mammography.
Note that only front (skin, lighter coloured) and back (pectoral muscle, darker
coloured) surfaces of the breast are shown. Also shown are the compression
plates. (a) The initial state before compression. (b) The computed compressed
breast. (c) Alternative view of the compressed state.

tissues or organs have also been studied using nonlinear elasticity, including,

among others, skeletal muscle [12], ligaments [13], cartilage [14], the liver [15],

mesentery [16], blood vessels [17] and tumour spheroids [18].

The finite element (FE) method [19] is commonly used to compute numer-

ical solutions of the partial differential equations which govern such soft tissue

deformation. As an illustration of the use of nonlinear elasticity and the FE

method in soft-tissue modelling, and motivation for the results in this paper,

a three-dimensional simulation of the deformation of the breast is presented in

Figure 1. The mesh of the breast is constructed from magnetic resonance im-

ages, and is shown in Figure 1(a), together with the location of two compression

plates that would be used to compress the breast during mammography. The

mesh is comprised of hexahedral elements, linear basis functions are used for

displacement and piecewise constant basis functions for pressure (terms which

will be introduced below). Figures 1(b) and (c) show the deformed breast, from

two viewpoints, found by solving the contact problem with nonlinear elasticity,

assuming zero body force and surface tractions, and zero displacement on the

pectoral muscle. For further details of this model, see [6].
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Within the FE method, unknowns are approximated using piecewise poly-

nomial basis functions defined over some (typically tetrahedral or hexahedral)

tessellation of the solution domain1. There are then a number of decisions that

must be made when implementing the FE method, and a range of approaches

have been adopted by the authors cited above. One such choice is in the order

of the polynomial basis functions used for approximating the unknown displace-

ment, with common choices being piecewise linear or piecewise quadratic basis

functions. The latter quadratically interpolate an unknown over an element

but require the element to have extra nodes in addition to the vertices, and

the numerical solution to be computed at these extra nodes (see Figure 2). An

alternative choice is to use cubic-Hermite bases—these interpolate the displace-

ment, the first spatial derivatives of the displacement, and, in two-dimensions,

the second spatial cross-derivative [20], from their nodal values (see Figure 2).

Therefore, if cubic-Hermite bases are used, these derivatives have to be com-

puted at each node, in addition to the displacement itself, greatly increasing

the computation time, but with the intention of increasing accuracy. For more

details on the definitions of these basis functions see [19] and [20].

In incompressible elasticity the constraint of incompressibility is enforced

by introducing a Lagrange multiplier, which can be interpreted as the internal

pressure, and which also has to be computed. A second choice in FE implemen-

tation is therefore the order of polynomial interpolation used for this pressure.

It has been shown that the order of interpolation for position must be higher

than that used for the pressure [21], as otherwise the method fails to satisfy

the Ladyzhenskaya-Babuska-Brezzi (LBB) ‘inf-sup’ condition [22] and numeri-

cal solutions may not converge to the exact solution as the stepsize tends to zero.

1The terminology shape function is often used and can be considered loosely synomynous
with ‘basis function’. Shape functions are basis functions restricted to a single (canonical)
element, while basis functions are functions on physical space composed of all shape functions
which correspond to a given node.
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Suitable choices of basis function for interpolating pressure, given the choices

described above for displacement, are therefore: piecewise constant (functions

which take the value 1 in one element and 0 in all others), piecewise linear,

or piecewise quadratic bases. Another choice that is available is in the type of

element used in the FE mesh, tetrahedral or hexahedral (or their counterparts

in 2D). These elements have been seen to sometimes give different numerical

results in solid mechanics problems [23, 24]. Furthermore, linear basis func-

tions cannot be used with triangular/tetrahedral elements without introducing

significant numerical error in the solution (see [25], which explains that triangu-

lar/tetrahedral elements for displacement and piecewise constant elements for

pressure cannot be used for the Stokes’ Problem. The Stokes’ Problem is for-

mally identical to incompressible linear elasticity with pressure, and therefore

this combination of elements should not be used for linear elasticity, and hence

not for nonlinear elasticity either).

To our knowledge, there has been no systematic comparison of the relative

accuracy of these differing approaches to the implementation of the FE method

in modelling the deformation of soft tissue. In this paper we therefore study the

numerical behaviour and computational efficiency of a representative selection

of different methods, on a range of 2D model problems designed to replicate

the type of behaviour which arise in modelling soft tissue. We investigate the

following four choices of numerical scheme: (a) linear (tensor-product) bases for

position and piecewise constant bases for pressure, on quadrilateral elements

(as used in biomechanical modelling in [6, 10, 26]), which we refer to as the

linear scheme; (b) quadratic bases for position and linear bases for pressure, on

triangular elements (as used in biomechanical modelling in [27, 28]), referred

to as the quad-tri scheme; (c) quadratic (tensor-product) bases for position

and linear (tensor-product) bases for pressure, on quadrilateral elements (used

5



in biomechanical modelling in [29, 30]), referred to as the quad-quad scheme;

and (d) cubic-Hermite (tensor-product) bases for position and linear (tensor-

product) bases for pressure, on quadrilateral elements ([11, 31, 32]), referred to

as the cubic-Hermite scheme. These options are summarised in Table 1, with

the elements required for the four schemes illustrated in Figure 2.

We use four model problems, three of which are constructed so that their

solution is known analytically, which means that, for each of the numerical

methods, the method’s error and therefore convergence properties (in spatial

stepsize and number of degrees of freedom) can be studied. To avoid the high

computational cost of performing convergence analyses in 3D, we mostly use

two-dimensional plane-strain problems. The first model problem involves a sim-

ple smooth nonlinear deformation, and has two forms, one in 2D and one in 3D,

referred to as Model Problems 1a and 1b. The 3D version is investigated in or-

der to gain an insight into how the conclusions for the other 2D model problems

will carry over to three-dimensions. We will also use the 3D model problem to

investigate the computational cost of each of the methods. The remaining model

problems are set up in two dimensions. In Model Problem 2, the elastic body

is assumed have discontinuous material properties, as is the case for the breast

(where there is an inner fibroglandular region covered by an outer fatty region),

and can be the case for other tissues if a high spatial resolution is used. The

heterogeneity is modelled by taking different material parameters for different

elements in the mesh, as has regularly been carried out in computational models

of the breast [6, 7, 8]. In the third model problem, the solution deformation has

a steep gradient, which means the specified body force has a very steep gradient.

This is designed to mimic the deformations which arise in cardiac tissue, where

a steep wavefront of electrical excitation propagating across the tissue gives rise

to steep variations in the generated stress. The fourth model problem is moti-
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vated by the compression of the breast during mammography. In this problem,

for which the exact solution is not known analytically, we apply a discontinuous

surface traction boundary condition to the top surface of the elastic body.

We begin in Section 2.1 by introducing the equations of nonlinear elasticity,

and describing the FE solution procedure. The four model problems are then

defined in Section 2.2. The convergence results of the four schemes on the four

model problems are presented in Section 3, and, finally, we discuss the results

in Section 4.
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Figure 2: The elements used in the numerical schemes, together with the number
of unknowns which have to be computed, illustrated using either the pressure,
p, or the displacement in the X-direction, u. Note that different combina-
tions of these 6 elements are used in each of the 4 schemes (so that the Linear

method would use the top-right element for u and for v (the two components
of displacement), and the top-left element for p). Top row: piecewise constant
quadrilateral (used in the linear scheme); linear triangle (used for the pressure
in the quad-tri scheme); (bi-)linear quadrilateral (used for displacement in the
linear scheme and pressure in the quad-quad and cubic-Hermite schemes). Bot-
tom row: quadratic triangle (used for displacement in the quad-tri scheme);
(bi-)quadratic quadrilateral (used for displacement in the quad-quad scheme);
cubic-Hermite quadrilateral (where the given derivatives of the unknown also
have to be computed at each node).
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Name Basis deg. for x Basis deg. for p Element Other
Linear 1 0 Quadrilateral

Quad-tri 2 1 Triangular
Quad-quad 2 1 Quadrilateral

Cubic-Hermite 3 1 Quadrilateral Also solve for
derivs of x

Table 1: Numerical finite element schemes to be compared.

2 Methods

2.1 Nonlinear elasticity

Let the region occupied by the undeformed elastic body be denoted Ω0 ⊂ R
N

(N = 2 or 3), and the corresponding region occupied by the deformed body be

denoted Ω. Given a point X ∈ Ω0, let the corresponding deformed position be

x ≡ x(X) ∈ Ω. The displacement is then given by u = x−X. The deformation

gradient is defined as F i
M = ∂xi

∂XM . The right Cauchy–Green deformation tensor

is defined as C = FTF, and the Lagrangian strain as E = 1
2
(C − I), where

I is the identity matrix. We will use two measures of stress: the 1st Piola-

Kirchhoff stress, S, which represents the force measured per unit undeformed

area acting on the deformed body, and the 2nd Piola-Kirchhoff stress, T = SF-T,

defined to represent the force measured per unit undeformed area acting on a

surface in the undeformed body [33]. We assume hyperelasticity, for which

a material-dependent strain energy function, W (E), relates stress and strain

through T MN = ∂W/∂EMN .

For incompressible materials the constraint detF = 1 has to be imposed.

This constraint is enforced using a Lagrange multiplier p(X), which plays a

similar role to the pressure in fluid flow equations. In this case, W takes the

form W (C) = W (C) − p
2
(detC − 1), where W is the material-dependent part

of the strain energy [31]. In the numerical simulations in this paper, we choose
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the Neo-Hookean strain energy [34], which, restricted to two-dimensions, is

W (C) = c (trC − 2) −
p

2
(detC− 1) , (1)

where c > 0 is a material parameter. Then T = 2cI− pC−1, and so

S = 2cFT − pF−1. (2)

The equations governing the static equilibrium of an incompressible nonlin-

ear elastic body, under body force b, are [33]

∂SMi

∂XM
+ ρ0b

i = 0, (3)

detF = 1, (4)

(where ρ0 is the density in the undeformed body), subject to the boundary

conditions

u = u∗ on ∂Ωdisp
0 , (5)

STN = s on ∂Ωtrac
0 , (6)

where u∗ is a specified displacement, s is a specified surface traction, N in

the outward-facing unit normal on the boundary of the undeformed body, and

∂Ωdisp
0 and ∂Ωtrac

0 partition the boundary of the undeformed body.

To solve this system using the finite element method, (3) and (4) are first

converted into the equivalent weak formulation, by multiplying them respec-
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tively by test functions v and q, summing, and integrating by parts, to obtain

0 =

∫

Ω0

SMi ∂vi

∂XM
dV0 −

∫

Ω0

ρ0b
ivi dV0

−

∫

∂Ωtrac

0

sivi dS0 +

∫

Ω0

q(detF− 1) dV0 ∀ v ∈ V , q ∈ Q, (7)

where V is (loosely-speaking) the set of differentiable functions on Ω0 that are

zero on ∂Ωdisp
0 , and Q is the set of square-integrable functions on Ω0. The

domain Ω0 is then discretised into a mesh comprising of nodes and (in 2D)

quadrilateral or triangular elements. Basis functions are next chosen to inter-

polate the displacement and pressure given their nodal values. v and q are then

allowed to vary only in the finite-dimensional spaces spanned by the appropri-

ate choice of basis functions, which converts (7) into a finite set of nonlinear

equations [35]. We solve this nonlinear system using a total Lagrangian ap-

proach and Newton’s method (with a simple line search in the Newton direction

where, if the computed Newton update is a, we test updates of λa for several

(of the order of ten) values of λ ∈ (0, 1] to see which update most decreases

the residual of the nonlinear system) [35]. The linear systems that arise from

use of the Newton method are solved using the restarted GMRES (Generalised

Mimimal Residual) method [36], an iterative Krylov subspace method for com-

puting the numerical solution of large non-symmetric linear systems. This was

implemented using C and C++.

2.2 Model Problems

We now describe the set of four model problems which we construct in order

to investigate the accuracy and convergence behaviour of the schemes discussed

above. Each of the model problems are specified by a definition of the body

force, b(X), and a set of boundary conditions, i.e. a definition of u∗, s, ∂Ωdisp
0
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and ∂Ωtrac
0 , and each of Model Problems 1–3 is constructed so that the solution

displacement and pressure are known analytically. All model problems are con-

structed in two dimensions taking Ω0 as the unit square, with the exception of

Model Problem 1b which is defined in 3D with Ω0 taken to be the unit cube,

and using the Neo-Hookean material law (1). The body is heterogeneous in

the second problem, and homogeneous in the others. As stated above, all model

problems except the first are motivated by the types of deformation encountered

in soft-tissue modelling. The four model problems are illustrated in Figure 3.

2.2.1 Model Problem 1: A smooth nonlinear deformation

Model Problem 1a (2D)

Let us fix the left-hand edge of the square: u∗ = 0 on X = 0, and choose as

the solution deformation

x =







X + aX2/2

Y (1 + aX)−1






, (8)

for some a > 0, representing stretching in the X-direction and irregular com-

pression in the Y -direction. This deformation is illustrated in Figure 3(a). Now,

F =







1 + aX 0

−Y a(1 + aX)−2 (1 + aX)−1






,

has determinant one as required. Choosing p = 2c, and defining λ = 1 + aX ,

the 1st Piola-Kirchhoff stress is then, using (2),

S = 2c







λ − λ−1 −Y aλ−2

−Y aλ−2 λ−1 − λ






.

We can then calculate the body force and surface tractions on the remaining
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(a) (b)

(c) (d)

Figure 3: Deformed shapes for each of the model problems (solid lines), with
undeformed unit square (dashed lines). (a): Model Problem 1a, where the
body is stretched in the X-direction and compressed in the Y -direction (more
stretching/compression as X increases). Model Problem 1b is a 3D variation
on this. (b): Model Problem 2, where the body has discontinuous material
properties and the solution is one shear with gradient −α in X ≤ 0.5, and
a second shear with gradient −β in X > 0.5. (c): Model Problem 3, where
the solution is near zero displacement for X < 0.5, a sharp compression in
the X-direction (hence elongation in the Y -direction) around X = 0.5, and a
translation inwards for X > 0.5. (d): Model Problem 4, where the bottom
surface is fixed, and a discontinuous force is applied to the top surface: zero
traction except in the region {X ∈ [0.25, 0.75], Y = 1}. Note that in Model
Problems 1–3, only the left-hand edge is fixed, surface tractions are applied to
the remaining three edges.
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edges required to produce the deformation (8), using (3) and (6):

b =
−2c

ρ0







a

2Y a2λ−3






,

s =



























































































2c







0

λ − λ−1






if Y = 0,

2c







−aλ−2

λ−1 − λ






if Y = 1,

2c







λ − λ−1

−Y aλ−2






if X = 1.

Model Problem 1b (3D)

For a 3D variation on Model Problem 1a, let Ω0 be the unit cube, and let

us define

x =













X + aX2/2

Y + bY 2/2

Z(1 + aX)−1(1 + bY )−1













as the solution deformation, for some parameters a and b. We let the solution

pressure be p = 2c, and specify displacement boundary conditions on the surface

X = 0, with traction boundary conditions on the remaining five surfaces. It

is straightforward to determine the body force and surface tractions that are

required to produce this deformation, and they are given for reference in the

Appendix.
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2.2.2 Model Problem 2: Mixed shears and discontinuous material

properties

As previously mentioned, a model of the breast can be comprised of vari-

ous tissues—typically fat and fibroglandular, but skin and tumour are also

possible—each with different material properties. Given a mesh created us-

ing the breast geometry, it is natural to specify a tissue type to each element.

Motivated by this, we now suppose the body has discontinuous material prop-

erties, specifically c in (1) satisfying c = c1 for X ≤ 0.5 and c = c2 for X > 0.5.

We choose a problem with a known solution and continuous data, i.e. continuous

body force and surface traction. We fix the left-hand edge (u∗ = 0 on X = 0),

and pick a solution which is a mixture of two shears, with the bottom surface

having gradient −α for X ≤ 0.5, and gradient −β for X > 0.5:

x =

























































X

Y − αX






if X ≤ 0.5,







X

Y − βX + β−α
2






if X > 0.5,

as shown in Figure 3(b). The deformation gradient and 1st Piola-Kirchhoff

stress can then be computed to be

F =

























































1 0

0 1 − α






if X ≤ 0.5,







1 0

0 1 − β






if X > 0.5,

(9)
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and

S =

























































2c1 − p −2c1α

−p α 2c1 − p






if X ≤ 0.5,







2c2 − p −2c2β

−p β 2c2 − p






if X > 0.5.

We choose p(X) = 2c1 for X ≤ 0.5. The surface tractions on the top and

bottom surface are then

s =







± 2c1α

0






on Y = 0, 1; X ≤ 0.5, (10)

(the positive choice for Y = 0 and negative choice for Y = 1). We need to choose

p in X > 0.5, and β, so that the surface tractions are constant on Y = 0, 1 for

all X ; this requires p = 2c2 in X > 0.5 and β = c1α/c2. Then S is constant in

space (not just piecewise constant), so (3) is satisfied with zero body force, and

the surface tractions given by (10) hold for all X . Finally, the surface traction

on the right-hand edge is

s =







0

−2c1α






on X = 1.

Note that for this problem, x is continuous but has a discontinuous derivative,

p is discontinuous, but S and s are continuous.
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2.2.3 Model Problem 3: Steep changes in x

The deformation of electrically-activated cardiac tissue is forced by a term which

is added to the 2nd Piola-Kirchhoff stress:

Tcardiac = TaffT,

where f(X) is the unit direction of the cardiac fibre passing through X, and

Ta is the active tension, which depends on physiological parameters such as

intracellular calcium ion concentration, and becomes non-zero when the cell is

excited. The deformation of the tissue can be modelled assuming quasi-steady

elasticity [37] and therefore using (3), and, at any particular time, the solution

deformation can have localised regions of compression, as explained in Section 1.

This means that Tcardiac (and the body force that Tcardiac is equivalent to) have

high spatial gradients. In the third model problem, we choose a deformation

which changes steeply in one region. Let µ(X) = d
2

(

tanh
(

k
(

X − 1
2

))

+ 1
)

, for

some large k and d > 0, which satisfies µ ≈ 0 for X < 0.5 and µ ≈ d for X > 0.5,

with a sharp increase at X ≈ 0.5. Let us choose as the solution

x =







X − µ

Y
1−µ′






, p = 2c,

as shown in Figure 3(c), which, for suitably large k, represents very little dis-

placement for X < 0.5, a sharp compression in the X-direction and elonga-

tion in the Y -direction around X ≈ 0.5, and only a translation for X > 0.5.

We choose corresponding displacement boundary conditions at X = 0: u∗ =
(

−µ(0), Y − Y/(1 − µ′(0))

)T

, which is effectively u∗ = 0 on X = 0 if k is

large. Defining λ = 1 − µ′, the deformation gradient and 1st Piola-Kirchhoff
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stress are then

F =







λ 0

Y µ′′λ−2 λ−1






, S = 2c







λ − λ−1 Y µ′′λ−2

Y µ′′λ−2 λ−1 − λ






,

and again F has unit determinant as required. The required body force and

surface tractions are then, using (3) and (6):

b =
2c

ρ0







µ′′

−Y µ′′′λ−2 − 2Y (µ′′)2λ−3






,

s =



























































































2c







0

λ − λ−1






if Y = 0,

2c







µ′′λ−2

λ−1 − λ






if Y = 1,

2c







λ − λ−1

Y µ′′(1)λ(1)−2






if X = 1.

2.2.4 Model Problem 4: Discontinuous applied tractions

Our fourth model problem is motivated by the modelling of mammography,

where the breast is very heavily compressed by two plates with normals in the

direction of the X-ray beam, in order to spread out the tissue. The resultant

deformation is very large, hindering easy comparison with MR images (for exam-

ple), and software which could predict the deformation would be an important

aid in diagnosis. Since the part of the skin that will be in contact with the

compression plates is not known in advance, the problem cannot be stated sim-

ply as an elasticity problem with displacement or traction boundary conditions.
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Instead, it has to be stated as a constrained elasticity problem. Such problems

are known as contact problems, and can be solved using an energy minimisa-

tion with inequality constraints procedure, such as the Augmented Lagrangian

method [38], used to model breast-mammographic deformation in [35]. Here,

we consider a simplified situation where we do apply a known surface traction.

We take this traction to be discontinuous, since the deformation of the breast

surface in mammography is discontinuous at the edge of the compression plate,

and STN must also be discontinuous there. Unfortunately it is extremely diffi-

cult to construct a deformation which is incompressible and has a discontinuity

in the derivative at one (non-corner) point on the boundary, and therefore we

cannot start from a known solution in this model problem. Instead, we choose

to fix the bottom surface (u∗ = 0 on Y = 0), apply zero body force (b = 0),

and apply the surface traction

s =

























































0

−3c






if 0.25 ≤ X ≤ 0.75 and Y = 1







0

0






otherwise

(11)

The solution of this problem is displayed in Figure 3(d). (Note that here, unlike

Figures 3(a)-(c), a numerically-computed solution is plotted).

3 Results

For each of the first three model problems, in which the analytic solution is

known, we choose a point X∗ and measure the error

e = ‖xcomputed(X∗) − xexact(X∗)‖2,
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for each of the different numerical schemes. For schemes requiring quadrilateral

meshes, we discretise the unit square into N by N uniform square elements (or

uniform cubes in 3D). In this case the spatial stepsize is h = 1/N . For the

scheme requiring a triangular mesh, we discretise the unit square into N by N

squares and then subdivide each square into 2 triangles (or 6 tetrahedra in 3D).

Therefore, we define the spatial stepsize in this case to also be h = 1/N . We

then plot the error against h.

3.1 Model Problem 1a

For the first model problem, we choose a = 0.2 and X∗ = (1, 1). The error

against h when solving this problem using each of the different schemes is plotted

in Figure 4.

In this model problem the solution displacement and pressures are smooth

without sharp changes, and therefore we would expect smooth convergence as

h decreases, at the rate determined by the degree of basis function used. This

behaviour is indeed exhibited, with log(e) varying linearly with log(h) for each

scheme, and the gradient approximately equal to 2 for the linear scheme, 3 for

the quadratic schemes, and very near 4 for the cubic-Hermite scheme, i.e. con-

vergence is close to O(h2), O(h3) and O(h4) respectively, which is the behaviour

of these schemes predicted for linear problems by error analysis. We see also

that the choice of element when using a quadratic scheme has a big impact—

the two quadratic schemes converge at the same rate but the quad-quad scheme

performs better than the quad-tri method, being an order of magnitude more

accurate at comparable stepsizes. The cubic-Hermite scheme, which has the

same number of degrees of freedom for a given stepsize as the quadratic scheme,

performs even better, providing extremely accurate solutions even when the

number of nodes is small.
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Figure 4: Results with Model Problem 1a: error plotted against spatial stepsize,
using the: linear method (solid lines with stars); quad-tri (dotted lines with
triangles); quad-quad method (dashed lines with diamonds); and cubic-Hermite

method (dot-dashed lines with squares).

This first model problem verifies that the implementations of the four differ-

ent numerical methods are correct, and illustrates the ‘best-case’ convergence

behaviour, and will thus enable us to quantitatively compare error magnitudes

and rates of convergence in the other, biologically-motivated, model problems.

3.2 Model Problem 1b

For this model problem, we choose a = b = 0.1 and X∗ = (1, 1, 1). The error

against h using each of the different schemes is plotted in Figure 5. We see

that the linear, quad-tri and quad-quad schemes2 perform similarly to in two-

dimensions, with similar rates of convergence to 2D, and with the magnitude of

the error decreasing significantly from the linear scheme to the quad-tri scheme,

and from quad-tri to quad-quad. In 3D, the error using the quad-quad scheme

is actually two order of magnitudes smaller than the quad-tri error using the

2The latter two methods should perhaps now be referred to as the quad-tet and quad-hex

schemes, as in 3D they are quadratic bases on tetrahedra and hexahedra, but for simplicity
we retain the 2D names.
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same spatial stepsize, compared to one order of magnitude in 2D. However, the

cubic-Hermite scheme performs relatively badly on this problem. Here, the con-

vergence rate is approximately the same as the lower order quadratic schemes,

which may be explained by the fact that the cubic-Hermite scheme, similarly

to the quadratic methods, only uses a linear approximation for pressure. How-

ever, it is not clear why the magnitude of the error is significantly greater than

with the other methods, and requires further investigation, which we leave for

future work. Although this poor performance is surprising, cubic hermite basis

functions have not been employed as often as conventional finite elements, and

have received correspondingly less analytical attention.

Unfortunately, these results therefore do not allow us to state that the fol-

lowing conclusions regarding the four schemes on Model Problems 2–4 can be

assumed to hold in 3D as well as 2D, and further investigation will need to take

place. However, these 3D results do at least suggest that the relative behaviour

of the linear, quad-tri and quad-quad schemes is similar in 3D to 2D, and that,

if the cubic-Hermite method performs poorly on a 2D model problem, it will

perform poorly on a 3D problem.

We also use this 3D model problem to consider the computational cost of

each method. Note that since different programming languages, programming

styles, libraries and machines were used when implementing these models and

running the simulations, it would be uninformative to simply compare compu-

tation times. Now, in each Newton iteration, two tasks take up the majority

of the computational work: assembling a Jacobian matrix, and solving a linear

system for the update vector (see [35] for more details). We only look at the

work done in assembling the Jacobian, which generally dominates the work done

in solving the linear systems for the simulations in this paper. This involves four

nested loops: a loop over all elements; a loop over quadrature points; and two
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Figure 5: Results with Model Problem 1b (3D): error plotted against spatial
stepsize, using the: linear method (solid lines with stars); quad-tri (dotted lines
with triangles); quad-quad method (dashed lines with diamonds); and cubic-

Hermite method (dot-dashed lines with squares).

loops over the unknowns per element (in order to fill in a 2D array of size Nu

by Nu, where Nu is the number of unknowns per element). The work done

within these loops is approximately equal between the four methods. There-

fore, we can approximate the dominating component of the computational work

for each method by Wc = kMKN2
u, where M is the total number of elements,

K the total number of quadrature points per element, and k is a constant. To

determine suitable values of K, we have calculated the error using this model

problem with h = 1/4, using a selection of values in the number of quadrature

points in each direction, the results of which are given in Table 2. The table

clearly shows that 2 quadrature points in each direction (⇒ K = 8) is the most

suitable trade-off between speed and accuracy for the linear method, whereas 3

(⇒ K = 27) is the best choice for the other methods (despite cubic-Hermite ba-

sis functions being higher-order than quadratic bases). Also, Nu = 3×8+1 = 25

for the linear method (in 3D), Nu = 34 for the quad-tri method, Nu = 68 for

the quad-quad method, and Nu = 200 for the cubic-Hermite method. Putting
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Method Number of quadrature points in each direction
1 2 3 4

Linear fail 3.1618×10−4 3.1612×10−4

Quad-tri fail 2.3370×10−3 4.0321×10−5 4.0320×10−5

Quad-quad fail fail 3.7986×10−7 3.7968×10−7

Cubic-Hermite fail 6.3710×10−3 6.3706×10−3

Table 2: Errors in Model Problem 1b for each of the four numerical schemes
using various numbers of quadrature points (in each direction) for the numerical
integration. Here ‘fail’ indicates failure of the method to converge.

all this together, and defining k2 = 200k, we obtain

Wc =



































k2M for the linear scheme,

4.59 k2M for the quad-tri scheme,

9.18 k2M for the quad-quad scheme,

27 k2M for the cubic-Hermite scheme.

This information can be used together with a convergence plot to determine

the best choice of method for a particular problem. For example, the quad-

quad method is certainly the best choice of method for Model Problem 1b. For

example, linearly extrapolating the linear results suggest that a spatial stepsize

approximately of h = 0.01 (corresponding to M = 106) would be required for

the linear method to give as accurate results as the quad-quad method with

h = 0.5 (corresponding to M = 8 hexahedral elements), which translates to Wc

being approximately 105 times greater for the linear method than the quad-quad

method. Similarly, the quad-tri method can be shown to be far less efficient than

the quad-quad method on this problem.

3.3 Model Problem 2

For Model Problem 2, we choose α = 0.1, c1/c2 = 5 (which implies that β = 0.5),

and X∗ = (1, 1). The error in this problem against h is given in Figures 6(a)
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and (b).

In this problem we had discontinuous material parameters but a smooth

body force and surface traction, which resulted in a solution with a discontin-

uous derivative of displacement, and discontinuous pressure. For the schemes

compared, only the linear scheme allows a discontinuous solution pressure, since

pressure is interpolated using element-wise rather than node-wise values. In fact,

the exact solution is within the space spanned by the basis functions in the lin-

ear case, and therefore the finite element solution should be the exact solution

(to within machine precision), and it can be seen that the linear scheme does

indeed find the exact solution for all stepsizes h. (This, of course, requires that

N be even, so that no element crosses the material interface). By contrast, the

quad-tri, quad-quad and cubic-Hermite methods all perform extremely poorly

compared to the linear method, exhibiting large errors and low rates of conver-

gence. Here, the gradient of log(e) against log(h) is approximately 1 for each of

the quadratic and cubic-Hermite schemes, so convergence is only O(h). In fact,

each of these three schemes perform almost identically on this problem. We

see that the benefits of using a higher-order method have been lost due to the

scheme not being able to accurately approximate p. Note, however, that while

the cubic-Hermite scheme might have been expected to perform worse than

the quadratic schemes on this problem (since the cubic-Hermite scheme also

enforces continuity in the derivative of the displacement), it actually provides

marginally more accurate solutions than the quadratic schemes.

For illustrative purposes, the deformed nodal locations when the quad-tri

method is used with h = 1/16 are plotted in Figure 7, which clearly displays

significant error at the material interface, despite a reasonably fine mesh.
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Figure 6: Results with Model Problem 2, error plotted against spatial stepsize.
The two figures plot the same results except the linear method is not plotted
in (b). Methods plotted are: the linear method (solid lines with stars); quad-tri

(dotted lines with triangles); quad-quad method (dashed lines with diamonds);
and cubic-Hermite method (dot-dashed lines with squares).
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Figure 7: The location of the deformed nodes when the quad-tri method is used
on Model Problem 2 with h = 1/16. (Note that internal nodes are shown as
well as vertices, which is why there are 332 nodes rather than 172).
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3.4 Model Problem 3

For this model problem, we choose d = 0.05, k = 10, and X∗ = (0.5, 1) (i.e. the

top of the deforming area in Figure 3(c)). The error against h, and against the

number of degrees of freedom in the scheme, are plotted in Figures 8(a) and (b)

respectively.

Since the data in this problem—the material parameters, body force and

surface tractions—are infinitely differentiable we might expect the convergence

properties of the four schemes to be similar to that displayed for Model Prob-

lem 1a for small enough stepsizes (assuming exact arithmetic). However, for the

range of stepsizes chosen (which are ‘natural’ choices of this size of domain), we

see that the clear, well-defined behaviour of Model Problem 1a is not exhibited.

The gradient of the linear scheme does settle down to near 2 for the smaller

stepsizes (i.e. O(h) convergence), as in Model Problem 1a. By contrast, the

gradient of the quad-tri method, using the last four grid-points, is actually 3.95,

i.e. near O(h4) convergence, strangely much faster convergence than would be

expected. However, the quad-quad method appears to undergo numerical lock-

ing, with the final two points plotted showing barely-decreased error, despite

the stepsize halving and quadrupling. It is not clear why this is the case. (Note

that it has been verified that the Newton solver has fully converged to a solu-

tion which satisfies the nonlinear system to high very accuracy in this (and all

other) cases). The cubic-Hermite method follows a similar path to the quad-tri

method.

Overall, we see that there is not a huge difference between the four methods

for this model problem, and certainly not the clear pronounced difference ob-

served in Model Problem 1a. Figure 8(b) suggests that the choice of method is

relatively unimportant when there is sharply-varying data that is resolved using

the range of stepsizes we have chosen: for a given number of degrees of freedom,
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Figure 8: Results with Model Problem 3, error plotted against (a) spatial step-
size and (b) number of degrees of freedom. Methods plotted are: the linear

method (solid lines with stars); quad-tri (dotted lines with triangles); quad-quad

method (dashed lines with diamonds); and cubic-Hermite method (dot-dashed
lines with squares).

the difference in the error between the four methods varies only by about one

order of magnitude.

The results for this model problem indicate that the theoretical asymptotic

convergence rates of finite element schemes should not be näıvely expected when

modelling cardiac deformation. We leave for future work finite element conver-

gence analysis of contracting cardiac tissue on realistic domains and/or with

experimentally-derived parameters values.

3.5 Model Problem 4

For the final model problem, we do not have an exact error with which to

quantify numerical behaviour and must choose an alternative approach. One

quantity which can be measured, however, is the stress in the normal direction

27



0 0.2 0.4 0.6 0.8 1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

X

S
22

(X
,1

)/
c

0 0.2 0.4 0.6 0.8 1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

X

S
22

(X
,1

)/
c

(a) (b)

Figure 9: Results with Model Problem 4, the normal stress (scaled by c) on the
top surface of the body. (a) The linear method (solid line) and quad-tri method
(dashed line). (b) The quad-quad method (solid line) and cubic-Hermite method
(dashed line). The dotted lines are just the lines y = −3.

on the top surface, NTSTN = S22. Using (6) and (11), this should satisfy

S22(X, 1) =























−3c if 0.25 ≤ X ≤ 0.75 and Y = 1,

0 otherwise.

(12)

Figure 9 plots S22/c on the top surface for each of the schemes, using h = 1/32.

Note that for the linear and quadratic schemes, the derivative of the numerical

solution displacement is discontinuous at the nodes, and therefore F (and thus

S) cannot be evaluated there. Instead, S22 is evaluated at the mid-points of each

top-surface boundary element. The cubic-Hermite method, however, provides

the nodal values of the first derivatives of the displacement, so for this method

the nodal values of S22 are plotted.

The figure shows that solutions obtained using the different schemes are

qualitatively different. For 0.25 ≤ X ≤ 0.75, the stresses oscillate around the

true value for the quad-quad and cubic-Hermite methods, but they do not for

the linear and quad-tri methods. In most of this region, the error for the

quad-tri method is significantly smaller than for the linear method. The cubic-
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Hermite scheme is seen to perform relatively poorly on this problem, especially

in comparison with the quadratic methods (which have the same number of

degrees of freedom as the cubic-Hermite method), with large oscillations around

the correct stress. This can be attributed to the fact that the cubic-Hermite

method enforces continuity of the derivative of x, whereas the true solution has

a discontinuous derivative of x on the top surface.

In Figure 10(a), we also plot the value of y(0.5, 1) against the stepsize h for

the four schemes, in order to qualitatively compare the rates of convergence.

Although all methods converge to approximately the same value, we see that

the cubic-Hermite method provides the least accurate solution for some of the

larger stepsizes (in complete contrast to the results for Model Problem 1a). For

h = 1/16, the errors for the linear and cubic-Hermite schemes are approxi-

mately equal, and greater than the errors for the two quadratic schemes, also

approximately equal. Finally, in Figure 10(b), we quantify the errors in S22.

Let the average error in S22/c be defined as

eS =
1

Mc

∑

X

|S22(X) − S22
exact(X)|,

where S22
exact is given by the right-hand side of (12) and M is the number of

evaluation points. Note that eS is dominated by errors in S22 near the dis-

continuities (X = 0.25 and X = 0.75), and due to the difference in how the

evaluation points are chosen for the cubic-Hermite method compared to the

other methods (as described at the beginning of this section), it would not be

a fair comparison to compare this error for the cubic-Hermite scheme against

the others. We therefore only plot eS for the linear and quadratic schemes.

Figure 10(b) shows that the quad-quad method performs significantly better

than the quad-tri method, which performs significantly better than the linear

method, similarly to the first model problem.
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Figure 10: Results with Model Problem 4: (a) y(0.5, 1) plotted against spatial
stepsize and (b) the average error in S22/c against stepsize. Methods plotted are:
the linear method (solid lines with stars); quad-tri (dotted lines with triangles);
quad-quad method (dashed lines with diamonds); and cubic-Hermite method
(dot-dashed lines with squares) (not plotted in (b)).

4 Discussion

We have performed a study of the numerical behaviour of four commonly-used

finite element schemes on four model problems, three of which were constructed

to replicate deformations which occur in soft-tissue modelling of the heart and

breast. Overall, we have shown that in soft-tissue modelling, it is important

to take the expected regularity of the solution into account when choosing a

numerical scheme.

In the first model problem, the best-case convergence behaviour of the

schemes was illustrated, as the material parameters, body force and surface trac-

tions were all smooth, and the convergence rates were close to that predicted for

linear problems—O(h2) for the linear method, O(h3) for the quadratic meth-

ods, and O(h4) for the cubic-Hermite method. The quad-quad method was also

found to be an order of magnitude more accurate than the quad-tri method. A

3D version of this model problem was also studied, for which the linear, quad-

tri and quad-quad methods performed similarly to 2D, but the cubic-Hermite

method performed relatively poorly. We have also studied the computational
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cost of each method, determining that the ratio of computational work per el-

ement required to assemble the Jacobian matrix (which dominates the total

computational cost) is approximately 1:5:10:30 (linear to quad-tri to quad-quad

to cubic-Hermite).

We have shown that if material parameters becomes discontinuous, as is the

case when modelling breast deformation, where different internal tissues (for

example fat and fibroglandular tissue) have different material properties, the

solution pressure is discontinuous (although the stresses may not be), and the

quadratic and cubic-Hermite methods all perform poorly and only display O(h)

convergence, since they enforce continuity of the pressure. However, despite the

cubic-Hermite method also incorrectly enforcing continuity of the derivative of

displacement, it does not perform significantly worse than the quadratic meth-

ods. For the particular model problem set up, the linear method, which allowed

a discontinuous pressure, was able to find the true solution to within machine

precision.

An alternative FE method that may be appropriate under these conditions

is the discontinuous Galerkin FE method (DGFEM). This FE method, whose

development is much less mature than the more common continuous Galerkin

FE method, allows discontinuities in the solution across element boundaries.

Recent work that has applied DGFEM to nearly incompressible linear elastic-

ity [39] and nearly incompressible nonlinear elasticity [40] has demonstrated no

evidence of locking for a linear approximation to the displacement on each el-

ement. As such, future work should investigate the applicability of DGFEM

to fully incompressible nonlinear elasticity. Another FE method which may be

effective in soft tissue models with material interfaces and discontinuous pres-

sures, is the Extended FE method (XFEM), which has been developed to handle

solution discontinuities without the need for local mesh refinement [41].
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A related problem is Model Problem 4, where a discontinuous surface trac-

tion was applied—motivated by modelling the compression of the breast during

mammography—for which the solution has a discontinuous first derivative of dis-

placement but continuous pressure. In this problem the regularity of the finite

element solutions in the linear and quadratic schemes matched the regularity

of the solution, but the cubic-Hermite method incorrectly enforces continuity

of the derivative of position. The cubic-Hermite method still found reasonable

approximations to the solution, but it was not as accurate as the quadratic

schemes.

Finally, we also considered a model problem in which the solution and body

force, although smooth, varied sharply across the domain, motivated by the

deformation of cardiac tissue. The clear, distinct, best-case convergence be-

haviour of the schemes on Model Problem 1a was not observed; instead the four

schemes all performed loosely the same, especially when the number of degrees

of freedom was taken into account.

Appendix

For the three-dimensional model problem, Model Problem 1b, we let Ω0 be the

unit cube, and define

x =













X + aX2/2

Y + bY 2/2

Z(1 + aX)−1(1 + bY )−1












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as the deformation in 3D, for some parameters a and b. Defining λ1 = 1 + aX

and λ2 = 1 + bY , the deformation gradient is given by

F =













λ1 0 0

0 λ2 0

−aZλ−2
1 λ−1

2 −bZλ−1
1 λ−2

2 λ−1
1 λ−1

2













,

which has inverse

F−1 =













λ−1
1 0 0

0 λ−1
2 0

aZλ−2
1 bZλ−2

2 λ1λ2













.

Using the same Neo-Hookeon strain energy (1) (except with (trC−3) instead

of (trC− 2), although this has no effect on the stresses), (2) still holds, and so,

letting p = 2c again, we have

S = 2c













λ1 − λ−1
1 0 −aZλ−2

1 λ−1
2

0 λ2 − λ−1
2 −bZλ−1

1 λ−2
2

−aZλ−2
1 −bZλ−2

2 λ−1
1 λ−1

2 − λ1λ2













.

Assuming we apply displacement boundary conditions on the surface X = 0

and traction boundary conditions on the remaining five surfaces, the problem

to be solved therefore involves specifying body force

b = −
2c

ρ0













a

b

2Zλ−1
1 λ−1

2 (a2λ−2
1 + b2λ−2

2 )













,
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and applying boundary conditions

x =

(

0, Y + bY 2/2, Zλ−1
2

)T

on X = 0,

s = STN = 2c

(

λ1 − λ−1
1 , 0, −aZλ−2

1 λ−1
2

)T

on X = 1,

s = STN = 2c

(

0, 0, bZλ−1
1

)T

on Y = 0,

s = STN = 2c

(

0, λ2 − λ−1
2 , −bZλ−1

1 λ−2
2

)T

on Y = 1,

s = STN = 2c

(

0, 0, λ1λ2 − λ−1
1 λ−1

2

) T

on Z = 0,

s = STN = 2c

(

−aλ−2
1 , −bλ−2

2 , λ−1
1 λ−1

2 − λ1λ2

) T

on Z = 1.
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