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Abstract Cellular senescence is a stable proliferation

arrest associated with an altered secretory pathway, the

senescence-associated secretory phenotype. However,

cellular senescence is initiated by diverse molecular

triggers, such as activated oncogenes and shortened

telomeres, and is associated with varied and complex

physiological endpoints, such as tumor suppression and

tissue aging. The extent to which distinct triggers acti-

vate divergent modes of senescence that might be asso-

ciated with different physiological endpoints is largely

unknown. To begin to address this, we performed gene

expression profiling to compare the senescence pro-

grams associated with two different modes of senes-

cence, oncogene-induced senescence (OIS) and replica-

tive senescence (RS [in part caused by shortened telo-

meres]). While both OIS and RS are associated with

many common changes in gene expression compared to

control proliferating cells, they also exhibit substantial

differences. These results are discussed in light of po-

tential physiological consequences, tumor suppression

and aging.

Keywords Replicative senescence . Oncogene-induced

senescence . Gene expression . Cancer . Aging

Introduction

Cell senescence is a state of stable proliferation arrest that

normal cells can undergo in response to excessive rounds

of cell division (Hayflick and Moorhead 1961) and other

diverse stimuli (Adams 2009; Kuilman et al. 2010). In

this manner, senescence restricts the proliferative capacity

of impaired or damaged cells, as well as normal cells.

Several well-characterized triggers of senescence have

been identified including short telomeres (linked to ex-

cess rounds of cell division (replicative senescence (RS);

Hayflick and Moorhead 1961; Bodnar et al. 1998), acti-

vated oncogenes (oncogene-induced senescence (OIS);

Serrano et al. 1997), and genotoxic and oxidative stress

(Saretzki and von Zglinicki 2002; d'Adda di Fagagna

2008). Upon exposure to these triggers, cells engage a

coordinated network of effector pathways. The p53 and

pRB pathways are the master regulators of senescence

and interact extensively with additional effector processes

including DNA damage signalling, regulated autophagy,

and profound changes to chromatin structure (d'Adda di

Fagagna 2008; Narita et al. 2003; Young et al. 2009).

Ultimately, these effectors converge on two key
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phenotypes of senescence, a stable proliferation arrest

and an altered secretory pathway, the senescence-

associated secretory phenotype (SASP; Krtolica et al.

2001; Coppe et al. 2008; Kuilman et al. 2008; Acosta

et al. 2008).

Functionally, both RS and OIS serve as potent tumor

suppression mechanisms (Michaloglou et al. 2005;

Braig et al. 2005; Collado et al. 2005; Chen et al.

2005; Cosme-Blanco et al. 2007; Feldser and Greider

2007). Both proliferation arrest and SASP are thought to

act in concert to mediate tumor suppression. The prolif-

eration arrest restrains tumor growth, and the SASP

recruits innate immune cells to clear the damaged pre-

malignant cells (Xue et al. 2007; Kang et al. 2011). In

addition, cell senescence contributes to proper wound

healing (Jun and Lau 2010; Krizhanovsky et al. 2008).

However, senescence has also been implicated in the

promotion of aging (Baker et al. 2011; Krtolica et al.

2001).

In sum, senescence is a complex process activated by

diverse triggers in association with varied physiological

end points. Conceivably, distinct triggers activate differ-

ent modes of cell senescence. To investigate this, we

performed gene expression profiling to compare two

different modes of senescence, OIS and RS, in the same

cell type and under, otherwise, identical conditions.

Materials and methods

Cell culture

IMR90 primary human diploid fibroblasts were obtain-

ed from the Coriell Institute (Camden, NJ, USA). The

cells were cultured in Dulbecco's Modified Eagle

Medium (DMEM) supplementedwith 20% fetal bovine

serum, 2 mM L-glutamine, 25 U/ml penicillin, and

25 μg/ml streptomycin. Cells were maintained in a

37 °C, 5 % CO2, 3 % O2 humidified incubator. IMR90

cells were subjected to serial passage approximately

every 2 to 3 days.

Cumulative population doublings were calculated

using the following equation: ([log(number of cells

counted) − log(number of cells plated)]/log(2)). The

cells were assayed routinely for markers of senescence

(e.g., SA β-gal activity, decreased BrdU incorporation,

p16INK4a induction, SAHF formation). Cells were

considered replicative senescent when no proliferation

was observed for a 2-week period following the final

passage and the cells displayed the senescence hall-

marks listed above. In the case of the RS model, cells

were compared at PD28 (proliferating) and PD90 (RS).

Phoenix–Ampho embryonic kidney cells (SD-3443)

were obtained from the American Type Culture

Collection (Manassas, VA, USA). The cells were cul-

tured in DMEM supplemented with 10 % fetal bovine

serum, 2 mM L-glutamine, 25 U/ml penicillin, and

25 μg/ml streptomycin. Cells were maintained in a

37 °C, 5 % CO2 humidified incubator.

Expression vectors

pBABE-puro and pBABE-puro-H-RAS-V12 (H-

RASG12V) retroviral expression vectors were obtained

as gifts from Robert Weinberg (Massachusetts Institute

of Technology).

Retroviral production and infection

Control and OIS cells were produced by retroviral in-

fection of IMR90 cells with either pBABE-puro or

pBABE-puro-H-RAS-V12. Briefly, Phoenix–Ampho

cells were transfected with either pBABE-puro or

pBABE-puro-H-RAS-V12 plasmids using the calcium

phosphate transfection method. Forty-eight hours after

transfection, viral supernatants were collected from the

Phoenix cells, passed through a 0.45-μm-syringe filter,

and applied to IMR90 cells that were pre-treated for 2 h

with 8 μg/ml polybrene. The IMR90 cells were

incubated for 24 h to facilitate infection. Typically,

two sequential rounds of infection were performed.

Following the second 24-h incubation, the viral super-

natants were removed from the IMR90 cells and re-

placed with growth medium containing 1 μg/ml puro-

mycin in order to select for positively infected cells. In

the OIS model, infections were performed at PD <30.

Senescence-associated β-galactosidase assay

Cells were rinsed once with PBS, covered with freshly

prepared fixative solution (1X PBS+2% formaldehyde,

0.2 % glutaraldehyde), and subjected to fixation for

5 min at room temperature. The cells were washed twice

with PBS, covered with freshly prepared staining solu-

tion (40 mM Na2HPO4 pH 6, 150 mM NaCl, 2 mM

MgCl2, 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, 1 mg/ml

X-gal (in DMSO)), and incubated 12–16 h at 37 °C in a

non-CO2 incubator. The cells were then washed twice
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with PBS, washed twice with dH2O, subjected to drying

at room temperature, and imaged using bright field

microscopy.

Cell lysis

The dishes (100 mm) of cells were washed once with

PBS, aspirated, and scraped into 300–500 μl of hot 1X

sample buffer (62.5 mM Tris–HCl pH 6.8, 2 % SDS,

10 % glycerol, 0.1 M DTT, 0.01 % bromophenol blue).

The whole cell lysates were collected in microcentrifuge

tubes, boiled for 4 min, and homogenized by vigorous

vortexing. Lysates were subjected to centrifugation for

5 min at 12,000xg, transferred to fresh microcentrifuge

tubes, snap frozen in dry ice/ethanol, and stored at

−80 °C. The lysates were quantified using the

Bradford assay.

Immunoblotting

Whole cell protein lysates were fractionated by SDS-

PAGE, immobilized to PVDF membranes, and subject-

ed to immunoblotting utilizing standard methods. The

RAS (610001) and p16INK4a (51-1325GR) antibodies

were purchased from BD Biosciences. Lamin A/C

(2032) and GAPDH (2118) antibodies were purchased

from Cell Signaling Technology. Lamin B1 (ab16048)

and p21WAF1 (ab7960) antibodies were purchased

from Abcam. The cyclin A (H-432) antibody was pur-

chased from Santa Cruz Biotechnology.

RNA isolation and analysis

Total RNA was isolated using the RNeasy Mini Kit

(Qiagen, 74104) according to the manufacturer’s in-

structions and included the optional DNase I digestion

step. Purified RNA samples were quantified using the

NanoVue Plus spectrophotometer (GE Healthcare),

assessed for quality using the RNA 6000 Nano Kit and

2100 Bioanalyzer (Agilent), and stored at −80 °C.

Microarrays and gene expression analysis

Starting with 50 ng total RNA for each sample, double-

stranded cDNAwas synthesized using the Ovation Pico

WTA System (NuGEN Technologies, #3300), purified

with Agencourt RNAClean beads (Beckman Coulter),

and subjected to SPIA amplification to produce single-

stranded cDNA. The cDNA was again purified, SPIA-

amplified, subjected to fragmentation, and biotin labeled

using the Encore Biotin Module kit (NuGEN

Technologies, #4200). The fragmented, biotinylated

cDNA was then hybridized to Affymetrix GeneChip

Human Genome U133 Plus 2.0 arrays, then stained

and scanned with the Affymetrix GeneChip Scanner

3000.

The microarray data were analyzed using the

Bioconductor software package. Each array was sub-

jected to background correction and normalization by

the GC Robust Multi-array Average (GCRMA)method.

Pairwise comparisons were made between the prolifer-

ating and RS arrays and also between the control and

OIS arrays. Average expression was calculated as the

geometric mean of the absolute expression level (equiv-

alent to the unlogged mean of the log-normalized ex-

pression values produced by the GCRMA method). T

tests were performed on the log-scale expression values

to determine statistical significance, and the genes were

considered differentially expressed if the fold difference

of expression between the senescent and proliferating

arrays was greater than 1.5-fold (or less than −1.5-fold)

with a BH-FDR-adjusted p value lower than 0.05.

Results

We set out to compare RS and OIS by gene expression

profiling. To this end, RS IMR90 fibroblasts were gen-

erated by passaging the cells in culture until they entered

a stable proliferation arrest (Supplementary Figure 1a).

As well as being proliferation arrested, these cells were

judged senescent, compared to control proliferating

cells, by a large flat vacuolated morphology, expression

of senescence-associated β-galactosidase (SA β-gal;

Dimri et al. 1995; Supplementary Figure 1b), downreg-

ulation of lamin B1 (Freund et al. 2012; Shimi et al.

2011), downregulation of cell cycle gene cyclin A

(Riabowol 1992), and upregulation of cell cycle arrest

genes, p21 and p16 (Fig. 1c; Noda et al. 1994; Hara et al.

1996). OIS IMR90 fibroblasts were generated by infect-

ing proliferating primary human fibroblasts with a ret-

rovirus encoding an activated H-RASG12V oncogene.

Unlike control-infected cells, these cells also ceased

proliferation (data not shown). Similar to RS cells, these

cells expressed SA β-gal (Supplementary Figure 1d),

downregulated lamin B1 and showed gene expres-

sion changes indicative of proliferation arrest, in-

cluding downregulation of cyclin A and upregulation
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of cell cycle inhibitors p21 and p16 (Supplementary

Figure 1e).

RNA was isolated from proliferating and RS cells,

and control-infected and OIS cells, and subsequently

processed and hybridized to Affymetrix Human

Genome U133 Plus 2.0 Arrays. For OIS, we analyzed

6 replicates of OIS and 4 replicates of control-infected

cells. For RS, we analyzed 5 replicates of RS and 5

replicates of proliferating cells. For both OIS and RS,

principal component analysis showed the individual

samples to be primarily separated by proliferating versus

RS, or control versus OIS, as expected (Supplementary

Figure 2). Consistent with this, unsupervised clustering

separated the control-infected from OIS and the prolif-

erating from RS (Supplementary Figure 3). Before com-

paring expression changes in RS and OIS, we first set

out to validate the gene expression data sets. Since RS

and OIS are both associated with proliferation arrest

(Supplementary Figure 1 and data not shown)
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Fig. 2 Global comparison of RS and OIS gene expression chang-

es. Differentially expressed genes from the RS and OIS

Affymetrix Human Genome U133 Plus 2.0 microarray datasets

were compared in order to identify common changes. Genes

exhibiting a fold change >1.5 (or <-1.5) and BH-FDR-adjusted

p value <0.05 were considered differentially expressed. For genes

containing multiple Affymetrix probes, the genes were only con-

sidered differentially expressed and were included if all the probes

changed in the same direction. a Venn diagram of genes that

change significantly in RS and OIS. b Venn diagram of genes

upregulated in RS and OIS. c Venn diagram of genes downregu-

lated in RS and OIS. d Dot plot of log fold change in OIS versus

RS showing all significant changing probes (fold change <1.5 and

BH-FDR-adjusted p value <0.05). Symbols indicate probesets that

change significantly in RS, OIS, or both, as indicated

�Fig. 1 Analysis of proliferation genes in RS and OIS. a Heat map

showing relative expression of proliferation genes in RS. Prolifer-

ation genes were taken from Whitfield et al. (2006). b Heat map

showing relative expression of proliferation genes in OIS. c Venn

diagram of proliferation genes downregulated in RS and OIS. All

the genes included exhibited differential expression (fold change

<-1.5 and BH-FDR-adjusted p value <0.05)
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(Hayflick and Moorhead 1961; Serrano et al. 1997), we

examined expression of a previously collated set of 45

genes whose expression is tightly linked to cell

proliferation (Whitfield et al. 2006). This list in-

cludes many proliferation-promoting genes in-

volved in DNA synthesis and mitosis. As expect-

ed, RS cells exhibited marked downregulation of

virtually all these proliferation genes (40/45 genes

showed fold change >1.5-fold and BH-FDR-adjusted

p value <0.05; Fig. 1a, c and Supplementary Datasets).

OIS cells downregulated slightly less than half of

these genes (19/45), but included key cell cycle genes,

such as cyclin B1, cyclin A2, and PCNA (Fig. 1b, c and

Supplementary Datasets). Thus, expression changes in

both RS and OIS are broadly in accordance with

senescence-associated proliferation arrest, validating

the expression data sets for other comparisons of OIS

and RS.

Taking a long range view of the data, 5,424 differen-

tially expressed genes were identified in the RS cells

when compared to control proliferating cells (Fig. 2a

and Supplementary Datasets). Of the 5,424 genes,

2,711 genes were significantly upregulated in the

RS cells, while 2,736 genes were significantly

downregulated (Fig. 2b, c). By the same criteria,

3,188 genes were identified as being differentially

expressed in the H-RASG12V-induced OIS cells

when compared to control-infected proliferating cells

(Fig. 2a and Supplementary Datasets). Of the 3,188

genes, 1,502 genes were significantly upregulated in

the H-RASG12V cells, while 1,687 genes were signif-

icantly downregulated (Fig. 2b, c). Of those genes al-

tered in RS, 32.6 % was also altered in OIS. Of those

genes altered in OIS, 55.5 % was also altered in RS

(Fig. 2a). Observations were similar comparing genes

according to the direction of change (i.e., upregulated or

NLGN1

NLGN1

LOC100131317 /// POU4F1

PCDHB4

COL4A4

GHRL

ACHE

PCDHB6

PCDHB5

PCDHB6

PCDHB11

LOC648390 /// UBB

PCDHB4

NRCAM

GHRL

LOC100131317 /// POU4F1

ACHE

COL4A4

COL4A4

PCDHB3

PCDHB13

PCDHB3

PCDHB14

PCDHB10

PCDHB2

PCDHB16

PCDHB9

PCDHB13

NRCAM

UBB

0

Color Key
and Histogram

C
o

u
n

t

Proliferating RS 

Color Key
and Histogram

C
o
u
n
t

Control OIS 

A 

B 

PCDHB3

COL4A4

NLGN1

PCDHB14

ACHE

PCDHB16

PCDHB13

PCDHB2

PCDHB10

PCDHB3

GHRL

PCDHB4

COL4A4

PCDHB11

ACHE

PCDHB6

PCDHB5

COL4A4

PCDHB6

NLGN1

PCDHB13

PCDHB9

UBB

NRCAM

NRCAM

LOC100131317 /// POU4F1

LOC100131317 /// POU4F1

GHRL

PCDHB4

LOC648390 /// UBB

2 1 0 1 2

Value

0

2 1 0 1 2

Value

Fig. 3 Analysis of synapogenesis genes in RS andOIS. aHeat map showing relative expression of synaptogenesis genes in RS. bHeat map

showing relative expression of synaptogenesis genes in OIS

1054 AGE (2014) 36:1049–1065



downregulated; Fig. 2b, c). To obtain a more holistic

view of the data, we plotted log fold change in OIS

versus log fold change in RS (Fig. 2d) for all genes that

significantly changed their expression in either OIS, RS

or both. This analysis confirmed that the RS and OIS

programs are qualitatively distinct, involving non-

overlapping upregulated and downregulated genes in

each case. In other words, the gene expression changes

in OIS were not simply a subset of those in RS, or vice

versa. In sum, while there was considerable overlap of

gene expression changes between OIS and RS, there

were also substantial differences.

We used gene set enrichment analysis (GSEA) to

compare the gene ontologies of expression changes

associated with OIS and RS (Mootha et al. 2003;

Subramanian et al. 2005). While GSEA confirmed the

downregulation of proliferation genes in both RS and

OIS (not shown), gene ontology sets most enriched in

RS included “Extracellular structure organization & bio-

genesis,” “Synapse organization& biogenesis,” “Female

pregnancy,” “Synaptogenesis,” and “Hematopoietin in-

terferon class D2000 cytokine receptor activity”; none of

these scored highly in OIS (Tables 1 and 2 and

Supplementary Datasets; Fig. 3). Conversely, gene on-

tology sets most enriched in OIS included “Myeloid

cell differentiation,” “Zinc ion binding,” “Transition

metal ion binding,” “Metalloendopeptidase activity,”

and “Regulation of translational initiation”; none

of these sets scored highly in RS (Tables 1 and

2 and Supplementary Datasets).

We also used GSEA to compare genes regulated in

OIS and RS according to their positional distribution in

chromosome cytogenetic bands. In fact, GSEA failed to

obtain strong evidence for chromosomal clusters of co-

Table 1 RS

Gene set Size NES FDR q-val

EXTRACELLULAR_STRUCTURE_ORGANIZATION_AND_BIOGENESIS 30 2.0293007 0.003994516

SYNAPSE_ORGANIZATION_AND_BIOGENESIS 22 2.0286398 0.001997258

FEMALE_PREGNANCY 46 2.0054407 0.002974658

SYNAPTOGENESIS 18 1.959838 0.005856824

HEMATOPOIETIN_INTERFERON_CLASS__D200_DOMAIN__CYTOKINE_

RECEPTOR_ACTIVITY

34 1.9120635 0.015321571

POSITIVE_REGULATION_OF_PHOSPHATE_METABOLIC_PROCESS 25 1.7941592 0.095760256

POSITIVE_REGULATION_OF_PHOSPHORYLATION 23 1.7872263 0.09056385

POSITIVE_REGULATION_OF_PROTEIN_AMINO_ACID_PHOSPHORYLATION 18 1.7721677 0.09497338

MULTI_ORGANISM_PROCESS 150 1.7305453 0.14670648

ANION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY 55 1.7133843 0.16258225

Table 2 OIS

Gene set Size NES FDR q-val

MYELOID_CELL_DIFFERENTIATION 36 2.0353153 0.021934602

ZINC_ION_BINDING 87 1.9495854 0.06551356

REGULATION_OF_TRANSLATIONAL_INITIATION 19 1.8730145 0.09286333

METALLOPEPTIDASE_ACTIVITY 45 1.839912 0.10677754

METALLOENDOPEPTIDASE_ACTIVITY 26 1.8736216 0.114875816

TRANSLATIONAL_INITIATION 26 1.8450661 0.11514404

TRANSITION_METAL_ION_BINDING 105 1.8891174 0.121084265

OXYGEN_AND_REACTIVE_OXYGEN_SPECIES_METABOLIC_PROCESS 20 1.7936904 0.15390657

ENZYME_INHIBITOR_ACTIVITY 118 1.8022212 0.15415874

RHYTHMIC_PROCESS 24 1.7652162 0.19747607
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regulated genes in either OIS or RS. Only 9 of such gene

clusters were identified with FDR<0.05 (Tables 3, 4, 5,

and 6). Of these, only one, at chromosome 6p22, was

co-regulated in both RS and OIS. This cluster included

many canonical DNA replication histone genes whose

expression is typically repressed in non-proliferating

senescent cells. In sum, in two different modes of anal-

ysis, GSEA pointed to significant differences in the gene

expression programs activated in OIS and RS.

Next, we took amore focused approach and compared

OIS and RS specifically in terms of a key phenotype of

senescence, the SASP. To assess the SASP, we used a

collection of signature genes assembled by Campisi and

coworkers (Coppe et al. 2010). As expected, both RS and

OIS were associated with upregulation of many SASP

genes (Fig. 4a, b and Supplementary Datasets). However,

some SASP genes were downregulated in both RS and

OIS (Fig. 4a, b). There was incomplete overlap of SASP

genes upregulated in OIS and RS (Fig. 4c).

To better compare and contrast the SASP in OIS and

RS, we performed Ingenuity Pathway Analysis (IPA) on

those SASP genes upregulated in OIS and RS. This

confirmed the similarities and differences (Fig. 5a, b).

Several pathways were regulated in common between

OIS and RS, such as “Hepatic fibrosis/Hepatic Stellate

Cell Activation,” “Granulocyte adhesion and dia-

pedesis,” and “Differential Regulation of Cytokine

Production in Macrophages and T Helper Cells by

IL-17A and IL-17F.” However, other pathways

were differentially regulated. For example, “Acute

phase response signalling,” “IL-6 signaling,” and “NF-

kB signaling” scored highly in RS, but not OIS.

Conversely, “TREM1 signaling,” “Glucocorticoid re-

ceptor signaling,” and “Atherosclerosis signaling”

Table 3 RS, up

CHR position Size NES FDR q-val

CHR1Q12 15 −1.7680438 0.23140398

CHR2Q24 39 −1.5923655 0.42203596

CHR4Q26 17 −1.5063437 0.50678426

CHR18Q21 64 −1.6013923 0.5097017

CHR5Q31 159 −1.5196488 0.53384614

CHR4Q22 24 −1.4834217 0.53618604

CHR4Q21 69 −1.5337276 0.56983185

CHR3Q12 25 −1.6303256 0.5711069

CHR5Q14 33 −1.409944 0.7252267

CHR18Q22 23 −1.4153817 0.7755975

Table 4 OIS, up

CHR position Size NES FDR q-val

CHR18Q21 64 −2.0844917 0.001910569

CHR4P12 20 −1.8865035 0.032303188

CHR20P11 43 −1.8480524 0.03517915

CHR15Q25 34 −1.7391939 0.10724908

CHR10Q21 31 −1.699658 0.13380279

CHR6Q21 45 −1.5716316 0.24465534

CHR7Q21 67 −1.6008431 0.24826428

CHR16Q22 112 −1.5733237 0.27051094

CHR15Q24 60 −1.6069275 0.2742026

CHR14Q32 97 −1.536082 0.29523185

Table 5 RS, down

CHR position Size NES FDR q-val

CHR6P22 82 2.0205357 0.002599428

CHR19P12 22 1.8988552 0.012233284

CHR2Q13 24 1.7256743 0.11067701

CHR1P32 68 1.6996369 0.11619425

CHR7P15 53 1.6222062 0.18741873

CHR12P11 21 1.627734 0.21021591

CHR8Q13 34 1.5297208 0.33547294

CHR18P11 55 1.5429624 0.34366933

CHR11Q24 45 1.5129603 0.34484628

CHR1Q41 25 1.4707648 0.43207833

Table 6 OIS, down

CHR position Size NES FDR q-val

CHR1Q41 25 1.7745653 0.040446274

CHR7Q35 22 1.7656888 0.041421488

CHR11Q23 99 1.7837875 0.0436039

CHR3P25 67 1.7934448 0.0466384

CHR6P22 82 1.8148179 0.047879487

CHR1P22 65 1.8261894 0.057311762

CHR13Q13 22 1.7040439 0.07005717

CHR4Q25 27 1.7060103 0.07744634

CHR2P24 39 1.8363065 0.09317992

CHR1P32 68 1.666324 0.09436246
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scored highly in OIS, but not RS. Taken together, these

analyses of the SASP confirm the core similarities of

OIS and RS, but also point to some differences.

Previously, we have implicated repression of Wnt

signaling in both RS and OIS senescent cells as a trigger

for chromatin changes in senescent cells (Ye et al. 2007).
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Fig. 4 Analysis of SASP genes in RS and OIS. a Heat map

showing relative expression of SASP genes in RS. SASP genes

taken from Coppe et al. (2010). Genes exhibiting a fold change

>1.5 (or <-1.5) and BH-FDR-adjusted p value <0.05 were

considered differentially expressed. b Heat map showing relative

expression of SASP genes in OIS. cVenn diagram of SASP genes

upregulated in RS and OIS
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To better compare the regulation of Wnt signalling in

OIS and RS, we compared regulated expression of a set

of 24 genes designated as “direct Wnt target genes.”

This gene set was originally derived from the “Wnt

homepage” (http://www.stanford.edu/group/nusselab/

cgi-bin/wnt/target_genes), but then manually curated

to include only those genes shown in the literature to

be directly regulated by Wnt effector, β-catenin/TCF4.

While both OIS and RS were associated with both

upregulated and downregulation of direct Wnt target

genes (Fig. 6a, b), on closer analysis, there were sub-

stantial differences in the specific genes regulated and

their direction of change (Fig. 6c, d). In fact, for

both upregulated and downregulated genes, only a

single gene was regulated in common between OIS

and RS: NRCAM was upregulated in both RS and

OIS, and FST was downregulated in both RS and

OIS.
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Next, we compared expression changes between OIS

and RS of a set of 193 genes encoding regulators of

chromatin structure and function. This list was manually

curated to include genes known to encode (or likely to

encode, based on close sequence homology) histone-

modifying enzymes, histone chaperones, chromatin-

binding proteins, and ATP-dependent nucleosome re-

modeling complexes. Analysis of these genes again in-

dicated substantial differences between gene expression

programs in OIS and RS. Approximately, 10 genes were

upregulated uniquely in either RS or OIS (Fig. 7a–c).

However, only 1 gene, nuclear receptor coactivator 3

(NCOA3), was upregulated in both RS and OIS.

Interestingly, many more genes were downregulated in

RS than OIS (Fig. 7a, b, d).

Finally, we compared OIS and RS in terms of a set of

genes whose regulation is closely associated with regu-

lation of p16, a key effector of cellular senescence.

Specifically, this gene set, “p16-linked genes,” includes

genes whose expression is upregulated or downregulat-

ed in p16-expressing hTERT-immortalized human fi-

broblasts that spontaneously upregulate p16 and senesce

(Jeyapalan and Sedivy 2013). Many p16-linked genes

were downregulated in common between OIS and RS

(Fig. 8a–c). However, substantially more of the p16-

linked genes were upregulated in RS than in OIS

(Fig. 8a, b, d).

Discussion

As expected, this comparative analysis reveals broad

similarities between OIS and RS. First, both OIS and

RS are associated with repression of many proliferation-

promoting genes. In both cases, this is known to con-

tribute to stable senescence-associated proliferation ar-

rest. Second, both OIS and RS are associated with

activation of many genes that constitute the SASP.

However, beyond these broad and already-

documented similarities, our analysis also points to sub-

stantial differences between the gene expression pro-

grams underlying RS and OIS. In terms of the overall

gene expression programs activated by OIS and RS,

there are more differences than similarities in regulated

genes. This is reflected in the largely different outputs of

the GSEA analyses from OIS and RS. Moreover, in all

of the specific pathways and gene sets examined—

SASP, Wnt target genes, and chromatin regulators—

there are core overlaps but also substantial differences

between OIS and RS. Importantly, the differences in

OIS and RS do not appear to be due to either program

being a deficient or impaired senescence program; the

differences between OIS and RS are qualitative, not just

quantitative.

While OIS and RS are often considered to be similar

(Suram et al. 2012), differences between these models

are not surprising, given their very different triggers. In

the model examined here, the OIS model is triggered by

expression of an activated Ras oncogene. This is ex-

pected to activate many signalling, effector and gene

expression programs that are absent from RS cells.

Although this in vitro model depends on ectopic expres-

sion of activated Ras, this and similar models are

thought to recapitulate the OIS program activated

in vivo (Michaloglou et al. 2005; Braig et al. 2005;

Collado et al. 2005; Chen et al. 2005). Even though

OIS is ultimately thought to be associated with down-

regulation of oncogene signalling (Courtois-Cox et al.

2006), the substantial differences between proliferating

and OIS cells indicate sustained differences in cell ef-

fector programs.

One key effector of different modes of cell senes-

cence is the p16-pRB pathway (Adams 2009; Kuilman

et al. 2010). Interestingly, our analysis shows that a set

of genes whose upregulation coincides with upregula-

tion of p16 in one model of senescence (Jeyapalan and

Sedivy 2013) are quite differently regulated between

OIS and RS in our study. This is consistent with the

idea that even the p16-pRB effector pathway is

networked differently between OIS and RS.

As well as reflecting different triggers and effector

pathways, differences between OIS and RS might also

reflect differences in in vivo function and/or pathology

between OIS and RS. Both RS and OIS are thought to

act as tumor suppression mechanisms (Braig et al. 2005;

Michaloglou et al. 2005; Chen et al. 2005; Bartkova

et al. 2006; Feldser and Greider 2007; Cosme-Blanco

et al. 2007; Collado et al. 2005). OIS mediates tumor

suppression in direct response to a potentially cancer-

�Fig. 7 Analysis of chromatin regulators in OIS and RS. a Heat

map showing relative expression of chromatin regulatory genes in

RS. The list of chromatin regulators was manually curated from

the literature. Genes exhibiting a fold change >1.5 (or <-1.5) and

BH-FDR-adjusted p value <0.05 were considered differentially

expressed. b Heat map showing relative expression of chromatin

regulatory genes in OIS. cVenn diagram of upregulated chromatin

regulatory genes in RS and OIS. d Venn diagram of downregulat-

ed chromatin regulatory genes in RS and OIS
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causing genetic alteration (Serrano et al. 1997). In con-

trast, RS mediates tumor suppression in response to a

finite number of normal cell divisions (Hayflick and

Moorhead 1961). While cell division is clearly neces-

sary for tumor growth, cell division per se is not typi-

cally regarded as oncogenic in the same way as an

activated oncogene. Thus, OIS might reflect a

more active and definitive tumor suppression mecha-

nism than RS. Accordingly, it is conceivable that

some immune regulatory pathways preferentially

regulated in OIS compared to RS (TREM1 signal-

ling and Glucocorticoid Receptor signalling by IPA

analysis, and myeloid cell differentiation by GSEA)

reflect this more urgent tumor suppressor function of

OIS. Conversely, RS, as perhaps representative of telo-

mere shortening and more generic cell stress (Hayflick

and Moorhead 1961; Bodnar et al. 1998; Sherr and

DePinho 2000), might be more informative regarding

gene expression changes in aged tissues. Of note,

both “IL-6 signaling” and “NF-κB signaling” path-

ways scored highly in RS, but not OIS. IL-6 is a key

component of age-associated inflammation, so-called

“inflammaging,” a candidate driver of the aging process

(Singh and Newman 2011). Recent studies have also

implicated elevated NF-κb activity as a driver of aging

(Osorio et al. 2012). Thus, our analyses are consistent

with the idea that age-associated accumulation of RS

cells, perhaps caused by age-associated telomere short-

ening (Blasco 2005), might be a significant contributor

to these pro-aging pathways.

Other notable differences between OIS and RS are

more difficult to rationalize based on our current under-

standing of senescence. Of particular note, high ranking

of the “Synaptogenesis” set in RS, but not OIS, is largely

driven by upregulation of protocadherin B genes, a 16-

gene cluster on chromosome 5, in RS, but not OIS (Fig. 3

and Supplementary Datasets). The function of these

genes is unknown, but they are thought to be involved

in the establishment and function of specific cell–cell

connections (Chen and Maniatis 2013). This might re-

flect a level of cell–cell interaction specific to RS over

OIS. Deeper functional analysis of these genes in senes-

cence might lead to substantial novel functional insights.

Just as distinct triggers (activated oncogene or repli-

cative exhaustion) induce different modes of senescence

in the same cell type (IMR90 fibroblasts), so senescent

phenotypes are likely to be divergent between cell types,

in ways that could impact tissue specific functions and

pathologies. For example, senescent human corneal

keratocytes do not express SASP, but instead, decrease

the expression of IL-6, and this might impact their func-

tion (Kipling et al. 2009). Very interestingly, while se-

nescent vascular smooth muscle cells appear to express a

SASP, they also exhibit a marked pro-calcificatory phe-

notype that might promote the atherosclerosis (Burton

et al. 2009).

To summarize, here we have presented data based on

expression profiling of primary human fibroblasts that

supports the emerging notion that senescence is perhaps

not a single unique and unambiguous cell state (Salama

et al. 2014); rather, senescence, like “differentiation,”

might be a collection of related but different cell states

with some features in common, such as stable prolifer-

ation arrest and a secretory phenotype that is frequently

pro-inflammatory. Just as there is no single definition of

a differentiated cell, so there might be no single defini-

tion of a senescent cell.
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