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Abstract

Outlier detection is a hot topic in machine learning. With the newly emerging technologies and diverse
applications, the interest of outlier detection is increasing greatly. Recently, a significant number of outlier
detection methods have been witnessed and successfully applied in a wide range of fields, including
medical health, credit card fraud and intrusion detection. They can be used for conventional data analysis.
However, it is not a trivial work to identify rare behaviors or patterns out from complicated data. In
this paper, we provide a brief overview of the outlier detection methods for high-dimensional data, and
offer comprehensive understanding of the-state-of-the-art techniques of outlier detection for practitioners.
Specifically, we firstly summarize the recent advances on outlier detection for high-dimensional data, and
then make an extensive experimental comparison to the popular detection methods on public datasets.
Finally, several challenging issues and future research directions are discussed.
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1. Introduction

Outlier analysis is of great interest to the data mining

field. It refers to the task of identifying those pat-

terns from the data whose behaviors do not conform

to the expected one1,2. For the concept of outlier,

there is no commonly accepted definition. Gener-

ally, an object is called an outlier or anomaly if its

behavior is significantly different from the remain-

der in given data. In the literature, the outlier is of-

ten referred to as anomaly, discordant object, excep-

tion, aberration, surprise, peculiarity, depending on

the specifical application scenes.1,2,3,4,5,6.

Outlier detection plays a great role in several do-

mains, such as decision-making, clustering, and pat-

tern classification, due to the fact that it can reveal

rare but important phenomenon, and find interesting

or unexpected patterns. By now, outlier detection

becomes one of the most important issues in data
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Figure 1: The methodologies of outlier detection

Table 1. Applications of outlier detection

Techniques 1 2 3 4 5 6 7

Statistical based methods
√ √ √ √ √ √

Distance based methods
√ √ √ √ √ √

Density based methods
√ √ √ √ √ √

Clustering based methods
√ √ √ √ √

Deviation base methods
√ √ √ √ √

Subspace based methods
√ √ √ √ √

1-Intrusion Detection, 2-Fraud Detection, 3-Medical Health,

4-Industrial Damage Detection, 5-Sensor Networks,

6-Textual Anomaly Detection, 7-Image Processing

mining, and has a wide variety of real-world ap-

plications, including public health anomaly, credit

card fraud, intrusion detection, data cleaning for

data mining and so on3,4,5. For example, an abnor-

mal network transmission could imply a fact that the

computer system is attacked by hackers or viruses.

An anomalous transaction of credit card could be

unauthorized used. An unexpected geological activ-

ity in nature could be a precursor of earthquake.

There are a large number of outlier detec-

tion algorithms provided in literature 1,2. The

traditional outlier detection techniques can be

typically grouped into six categories:statistical-

based, distance-based, density-based, deviation-

based, clustering-based and subspace-based meth-

ods. The categories and their representative tech-

niques are showed in Fig. 1, and the applications of

these outlier detection methods are listed in Table 1.

As an important issue in data mining, outlier de-

tection attracts a great number of attentions from a

variety of research fields, including machine learn-

ing and medical health. There are several surveys

of outlier detection in the literature. For exam-

ple, Hodge and Austin2 surveyed the outlier detec-

tion methods used in machine learning and statistics.

Chandola et al.1 gave a broad review of outlier detec-

tion techniques according to different assumptions.

The others mainly focuses on either specifical appli-

cations, such as network data 4 and temporal data 5,

or particular learning techniques, such as subspace

learning and ensemble learning 6.

In this paper, we place more emphases on

the techniques of outlier detection for the com-

plicated data with high-dimensionality. The rest

of this paper is organized as follows. Sec-

tion 2 presents the state-of-the-art outlier methods

for high-dimensional data, including the neighbor

ranking-based method, the subspace-based method

and the ensemble learning-based method. Section 3

provides the evaluation measurements and datasets

commonly used in outlier detection, followed by

an experimental comparison of representative outlier

detection methods in Section 4. Section 5 discusses

the problems and challenges of outlier detection in

future work. Finally, Section 6 concludes the paper.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 652–662
___________________________________________________________________________________________________________

653



2. Outlier Detection for High-dimensional Data

As mentioned above, outlier detection has turned out

to be an import problem in many research fields,

while it is not a trivial work to detect such rare be-

haviors from the high-dimensional data. On the one

hand, the distance between the high-dimensional ob-

servations is very small, which will reduce the effi-

ciency of distance-based outlier detection methods.

On the other hand, for high-dimensional data, some

irrelevant attributes may impede the separability of

the outlier detection. Accordingly, In the follow-

ing subsection we briefly review some outlier detec-

tion methods for high-dimensional data, including

the neighbor ranking-based methods, the subspace

learning-based methods and the ensemble learning-

based methods.

2.1. Neighbor Ranking-Based Methods

As aforementioned analysis, for high-dimensional

data, traditional similarity measurement such as the

Euclidean distance function are usually meaning-

less, which will make distance-based outlier method

less performance. One adaptation is to take the rank-

ing of neighbors into consideration, since the nearest

neighbor ranking of the objects is still meaningful to

the nature of high dimensional data. The underlying

assumption is that given two objects ob1 and ob2, if

they were generated from the same mechanism, they

would most likely become nearest neighbors or have

similar neighbors 9.

As an example, Huang et al.10 developed an out-

lier detection algorithm called RBDA (Rank Based

Detecting Algorithm). It takes the ranks of each ob-

ject in its neighbors as the proximity degree of the

object. Specifically, for each object p ∈ D in a given

dataset D, let Nk(p) be the k nearest neighbors of p.

The outlier degree of p is defined as follows:

Ok(p) =
∑q∈Nk(p) rq(p)

∥Nk(p)∥ , (1)

where rq(p) is the rank of p among the neighbors

of q. According to Eq.(1), if p always ranks be-

hind the neighbors of q, it has a higher outlier de-

gree and would be considered as an outlier in a

high probability. Note that RBDA did not con-

sidered the distance information of objects to their

neighbors which would be useful in some cases.

To tackle with this problem, MRD(Modified-Ranks

with Distance)11 takes both the ranks and the dis-

tances into account when calculating the outlier

scores of the objects. Since k nearest neighbors can

not exactly represent proximate relationship among

objects, Radovanovic et al.12 adopted the numbers

of reverse nearest neighbors to estimate the outlier

scores of the objects, where q ∈ Nk(p) is called a

reverse neighbors of p if p is also a neighbor of q,

and vice versa, i.e., p ∈ Nk(q) and q ∈ Nk(p). The

intuitive idea is that if an object has less reverse near-

est neighbors, it is more likely be an outlier. Bhat-

tacharya et al.13 worked further. While calculating

the outlier scores, they took both the ranks of near-

est neighbors and the reverse neighbors into account.

L.Zhang et al.14 calculate the outlier scores by using

the shared nearest neighbors, while Tang and He15

proposed an outlier detection methods, where the

outliers scores were estimated by using three kinds

of neighborhood, k nearest neighbors, reversed near-

est neighbors and shared nearest neighbors.

Note that the neighbor ranking based methods

are sensitive to parameter k of models, it is diffi-

cult to choose the right k for different applications.

To cope with this problem, Ha et al.16 provided a

heuristic strategy to select the value of k, along with

an iterative random sampling procedure. The un-

derlying assumption is that outlying objects are less

likely selected than inlying objects in random sam-

pling, and therefore, more inlierness scores should

be given to the selected objects in each sampling.

After several iterations of random sampling, the in-

lierness scores of each object, which is also called

the observability factor (OF) of each object, is esti-

mated by counting its occurrence times in its neigh-

borhoodand the object with a low OF value is a

promising outlier candidate. Furthermore, by defin-

ing the information entropy of OFs, the values of k

can be properly selected.

2.2. Subspace Learning-Based Methods

Most of the outlier detection techniques discussed so

far identify outliers from the whole data space with
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all dimensions. However, outliers are often repre-

sented as unusual local behaviors in lower dimen-

sional subspaces6. A.Zimek et al.7 pointed out that

for an object with many attributes, only subsets of

relevant attributes provide the meaningful informa-

tion, the residual attributes are irrelevant for the task

and may impede the separability of the outlier detec-

tion model. Therefore, it will be an interesting and

efficient work to identify outliers from appropriate

subspaces.

As a popular technique used in the analysis of

high-dimensional data, the subspace learning is also

extensively studied in the field of outlier detec-

tion. For subspace learning-based outlier methods,

the key is to find the relevant outliers by sifting

through different subsets of dimensions in the data

in an ordered way. Generally, these methods can

be divided into two categories: the sparse subspace

methods 17,18,19 and the relevant subspace meth-

ods 20,21,22,23,24,25,26.

The sparse subspace techniques project the

high-dimensional objects onto one or more low-

dimensional and sparse subspaces. and the objects

which are contained in the sparse subspaces are con-

sidered as outliers, because these sparse subspaces

have abnormally low density. It should be pointed

out that it is a time-consuming work to explore the

sparse projections from the whole high-dimensional

space. To improve the exploring efficiency, Ag-

gareal and Yu18 exploited an evolutionary algorithm

to get the subspaces, in this method, the subspace

with the most negative scarcity coefficients was con-

sidered as a space projection. However, the perfor-

mance of this algorithm heavily relies on initial pop-

ulations.

Another studying direction of the sparse sub-

space methods is the subspace representation and

encoding. For example, Zhang and Jiang19 take

concept lattice to represent the relationship of sub-

spaces, where the subspaces with low density coef-

ficients are regarded as sparse ones. This detection

method shows promise in the performance and the

completeness, while constructing the concept lattice

of subspaces is complex, resulting in low efficiency.

In order to get the sparse space, Dutta et al.20 em-

ployed the sparse encoding to project objects to a

manifold space with a linear transformation.

The detection methods using relevant subspaces

exploit locally information, which can be repre-

sented as relevant features, to identify outliers. A

typical example of this kind is SOD(subspaces out-

lier detection)9, where for each object, its correla-

tion dataset with sharing nearest neighbors is ex-

plored. On each correlation dataset, an axis-parallel

subspace is determined by linear correlation, such

that each feature has low variance in the subspace.

Unlike SOD which only concerns the variances of

features, Muller et al.23 adopted the relevant rela-

tionships of features of the correlation dataset to de-

termine the subspace. Specifically, they took the

Kolmogorov-Smirnov test to examine the relevant

relationships of features, and then got the relevant

subspaces, Based on these relevant subspaces, the

outlierness degree of the object was calculated by

multiplicative of local outlierness scores. It should

be noted that this detection method is computation-

ally expensive. Kriegel et al.21 did a similar work.

They obtained relevant subspaces by using princi-

pal component analysis, and then identified outliers

by using the Mahalanobis distance with gamma dis-

tribution. The limitation of this method is that it re-

quires a great number of local data to detect the trend

of deviation.

Unlike the aforementioned detection methods,

Keller et al.24 proposed a flexible outlier detection

method. They took outlier mining as a decoupled

process, including ‘subspace search’ and ‘outlier

ranking’. The first step was to obtain high con-

trast subspaces (HiCS) by using the Monte Carlo

sampling technique. Based on these subspaces, the

LOF scores of objects were aggregated. Stein25

worked further. They provided a local subspace out-

lier detection method using global neighborhoods.

Firstly, the relevant subspaces were collected by

HiCS, and then the outlier scores were calculated

by using local outlier probabilities (LoOP), in which

the neighborhood was selected in the global data

space27. Note that because the subspace learning-

based methods need to explore subspaces from the

high-dimensional space, they are usually computa-

tionally expensive.
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2.3. Ensemble Learning-based Methods

As widely used in machine learning28,29, ensemble

learning is also frequently used in outlier detection

for its better performance. As we know, only one

detection method can not discover all outliers in a

low-dimensional subspace, because the data in real-

ity is very complicated. Thus, it is necessary to take

different learning techniques or multiple subspaces

into account simultaneously, and get the the poten-

tial outliers by using ensemble techniques. Two en-

semble strategies are frequently adopted for outlier

analysis: summarizing the outlier scores generated

from the detection methods, and picking the best one

after ranking. Among the ensemble based methods,

the variance-reduction methods such as feature bag-

ging and subsampling are extensively studied in out-

lier detection.

The feature bagging methods aim to make use

of different feature subsets to train multiple mod-

els, and then combine the results of these models

into an overall one as the final result. For example,

Lazarevic et al.30 exploited a typical feature bagging

method to detect outliers. They first randomly se-

lected the feature subsets from the original feature

space, and then applied the outlier detection algo-

rithm to estimate the score of each object, and finally

integrated the scores of same object as a final one.

Compared to this typical feature bagging method30

which only considered the same detection technique,

Nguyen et al.31 took use of different ones to estimate

outlier scores for each object on random subspaces.

The second strategy widely used is subsampling,

in which training objects are drawn from data with-

out replacement. It has been demonstrated that sub-

sampling has quite potential capability to improve

the performance of outlier detectors when imple-

mented properly. For example, Zimek et al.32 took

use of random subsampling to compute the nearest

neighbors and then estimates the density for each

observation in the dataset. This ensemble method,

coupled with an outlier detection algorithm based on

relative densities like LOF, has higher efficiency and

provides a diverse set of results.

Pasillas-Diaz et al.33 took both feature bagging

and subsampling into account in their ensemble out-

lier detection algorithm, where the different features

were obtained via feature bagging, and the outlier

scores were calculated upon different subsets of data

via subsampling. Note that the variance of objects is

difficult to be obtained by feature bagging, and the

final results also tend to be sensitive to the size of

subsampled datasets.

3. Evaluation and Datasets

3.1. Evaluation Measurements

For outlier detection algorithms, it is difficult to

evaluate their performance. On the one hand, the ap-

propriate benchmark datasets with ground truth for

outlier detection is scarce in nature, which will in-

crease the difficulty for the evaluation task. On the

other hand, distance or distance-based outlier detec-

tion methods often use scores as evaluation, how-

ever, it is difficult to set a proper threshold for each

application since the scores are identical. Further-

more, the biases of mostly used evaluation measures

are not fully understood.

In this paper, we provide several commonly used

measurements to evaluate the performance of the

outlier detection methods. They are described as fol-

lows:

1. AUC7. The ROC (receiver operating char-

acteristic) curve is a graphical plot of the

true positive rate versus the false positive

rate, where the true (false) positive rate repre-

sent the proportion of outliers (inliers) ranked

among the top m potential outliers. A ROC

curve can be summarized by a single value

known as ROC AUC, defined as the area

under the ROC curve (AUC). AUC is often

adopted to numerically evaluate the perfor-

mances of the outlier detection algorithms.

2. Precision (P). Precision refers to a ratio of the

number of true outliers over the total number

of outlier candidates, i.e.,

Precision =
m

t
, (2)

where m is the number of true outliers found

with t outlier candidates.This criterion is also

called precision@m34 in the literature. Since
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t is hard to be set for each specifical applica-

tion. Assigning t as the number of outliers in

the ground truth is a commonly used strategy.

3. Average precision (AP)35. Instead of evalu-

ating only at a single value of n, Average pre-

cision refers to the mean of precision scores

over the ranks of all outlier objects.

AP =
1

|O|
|o|

∑
r=1

P@r (3)

4. Rank Power (RP). Rank power is another

popular measurement to evaluate the perfor-

mance of outlier detection methods. It is clear

that an outlier ranking algorithm will be re-

garded more effective if it ranks true outliers

in the top of the list of outlier candidates. The

rank power can be defined as follows:

RankPower =
m(m+1)

2∑
m
i=1 Ri

, (4)

where m is the number of outliers in the top t

potential objects and Ri is the rank of the i-th

true outlier. Given a fixed t, a larger value in-

dicates better performance. Especially when

the t outlier candidates are true outliers, the

rank power equals to 1.

5. Correlation coefficient. Correlation coef-

ficients, like Spearman’s rank similarity or

Pearson correlation, are also used in evalu-

ating the performance of outlier detections

in literature36. This kind of measurements

place more emphasis on the potential out-

liers ranked at the top by using incorporate

weights. More details can be found in the

ref.36 and references within36.

3.2. Dataset Resources

In the outlier detection experiments, the synthetic

datasets and real-world datasets are usually used to

testify the performance in the literature. The syn-

thetic datasets can be generated according to specific

applications at hand. For instance, Wang et al.37 pro-

vided some synthetic datasets with outliers in dif-

ferent scenarios. The real-world data dataset often

comes from three sources shown as follows:

1. UCI Machine Learning Repository. Many

of the data mining algorithms take the UCI

repository 38 as a valuable source to evaluate

their performance. Note that most of these

datasets have been proposed for the evalua-

tion of classification methods. For outlier de-

tection task, the commonly used strategy is to

preprocess the datasets by taking the objects

within the minor class as outliers and the rest

as normal ones.

2. ELKI Datasets. ELKI is an actively devel-

oped and maintained ‘Environment for devel-

oping KDD-applications supported by Index-

structures’ 7. The recent releases are espe-

cially dedicated to outlier detection. The plat-

form not only provide the outlier detection al-

gorithms, but also offers several data sets for

outlier detection evaluation39.

3. Spatial Data. The collection of spatial data 40

is donated by Chicago University. Although

it is used for spatial analysis originally, these

spatial data, including Census Tract Data and

Zip Code Business Patterns, can be also used

for outlier detection.

As mentioned above, the datasets mostly used in

classification need to be preprocessed for the outlier

detection tasks. During the preprocessing, two cases

may be considered 41: For semantically meaning-

ful outlier datasets, the classes, which are associated

with rare objects are regarded as outliers, and the

rest is regarded as normal data. For other datasets,

the outlier classes are chosen from the datasets ran-

domly. Specially, for the datasets only have two

classes, the class with minor objects is often treated

as outliers.

4. Experimental Comparison

In this section, we make an experimental compar-

ison of ten popular outlier detection algorithms on

9 datasets. The outlier detection algorithms in-

clude kNN, kNNW, ODIN, LOF, LoOP, COP, SOD,

FastABOD, HiCS and Gaussian Uniform Mixture

Model(GUMM). They are often used as baselines in

literature, because they have relatively good perfor-

mance.
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Table 2. Experimental datasets used in our experiments.

Dataset N(O) Attribute Outliers(out.) vs. inliers(in.)

Annthyroid 7200(534) 21 hyper-function,subnormal (out.) vs. healthy(in.)

ALOI 50000(1508) 27 The 1-1508 objects(out.) vs. others(in.)

Arrhythmia 450(206) 259 arrhythmia (out.) vs. healthy(in.)

Cardiotocography 2126(471) 21 pathologic,suspect(out.) vs. healthy(in.)

PageBlocks 5473(560) 10 Non-text(out.) vs. text(in.)

Parkinson 195(147) 22 Parkinson(out.) vs. Health(in.)

SpamBase 4601(1813) 57 spam(out.) vs. non-spam(in.)

Stamps 340(31) 9 forged(out.) vs. Genuine(in.)

WPBC 198(47) 33 Class ’R’(out.) vs. class ’N’(in.)

The experimental datasets were downloaded

from the UCI repository and the ELKI toolkit. The

details of the datasets are given in Table 2, where

‘N’ and ‘O’ refer to the numbers of all objects and

outliers respectively. We adopted the same step of

process in ref.42, when preprocessed the datasets.

For example, for the Annthyroid data consisting of

7200 objects, we took the class ‘hyper-function’ and

class ‘subnormal’ as outliers, and class ‘healthy’ as

inliers in our experiments. Thus, there were 534 out-

liers and 6666 normal objects in this dataset.

The comparison experiments were conducted

under the ELKI framework. For the parameters in-

volved within the outlier detection algorithms, their

values were assigned to default ones. In the exper-

iments, three evaluation measurements, i.e., AUC,

Precision, and Rank Power, were taken to testify the

performance of the detection algorithms.

AUC is a popular performance evaluation for

outlier detection techniques. Table 3 presents the

experimental results of AUC on 9 datasets. From

Table 3, one may observed that kNN, kNNW, HiCS

had a relatively high performance, while GUMM

performed lower in many cases. For instance, kNN

and kNNW achieved relatively good performance on

Arrhythmia, Cardiotography, Spambase and WPBC.

HiCS had the highest AUC on PageBlocks, Parkin-

son, Stamps and WPBC. On the contrary, GUMM

had relatively low performance on 7 dataset and

get the worst performance on 4 dataset includ-

ing Arrhythima, PageBlocks, Cardiotocography and

Spambase. The reason is that Gaussian method

is greatly affected by data distributions, while the

real world datasets are very complicated and their

distributions are difficult to presume. Spambase

dataset describes the word and char frequency in

the email text, these digital frequencies provide very

few group properties and have little similar charac-

ters inherently. Thus, FastABOD is not suitable for

such data set, since it calculates the similarity of ob-

jects via the cosine value of angle. The same to

Stamps dataset. ann-thyriod dataset contains three

classes relate to the conditions ‘normal’, ‘hyper-

function’, and ‘subnormal functioning’ for hypothy-

roidism, since the relevant correlation of attributes

is very high in this dataset, COP has good perfor-

mance because it depend on the correlation analysis

of attributes.

In order to reveal the influence of parameters on

the algorithm, some k nearest neighborhood-based

methods is compared in the experiment, where k

changes from 3 to 50. Fig. 2 shows the Preci-

sion scores of the outlier detection methods on 9

datasets. Since FastABOD has the problem dur-

ing the computation on ALOI, and has almost 0

scores on Stamps, Spambase, Ann-thyriod, Arrhyth-

mia, Cardiotocograhpy, its Precision scores was not

provided in Fig. 2.

As showed in Fig. 2, FastABOD are seen to be

least affected by the variation of k, and HiCS is more

heavily affected by the parameter k. Compared to

the basic kNN technique, kNNW is less sensitive to

the value of k, since it computes the outlier scores

of an object as the sum of its distances from its k

nearest neighbors. As for density-based outlier de-

tection techniques, LoOP, which uses a local statis-

tical density estimation, is less affected by the size

of the neighborhood than LOF method.
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Table 3. The experimental results of AUC on 9 datasets.

Dataset FastABOD kNN kNNW ODIN LOF LoOP COP SOD GUMM HiCS

Annthyroid 0.51 0.53 0.50 0.56 0.58 0.52 0.75 0.47 0.50 0.58

ALOI - 0.72 0.74 0.81 0.78 0.80 0.77 0.78 0.57 0.62

Arrhythmia 0.74 0.75 0.75 0.71 0.74 0.73 0.70 0.73 0.47 0.70

Cardioto. 0.55 0.62 0.59 0.58 0.59 0.57 0.57 0.52 0.51 0.60

PageBlock 0.56 0.88 0.84 0.69 0.70 0.77 0.91 0.91 0.50 0.93

Parkinson 0.42 0.57 0.57 0.57 0.57 0.51 0.57 0.53 0.51 0.72

SpamBase 0.01 0.64 0.63 0.51 0.52 0.54 0.50 0.55 0.50 0.55

Stamps 0.01 0.93 0.90 0.81 0.95 0.67 0.69 0.62 0.87 0.95

WPBC 0.48 0.54 0.49 0.55 0.44 0.48 0.52 0.51 0.47 0.56

(a) Annthyriod:Precision (b) ALOI:Precision (c) Arrhythmia:Precision

(d) Cardiotography:Precision (e) PageBlocks:Precision (f) Parkinson:Precision

(g) Spambase:Precision (h) Stamps:Precision (i) WPBC:Precision

Figure 2: The experimental results of Precision on 9 datasets with k from 3 to 50.
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Table 4. Rank power of the top 50 (i.e., s=50) outlier candidates
achieved by the outlier detection algorithms with k=10.

Dataset FastABOD kNN kNNW ODIN LOF LoOP COP SOD GUMM HiCS

Annthyroid 0 0.07 0.04 0.14 0.04 0.06 0.25 0.05 0 0

ALOI - 0.3 0.43 0.92 0.37 0.47 0.57 0.64 0 0.12

Arrhythmia 0.94 0.99 0.98 0.65 0.91 0.91 0.65 0.87 0.43 0.90

Cardioto. 0.37 0.70 0.69 0.40 0.53 0.48 0.37 0.50 0.31 0.22

PageBlock 0.58 0.41 0.30 0.22 0.24 0.20 0.50 0.84 0 0.07

Parkinson 0.5 0.77 0.79 0.74 0.68 0.71 0.91 0.80 0.9 0.85

SpamBase 0 0.10 0.15 0.31 0.10 0.27 0.32 0.26 1.0 0.09

Stamps 0 0.29 0.42 0.71 0.38 0.32 0.15 0.32 0.25 0.36

WPBC 0.19 0.23 0.22 0.23 0.25 0.21 0.10 0.20 0.13 0.23

Another interesting fact is that the Precision of

the compared algorithms varied greatly on Stamps

and PageBlocks datasets, One reason is that the pro-

portion of outliers on these data sets is very small (as

for Stamps(9%), PageBlocks(10%)),making the out-

lier detection algorithms more sensitive to the values

of k. On the contrary, the Precision are less sensi-

tive to k values on those datasets with higher outlier

proportion, such as Spambase(39.4% outliers) and

Arrhythin(45.7% outliers).

In the experiments, rank power is also adopted

to validate the performance of the outlier detection

methods. For each detection method, the top 50 sus-

picious outliers are used to estimate the value of rank

power. Tab. 4 shows the rank power scores of outlier

detection methods on 9 datasets.

It can be observed that, similar to AUC, the rank

power of kNN-based method had a relatively sta-

ble performance, while GUMM, FASTABOD, HiCS

performed unsteadily in some cases. It can also be

seen that the subspace method such as SOD and

HiCS have relative high result on 3 datasets includ-

ing Parkinson, PageBlocks and Arrhythmia. The

reason is that there are some irrelevant features on

these dataset, and the subspace-based learning meth-

ods can work very well on these datasets.

5. Challenges and Future Work

Although there have been some notable results on

outlier detection methods, they are far to be perfect

with lots of open questions remained to be solved.

Here ,we list some of questions as follows:

• The kNN-based methods are generally sensitive

to the parameter k. How to determine the right

number of neighbors for each object is a challenge

for the neighbor ranking-based outlier detection

methods.

• Outliers often present locally abnormal behav-

iors. However, exploring local correlations of fea-

tures from a high-dimensional space is not an easy

work. Besides, how to exactly measure the corre-

lations makes the problem more challenging.

• If the diversity of the subspace or learning bases

is large, the ensemble-based and subspace-based

detection methods may have relatively good per-

formance. However, this condition always can not

be satisfied. How to choose right subspaces or

learning bases, as well as their quantities and their

combining strategies is still a challenging issues.

Besides, the outlier scores generated by individual

learning bases should also be consistent with the

perspective of consensus.

• For high-dimensional data, distances-based scores

may still provide a reasonable ranking, but the

scores appear to be very close to each other. It

is difficult to choose a threshold between inliers

and outliers based on these scores.

• Since outliers are relatively rare in dataset and the

ground truth is always not available, how to ef-

fectively evaluate the performance of the outlier

detection methods is also an open problem.
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6. Conclusion

In this survey, we discussed some typical prob-

lems of outlier detection associated with high-

dimensional data, and attempted to provide an

overview of state-of-the-art outlier detection tech-

niques on high-dimensional data. Furthermore,

we have made an extensive experiment on pub-

lic datasets to evaluate the popular outlier detec-

tion methods. In the experiments, we discussed the

data processing and different evaluation measures

for outlier detection task. We also compared the per-

formance of different methods on a wide variety of

datasets by taking the most commonly used mea-

surement into account, and provided a perspective

analysis on the effectiveness of these typical outlier

detection techniques. Finally, we discussed the the

challenges and future work of outlier detection tech-

niques for the high-dimensional data.
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