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A comparison of parameter covariance estimation 
methods for item response models in an 
expectation-maximization framework
Joshua N. Pritikin1*

Abstract: The Expectation-Maximization (EM) algorithm is a method for finding the 
maximum likelihood estimate of a model in the presence of missing data. 
Unfortunately, EM does not produce a parameter covariance matrix for standard 
errors. Both Oakes and Supplemented EM are methods for obtaining the parameter 
covariance matrix. SEM was discovered in 1991 and is implemented in both open-
source and commercial item response model estimation software. Oakes, a more 
recent method discovered in 1999, had not been implemented in item response 
model software until now. Convergence properties, accuracy, and elapsed time of 
Oakes and Supplemental EM family algorithms are compared for a diverse selection 
IFA models. Oakes exhibits the best accuracy and elapsed time among algorithms 
compared. We recommend that Oakes be made available in item response model 
estimation software.

Subjects: Multivariate Statistics; Statistical Computing; Quantitative Methods; Testing, 
Measurement and Assessment

Keywords: parameter covariance matrix; Oakes direct method; supplemented EM  
algorithm; item factor analysis; Monte Carlo; standard errors

1. Introduction
Once a model is fit to data, it is routine practice to examine the degree of confidence we ought to 
have in the parameter estimates. One approximation of this information is found in the parameter 
covariance matrix V, and in summary form, as standard errors (SEs), � = diag(V)
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Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) is a method for finding 
the maximum likelihood estimate (MLE, 𝜃̂) of a model in the presence of missing data. For example, 
one EM algorithm of importance to psychologists and educators is for implementation of Item Factor 
Analysis (IFA) (Bock & Aitkin, 1981). Unfortunately, the parameter covariance matrix is not an im-
mediate output of the EM algorithm. Before exploring methods to obtain the parameter covariance 
matrix, the EM approach will be informally outlined.

Following traditional notation, let Yo be the observed data. We want to find the MLE 𝜃̂ of parameter 
vector � for model L(Yo|�). Unfortunately, L(Yo|�) is intractable or cumbersome to optimize. The EM 
approach is to start with initial parameter vector �t=0 and fill in missing data Ym as the expectation 
of {Ym|Yo, �t} (E-step). In the case of Bock and Aitkin (1981), the missing data are the examinee la-
tent scores (as determined by item parameters). Together, the observed Yo and made-up data Ym 
constitute completed data Yc. With the parameter vector �t at iteration t, we can use a complete 
data method to optimize L(�|Yc) and find �t+1 (M-step). With an improved parameter vector �t+1, the 
process is repeated until 𝜃t ≈ 𝜃t+1 ≈ 𝜃̂. As a memory aid, the reader may prefer to associate the m 
in Ym with made up (not missing).

In exponential family models, the parameter covariance matrix V is often estimated using the 
observed information matrix. The negative M-step Hessian

is usually easy to evaluate but asymtotically underestimates the variability of (𝜃̂;Yc).

A better estimate is the negative Hessian of only the observed data Yo,

Usually (𝜃̂;Yo) is difficult to evaluate; One benefit of the EM method is the ability to optimize L(�|Yo) 
efficiently without evaluation of Equation (2).

To estimate the parameter covariance matrix in an EM context, many methods have been pro-
posed. Some methods require problem specific apparatus such as the covariance of the row-wise 
gradients (Mislevy, 1984) or a sandwich estimate (e.g. Louis, 1982; Yuan, Cheng, & Patton, 2013). For 
IFA models, the Fisher information matrix can be computed analytically. However, a sum is required 
over all possible patterns (Bock & Aitkin, 1981). Since such a sum is impractical for as few as 20 di-
chotomous items, no further consideration of this method will be given. Here we will focus on meth-
ods that are less reliant on problem specific features.

Finite differences with Richardson extrapolation has been advocated (Jamshidian & Jennrich, 
2000). This method evaluates the observed data log-likelihood (Yo|�) at a grid of points in the � 
space to approximate the Hessian. For example, for a single parameter function f, the Hessian can 
be approximated by

for some small 𝜖 > 0. For Richardson extrapolation, the perturbation distance � is reduced on every 
iteration. Precision is enhanced by extrapolating the change in curvature between iterations 
(Richardson, 1911). Unfortunately, the number of points required to approximate the Hessian is 
1 + r(N2 + N) where r is the number of iterations and N is the number of parameters in vector � 
(Gilbert & Varadhan, 2012). This limits the practical applicability of Richardson extrapolation to mod-
els with a modest number of parameters.

(1)(𝜃̂;Yc) ≈ −
𝜕2 log L(𝜃|Yc)

𝜕𝜃𝜕𝜃

(2)(𝜃̂;Yo) ≈ −
𝜕2 log L(𝜃|Yo)

𝜕𝜃𝜕𝜃
.

(3)
f (� − �) − 2f (�) + f (� + �)

�2
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We are aware of only two algorithms that offer performance that scales linearly with the number 
of parameters and require little problem specific apparatus: Supplemented EM (SEM) (Meng & Rubin, 
1991) and the direct method (Oakes, 1999). Although the direct method is simpler than SEM, Oakes 
has not been implemented in IFA software until recently (Pritikin, 2015) and has not been compared 
with parameter covariance estimation methods for IFA models. We describe SEM in some detail so 
that the reader may appreciate its relationship with Oakes.

In IFA software, SEM grew to popularity because it was superior to the methods commonly avail-
able at the time (Cai, 2008). SEM is based on the observation that the information matrix of the 
completed data (𝜃̂;Yc) is the sum of the information matrices of the observed (𝜃̂;Yo) and made-up 
data (𝜃̂;Ym) (Orchard & Woodbury, 1972). With some algebraic manipulation we can rearrange the 
terms,

Intuitively, (𝜃̂;Ym)
−1
(𝜃̂;Yc) represents the fraction of information that Ym contributes to Yc in 

excess of Yo (Dempster et al., 1977). One cycle of the EM algorithm can be regarded as a mapping 
� → M(�). In this notation, the EM algorithm is

If �t converges to some point 𝜃̂ and M(�) is continuous then 𝜃̂ must satisfy 𝜃̂ ≈ M(𝜃̂). In the neigh-
borhood of 𝜃̂, by Taylor series expansion, 𝜃t+1 − 𝜃̂ ≈ (𝜃t − 𝜃̂)Δ𝜃̂ where Δ𝜃̂ is the Jacobian of M evalu-
ated at the MLE 𝜃̂,

Dempster et al. (1977) showed that the rate of convergence is determined by the fraction of infor-
mation that Ym contributes to Yc. In particular, in the neighborhood of 𝜃̂,

Combining Equations (5) and (8), we obtain (𝜃̂;Yo) ≈
(
I − Δ𝜃̂

)
(𝜃̂;Yc). Therefore, the inverse ob-

served data parameter covariance matrix V−1
≈
(
I − Δ𝜃̂

)
(𝜃̂;Yc).

The rate matrix Δ𝜃̂ from Equation (7) can be approximated using a forward difference method. Let 
d be the number of elements in vector � so we can refer to it as � = {�1,… , �d}. Column j of Δ𝜃̂ is 
approximated by

That is, we run 1 cycle of EM with � set to the MLE 𝜃̂ except for the jth parameter of � which is set to 
(𝜃̂j + 𝜖) where |𝜖| > 0 (Note that indices i and j are interchangeable on the diagonal). Then we sub-
tract M(𝜃̂) ≈ 𝜃̂ from the result and divide by the scalar �. This amounts to numerically differentiating 
the EM map M.

Theoretically, accuracy improves as � → 0. In practice, however, this is arithmetic on a computer 
using a floating-point representation. We cannot take � → 0 but must pick a particular |𝜖| > 0. The 

(4)(𝜃̂;Yc) − (𝜃̂;Ym) = (𝜃̂;Yo)

(5)

⎡⎢⎢⎢⎢⎣
I − (𝜃̂;Ym)

−1
(𝜃̂;Yc)

���������������������
Ym contribution

⎤
⎥⎥⎥⎥⎦
(𝜃̂;Yc) = (𝜃̂;Yo).

(6)�t+1 = M(�t) for t ∈ {0, 1,…}.

(7)Δ𝜃̂ =
𝜕M(𝜃)

𝜕𝜃

||||𝜃=𝜃̂ .

(8)Δ𝜃̂ ≈ (𝜃̂;Ym)
−1
(𝜃̂;Yc).

(9)r
⋅j(𝜖) =

M(𝜃̂1,… , 𝜃̂i−1, 𝜃̂j + 𝜖, 𝜃̂i+1,… , 𝜃̂d) −M(𝜃̂)

𝜖
.
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original formulation proposed to use the EM convergence history �tj  (where �t is the parameter vector 
� at iteration t) and compute the series of columns {r

⋅j(𝜃
t
j − 𝜃̂j), r⋅j(𝜃

t+1
j − 𝜃̂j),…} until r

⋅j is “stable” 
from t to t + 1. This procedure may initially seem appealing, but note that the history of � is a func-
tion of the starting parameter vector �t=0 and no guidance was provided about appropriate starting 
values. Regardless of starting values, Meng and Rubin (1991) suggested that r

⋅j could be declared 
stable if no element changed by more than the square root of the tolerance of an EM cycle. For ex-
ample, if the EM tolerance for absolute change in log-likelihood is 10−8 then the SEM tolerance would 
be 10−4. Hence, the jth column of r

⋅j is converged when

But they remarked that the stopping criterion deserved further investigation.

SEM as originally described does not perform well in some circumstances. Its disappointing perfor-
mance prompted at least two refinements. One refinement proposed a heuristic for the search of 
the parameter trajectory history (Tian-SEM; Tian, Cai, Thissen, & Xin, 2013) and was reinforced by a 
report of promising performance in unidimensional and multidimensional item response models 
simulation studies (Paek & Cai, 2014). The idea of Tian-SEM is that parameter estimates �t typically 
start far from the MLE 𝜃̂ and approach closely only after a number of EM cycles. Starting SEM from 
�t=0 is usually wasteful because Δ𝜃̂ does not stabilize until �t with t close to convergence. During an 
EM run, the log-likelihood  typically changes rapidly and then slowly as the parameter values are 
fine tuned. The quantity �t = exp

(
−
|||

t
− 

t+1|||
)

 was proposed as a standardized measure of 
closeness to convergence and suggested that the best opportunity for SEM is history subset �t cor-
responding to �t ∈ [.9, .999]. This refinement helps in many cases. However, lingering weaknesses 
in Tian-SEM prompted another more drastic refinement (Agile-SEM; Pritikin, 2016). Agile-SEM will be 
shown to perform better than other SEM family algorithms, but not as well as the best method. A full 
description of Agile-SEM is lengthy and beyond the scope of this article. We include the original al-
gorithm (MR-SEM) and these two refinements in our comparison.

Recall that the goal of SEM family algorithms is to estimate (𝜃̂;Ym) in Equation (4). Oakes gave a 
remarkably direct way to obtain this quantity,

This is the Jacobian of the completed data gradient of the vector 𝜃̂ in log L(𝜃̂|Yo, Ym) with respect to 
the made up data Ym (Oakes, 1999). We are not aware of an analytic expression for this quantity for 
an item response model, but little additional computer programming is needed to estimate it using 
finite differences.

2. Method

2.1. Models
We introduce a set of conditions designed to present a challenge to parameter covariance matrix 
estimators. We included underidentified models, models with bounds, and latent distribution pa-
rameters. Underidentified models do not contain enough data to uniquely identify the most likely 
model parameters. IFA models consist of a collection of response models, each item response model 
associated with a single item. To some extent, the number of possible response outcomes deter-
mines the choice of item model. The dichotomous or graded response model is suitable for items 
with only two possible outcomes (e.g. correct/incorrect). In contrast, the graded response or nomi-
nal model is suitable for items with more than two possible outcomes. Many other response models 
are available, but we focus on these three because of their enduring popularity. The definitions of 
these item response models are given in Appendix and detailed in the rpf package (Pritikin, 2015). 
The structure of Models m2pl5, m3pl15, grm20, and cyh1 will be described.

(10)|rij(𝜃tj − 𝜃̂j) − rij(𝜃
t+1
j − 𝜃̂j)| < tolerance ∀i ∈ {1,… ,d}

(11)(𝜃̂;Ym) ≈
𝜕2 log L(𝜃̂|Yo, Ym)

𝜕𝜃̂𝜕Ym
.
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Model m2pl5 contained 5 2PL items. Slopes were 0.5, 1.4, 2.2, 3.1, and 4. Intercepts were –1.5,  
–0.75, 0, 0.75, and 1.5. Data were generated with a sample size of 1000 and all parameters were 
estimated. Model m2pl5 is not always identified at this sample size. This allowed us to examine the 
extent to which algorithms agreed on whether a given model was identified or not.

Model m3pl15 contained 15 3PL items. Slopes were set to 2 and items were divided into 3 groups 
of 5. Each group had the intercepts set as in Model m2pl5 and the lower bound parameters set to 
logit((1 + g)−1) with g as the group number (1–3). A sample size of 250 was used. For estimation, all 
slopes were equated to a single slope parameter. To stabilize the model, a Gaussian Bayesian prior 
on the lower bound (in logit units) with a standard deviation of 0.5 was used (see, Cai, Yang, & 
Hansen, 2011, Appendix A).

Model grm20 contained 20 graded response items with 3 outcomes. Slopes were equally spaced 
from 0.5 to 4. The first intercept was equally spaced from –1.5 to 1.5 every 5 items. The second inter-
cept was 0.1 less than the first intercept. A sample size of 2,000 was used and all parameters were 
estimated. In the graded model, intercepts must be strictly ordered (Samejima, 1969). The place-
ment of intercepts so close together should boost curvature in the information matrix.

The first simulation study from Cai et al. (2011) was included. Model cyh1 was a bifactor model 
with 2 groups of 1,000 samples each. Group 1 had 16 2PL items with the latent distribution fixed to 
standard Normal. Group 2 had the first 12 of the items from Group 1. All item parameters appearing 
in both groups were constrained equal. Data generating parameters for the items are given in Table 1. 
The latent distribution of Group 2 was estimated. Latent distribution generating parameters were 1, 
–0.5, 0, 0.5 and 0.8, 1.2, 1.5, 1, for means and variances respectively.

In addition, a 20 item 2PL model and the model from the second simulation study of Cai et al. 
(2011) were examined. Little additional insight was gained from these models and we do not report 
them here in detail. However, this work indicated that our results generalize to the nominal response 
model (see Appendix A).

Table 1. Data generating parameters for Model cyh1. Group 2 did not contain items 13-16
Item a1 a2 a3 a4 a5 c
1 1.00 0.80 1.00

2 1.40 1.50 0.25

3 1.70 1.20 −0.25

4 2.00 1.00 −1.00

5 1.40 1.00 1.00

6 1.70 0.80 0.25

7 2.00 1.50 −0.25

8 1.00 1.20 −1.00

9 1.70 1.20 1.00

10 2.00 1.00 0.25

11 1.00 0.80 −0.25

12 1.40 1.50 −1.00

13 2.00 1.50 1.00

14 1.00 1.20 0.25

15 1.40 1.00 −0.25

16 1.70 0.80 −1.00

Note: Nonzero parameters were estimated.
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All item response models used a multidimensional parameterization (slope intercept form instead 
of discrimination difficulty). Hence, intercepts were multiplied by slopes in Models m2pl5, m3pl15, 
and grm20. Both MR-SEM and Tian-SEM strongly depend on the parameter convergence trajectory. 
Therefore, it is crucial to report optimization starting values. In general, all slopes were started at 1, 
intercepts at 0, means at 0, and variances at 1. For Model m3pl15, all lower bounds were started at 
their true value. Since the intercepts of the graded model cannot be set equal, for Model grm20, in-
tercepts were started at 0.5 and –0.5 respectively.

2.2. Ground truth
All models were subjected to 500 Monte Carlo trials to obtain the ground truth for the parameter 
covariance matrix. For each trial, data were generated with the rpf.sample function from the rpf 
package (Pritikin, 2015). Models were fit with Bock and  Aitkin (1981) as implemented in the IFA 
module of OpenMx with EM acceleration enabled (Pritikin, 2015, Varadhan & Roland, 2008). For the 
multidimensional model, Cai (2010b) was used for analytic dimension reduction. The EM and M-step 
tolerance for relative change in log-likelihood,

were set to 10−9 and 10−12, respectively. The use of relative change removes the influence of the 
magnitude of || on the precision of ||. In models where the latent distribution was fixed, numerical 
integration was performed using a standard Normal prior. Single dimensional models used an equal 
interval quadrature of 49 points from Z score −6 to 6. The multidimensional model used an equal 
interval quadrature of 21 points from Z score −5 to 5. The computer used was running GNU/Linux 
with a 2.40 GHz Intel i7-3630QM CPU and ample RAM. Table 2 summarizes the results.

The condition number of the information matrix is the maximum singular value divided by the 
minimum singular value and provides a rough gauge of the stability of a solution (Luenberger & Ye, 
2008, p. 239). For example, models that are amply overspecified have a condition number close to 0 
whereas slightly overspecified models will have a large positive condition number. When the infor-
mation matrix is not positive definite then the MLE is unstable and may be a saddle point (Luenberger 
& Ye, 2008, p. 190). For reference, bias is defined as � 𝜃 − 𝜃̂ (columns 4 and 5) and the Monte Carlo 
parameter covariance matrix is simply the covariance of each trial’s MLE 𝜃̂ as the rows of data  
(column 6).

2.3. Measures of quality
In theory, SEs approach 0 proportional to N−

1

2. In practice, however, each additional participant does 
not contribute exactly 1 unit of information. Relative difference (RD) is a way to transform SEs into 
comparable units across conditions,

(12)
|||||

t
− 

t+1


t

|||||
,

RD =
SE − SE

true

SE
true

.

Table 2. Descriptive summary of the Monte Carlo simulation studies

� Notes: The first column is the number of free parameters in the model. Where the Unidentified column is 0, all trials 
were included. Trials were considered unidentified if the iteration limit was reached or the log condition number using 
the covariance of the gradients was greater than log(CondNum). V is the Monte Carlo parameter covariance matrix. 

#P Unidentified log(CondNum) max(|bias|) ‖bias‖
2 log(|V

−1
|)

m2pl5 10 13 16.1 0.665 0.84 35

m3pl15 31 6 8.5 0.306 0.55 90

grm20 60 0 16.1 0.111 0.22 369

cyh1 56 1 8.5 0.055 0.14 281
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To summarize RDs for a set of parameters, the Euclidean or l2-norm is used, ||RD||2.

SEs are an incomplete measure of information matrix estimation quality because they only reflect 
parameter variance. Accurate parameter covariances can be regarded as evidence that the estima-
tion algorithm will generalize to other models. Kullback-Leibler (KL) divergence was used to assess 
the quality of the variance covariance matrix as a whole. For a 0 mean multivariate Normal distribu-
tion, KL divergence was defined as

where K is the dimension of Σ.

2.4. Procedure
We evaluated convergence properties, accuracy, and elapsed time of Oakes, MR-SEM, Tian-SEM, and 
Agile-SEM with 500 Monte Carlo replications. The completed data information matrix (Equation (1)) 
and central difference Richardson extrapolation with an initial step size of 10−3 and 2 iterations were 
included as low and high accuracy benchmarks, respectively. A relative EM tolerance of 10−11 was 
used without EM acceleration. This relative tolerance roughly corresponds to an absolute tolerance 
of 10−6 for the models of interest. The quantity (𝜃̂;Ym) required by Oakes (Equation (11)), was esti-
mated by forward difference with a step size of 10−5. Richardson extrapolation was not used so only 
N + 1 evaluations of the M-step gradient were required.

Since both MR-SEM and Tian-SEM depend on the parameter convergence trajectory, EM accelera-
tion was disabled for trials of these algorithms. Without EM acceleration, the EM iteration limit was 
raised to 750 from the default of 500 to protect many replications of Model cyh1 from early termina-
tion. SEM tolerance was set to the square root of the nominal absolute EM tolerance, 10−

6

2 (Meng & 
Rubin, 1991, p. 907). Other EM and SEM tolerances could have been selected, but would involve a 
trade-off. Either accuracy would be improved at the cost of speed or vice versa. As will be seen, 
Oakes outperforms all SEM family algorithms in both accuracy and speed.

3. Results
Table 3 exhibits the percentage of models for which each algorithm converged. MR-SEM and Tian-
SEM failed to converge for a substantial number of trials. For these algorithms, a failure to converge 
does not only squander the time spent due to SEM, but if SEM is to be reattempted then the model 
must be re-fit from starting values. Although Agile-SEM performs well, Oakes exhibits the best per-
formance. Table 4 exhibits mean elapsed time and accuracy of parameter covariance matrix estima-
tors. Oakes matches or outperforms all other algorithms in both accuracy and time, with the 
exception of the quick to estimate, low accuracy Mstep benchmark.

D KL(Σtrue,Σ) =
1

2

[
Tr(Σ−1

Σtrue) − K − log

(|Σtrue|
|Σ|

)]

Table 3. Percentage of trials that failed to converge by model and algorithm

� Notes: Failure was due to either iteration limit or a non-positive definite covariance matrix. Since some trials were 
genuinely unidentified, these trials failed to converge for all algorithms. Compare with the unidentified column in Table 2.

RE Oakes Agile Tian MR SEM
m2pl5 2.6 2.6 3.6 3.8 4.8

m3pl15 1.0 1.0 1.0 1.0 1.2

grm20 0.0 0.0 0.4 0.0 95.4

cyh1 0.0 0.0 0.0 20.0 70.2
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4. Application
A subset of data from the 2009 Program for International Student Assessment (Bryer, 2012, 
Organisation for Economic Co-operation and Development, 2009) were used to illustrate the perfor-
mance of Oakes. Responses to 35 mathematics items by students in the United States were ana-
lyzed. A total of 2,981 examinees were represented, but non-missing responses per item ranged 
from 1,040 to 1,618. The items were scored in 2 and 3 outcomes. Item calibration used the graded 
response model, consisting of 73 parameters. IFA Model Builder for OpenMx (Pritikin, 2016) was used 
to create the analysis script.

Both Oakes and Richardson extrapolation were used to estimate standard errors of the item pa-
rameters. As before, Richardson extrapolation used central difference with an initial step size of 10−3 

Table 4. Mean elapsed time and accuracy of parameter covariance matrix estimators

� Notes: RE is central difference with Richardson extrapolation and Mstep is the completed data information matrix 
(Equation (1)). Since unconveraged trials were excluded, the performance of MR-SEM and Tian are shown in a most 
positive light. The scales of D

KL
 and ‖RD‖

2
 are model specific and should not be compared between models. 

RE Oakes Agile Tian MR SEM M-step
m2pl5

Seconds 0.015 0.015 0.019 0.035 0.08 0.012

log(D
KL
) 3.225 3.225 3.232 4.537 4.364 4.532

‖RD‖2 1.428 1.402 1.369 1.758 1.685 1.751

m3pl15

Seconds 0.275 0.056 0.111 0.094 0.177 0.048

log(D
KL
) 11.893 11.893 11.893 12.014 11.944 12.014

‖RD‖2 5.273 3.408 5.271 4.772 5.07 4.771

grm20

Seconds 8.039 0.143 0.478 0.515 0.247 0.026

log(D
KL
) 0.862 0.862 0.899 1.326 2.159 2.15

‖RD‖2 0.675 0.675 0.687 0.859 1.55 1.532

cyh1

Seconds 46.358 0.829 2.953 9.657 12.18 0.072

log(D
KL
) 1.406 1.395 1.395 1.482 1.626 4.919

‖RD‖2 1.286 1.243 1.26 2.028 4.216 3.772

Figure 1. Scatterplot of Oakes 
vs. Richardson extrapolation 
derived standard errors.
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and 2 iterations, and Oakes used forward difference with a step size of 10−5. The EM algorithm con-
verged with a maximum absolute gradient of 1.25 × 10−2. For both algorithms, condition number of 
the information matrix was estimated at about 28. The maximum absolute difference between SE 
estimates was 1.31 × 10−3. The SEs are plotted in Figure 1. Richardson extrapolation took 20.08 s 
and Oakes took 0.17 s.

5. Discussion and conclusion
We compared the convergence properties, accuracy, and elapsed time of Oakes and Supplemental 
EM family algorithms for a diverse selection IFA models. Oakes exhibited superior accuracy and 
speed. In the present article, only four models were examined. More research is needed to firmly 
establish whether the superior accuracy of Oakes generalizes. However, we argue that the evidence 
is already persuasive. When an algorithm is implemented optimally according to theoretical consid-
erations, the deciding factor between algorithms may be the parsimony of the theory. By virtue of its 
theoretical simplicity, we suggest that the accuracy of Oakes cannot be surpassed by other numeri-
cal approaches.

Although SEs are a useful tool, they are not the most accurate way to assess the variability of es-
timated parameters. If any parameters are close to a boundary of the feasible set then likelihood-
based confidence intervals should be used instead (e.g. Pek & Wu, 2015). Likelihood-based confidence 
intervals are comparatively slow to compute, but offer higher accuracy than a Wald test and are well 
supported by OpenMx.

Complete source code for all algorithms discussed is part of the OpenMx source distribution avail-
able from http://openmx.psyc.virginia.edu/. The OpenMx website additionally contains documenta-
tion and user support to assist users in analysis of their own data using item response models. 
OpenMx is a package for the R statistical programming environment (R Core Team, 2014).
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Appendix A

Item models
IFA models involve a set of response probability functions to appropriately model the ordinal data. 
The response models used in the present article are defined here. The logistic function,

is the basis of the response functions considered here. Due to the limits of IEEE 754 double-precision 
binary floating-point, the maximum absolute logit was set to 35. That is, |l| > 35 was clamped to |35|.

A.1. Dichotomous model
The dichotomous response probability can model items when there are exactly two possible out-
comes. It is defined as,

where a is the slope, c is the intercept, g is the pseudo-guessing lower asymptote expressed in logit 
units, and � is the latent ability of the examinee (Birnbaum, 1968). A #PL naming shorthand has de-
veloped to refer to versions of the dichotomous model with different numbers of free parameters. 
Model nPL refers to the model obtained by freeing the first n of parameters b, a, and g.

A.2. Graded response model
The graded response model is a response probability function for two or more outcomes (Cai, 2010a; 
Samejima, 1969). For outcomes k in 0 to K, slope vector a, intercept vector c, and latent ability vector 
�, it is defined as,

logistic(l) ≡ logit
−1
(l) ≡

1

1 + exp(−l)

Pr( pick = 0|a, c, g, �) = 1 − Pr( pick = 1|a, c, g, �)
Pr( pick = 1|a, c, g, �) = logit

−1
(g) + (1 − logit

−1
(g))

1

1 + exp(−(a� + c))

Pr(pick = 0|a, c, �) = 1 − Pr(pick = 1|a, c1, �)
Pr(pick = k|a, c, �) = 1

1 + exp(−(a� + c
k
))

−
1

1 + exp(−(a� + c
k+1))

Pr(pick = K|a, c, �) = 1

1 + exp(−(a� + c
K
))
.

https://CRAN.R-project.org/package=rpf
https://CRAN.R-project.org/package=rpf
http://www.R-project.org
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A.3. Nominal model
The nominal model is a response probability function for three or more outcomes (e.g. Thissen, Cai, 
& Bock, 2010). It can be defined as,

where ak and ck are the result of multiplying two vectors of free parameters � and � by fixed matrices 
Ta and Tc, respectively; a0 and c0 are fixed to 0 for identification; and C is a normalizing constant to 
ensure that 

∑
k Pr( pick = k) = 1.

a = T
a
�

c = T
c
�

Pr(pick = k|s,a
k
, c
k
, �) = C

1

1 + exp(−(s�a
k
+ c

k
))
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