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A Comparison of Parametric and
Nonparametric Approaches to ROC
Analysis of Quantitative Diagnostic Tests

KARIM 0. HAJIAN-TILAKI, PhD, JAMES A. HANLEY, PhD,
LAWRENCE JOSEPH, PhD, JEAN-PAUL COLLET, PhD

Receiver operating characteristic (ROC) analysis, which yields indices of accuracy
such as the area under the curve (AUC), is increasingly being used to evaluate the
performances of diagnostic tests that produce results on continuous scales. Both par-
ametric and nonparametric ROC approaches are available to assess the discriminant
capacity of such tests, but there are no clear guidelines as to the merits of each,
particularly with non-binormal data. Investigators may worry that when data are non-
Gaussian, estimates of diagnostic accuracy based on a binormal model may be dis-
torted. The authors conducted a Monte Carlo simulation study to compare the bias
and sampling variability in the estimates of the AUCs derived from parametric and
nonparametric procedures. Each approach was assessed in data sets generated from
various configurations of pairs of overlapping distributions; these included the binormal
model and non-binormal pairs of distributions where one or both pair members were
mixtures of Gaussian (MG) distributions with different degrees of departures from bi-
normality. The biases in the estimates of the AUCs were found to be very small for
both parametric and nonparametrlc procedures. The two approaches yielded very
close estimates of the AUCs and of the corresponding sampling variability even when
data were generated from non-binormal models. Thus, for a wide range of distributions,
concern about bias or imprecision of the estimates of the AUC should not be a major
factor in choosing between the nonparametric and parametric approaches. Key words:
ROC analysis; quantitative diagnostic test; comparison, parametric; binormal model;
LABROC; nonparametric procedure; area under the curve (AUC). Med  Decis Making
1997;17:94-102)

During the past ten years, receiver operator char-

acteristic (ROC) analysis has become a popular

method for evaluating the accuracy/performance of

medical diagnostic tests.1-3 The most attractive

property of ROC analysis is that the accuracy indices

derived from this technique are not distorted by

fluctuations caused by the use of an arbitrarily cho-

sen decision “criterion” or “cutoff.“4-8 One index

available from an ROC analysis, the area under the

curve”’ (AUC), measures the ability of a diagnostic
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test to discriminate between two patient states, often

labelled “diseased” and “non-diseased.” The AUC

has been of considerable interest as a summary

measure of accuracy because of its meaningful in-

terpretation.“’

Initially, ROC methods were confined to tests in-

terpreted on rating scales and analysis was typically

carried out using the binormal model.9,10 However,

they are now becoming increasingly popular for

evaluating the performances of quantitative diagnos-

tic tests with numerical results recorded directly on

continuous s c a l e s . 1 , 2 , 3 , 1 1 Both parametric and non-

parametric procedures can be used to derive an

AUC index of accuracy for such diagnostic tests.

However, Goddard and Hinberg12 warned that if the

distribution of raw data from a quantitative test is

far from Gaussian, the AUC [and corresponding

standard error (SE)] derived from a directly fitted

binormal model can be seriously distorted. This oc-

curs because one fits a mean and standard deviation

to the raw data for the diseased and non-diseased

patients separately. One way to avoid the possible

distortion is to use Metz’s  adaptation of the binormal

model, previously used with rating data,9,13-15 with

94
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laboratory-type data.’ Metz et al. implemented the

binormal model in the LABROC software.16 The pro-

cedure first discretizes the continuous data and 

then uses the categories as ratings in the ROCFIT

procedurel6 to obtain the maximum-likelihood esti-

mates (MLE) of the two relevant parameters of the

binormal model. From them it calculates the AUC
and the corresponding SE.

When the data are continuous and appear to be
non-Gaussian, many users will find the nonpara-

metric approach17-19” to estimating the AUC more ap-

pealing than using the binormal model, since they

may worry that estimates of diagnostic accuracy

based on a binormal model will be distorted. How-

ever, nonparametric area estimates will tend to un-

derestimate the AUCs for rating data,7,20 in particular

when ROC operating points are not well spread out

along the ROC curve. Moreover, this method does

not yield a smooth estimate of the entire ROC

curve.211 The variance of the nonparametric esti-

mates of the AUC can be estimated entirely nonpar-

ametrically18,19 or using an exponential approxima-

tion.’ Recently, Obuchowski22 found that the

exponential approximation underestimates the em-

pirical standard error of the nonparametric AUC for

rating data when the “ratings” begin as continuous

data with a binormal distribution and when the ra-

tio of the standard deviations (SDS) of the two dis-

tributions is greater than 2. However, in practice the

data might arise from a non-binormal model.

In summary, the statistical behaviors of the AUC

estimates derived from the parametric and nonpar-

ametric  approaches have not been investigated for

quantitative diagnostic test results, and there are no

general guidelines for choosing one approach over

the other. Thus, we conducted a broad numerical

investigation to compare the statistical behaviors of

the estimates of the AUC derived from parametric

and nonparametric procedures.

Methods

DATA GENERATION

As is shown in the leftmost columns of tables 1

and 2, we generated continuously distributed data

with sample sizes of R = 40 for diseased and R =

40 for non-diseased from various pairs of overlap-

ping distributions with various degrees of separa-

tion; sample sizes of n = lOO/lOO  were also investi-

gated. Overall, 1,000 data sets were generated for

each configuration studied.

Binormal  data. First, we generated continuously

distributed data from two overlapping Gaussian dis-

tributions, i.e., {G, G) pairs for the “non-diseased”

and “diseased’ patients with different degrees of

separation (AU C  = 0.60, AUC = 0.75, AUC = 0.90)

and with various ratios of SDs  of distributions for

the non-diseased to diseased (l:l, 1:1.4, 1:2 and 1:3),

yielding in all 12 configurations of pairs.

Non-binormal  data. Data were also generated

from various configurations of non-binormal pairs,

where one or both members of the pairs were

mixtures of Gaussian (MG) distributions: (G, MG-
skewed or bimodal) pairs or {MG-skewed, MG-

skewed) pairs. In all, as is shown in figures 1 and

2, 18 configurations of non-binormal pairs with var-

ious degrees of skewness and separation were used

to generate data. We calculated how often the hy-

pothesis of normality would be rejected with such

distributions. For sample sizes of 40, the hypothesis

was rejected by the Wilks’ test employed by SAS in

34% of the data sets from the moderate-skew distri-

butions and 67% of those from high-skew distribu-

tions. For sample sizes of 100, the corresponding

percentages were 59 and 97.

To some, the range of distributions shown in fig-

ures 1 and 2 may seem limited. However, one can

apply many monotonic transformations to the sep-

arator axis, thereby effectively covering a broader

range of possibilities of non-binormal data. An ex-

ample of how both distributions are converted to

non-normal pairs is shown in the last row of figure

1. Each pair was generated by mapping the (-03,

+w) scale used in row 2 into the (0, 11 scale by ap-

plying the transformation exp(X)/ll  + exp(X11.  Notice,

however, that although such monotonic transfor-

mations may radically change the shapes of the dis-

tributions, they do not change the ROC curve when

applied to both distributions.2,5,13

Few of the articles in the quantitative diagnostic

test literature show the distributions of raw data. In

those that do, the distributions of biomarkers for

diseased patients are often positively skewed. For ex-

ample, Goddard and Hinberg12 reported the histo-

grams of different biomarkers for five types of can-

cer; the distributions for cancer patients were

skewed or bimodal. Linnet11 also showed examples

where the distributions of serum bilirubin and fast-

ing serum bile acids for diseased patients were pos-

itively skewed while the reference distribution was

approximately normal. Empirically, there is consid-

erable evidence that the binormal model used for

rating data needs to include more variation for dis-

eased patients,’ i.e., the ratio of SDs of distribution

for diseased to non-diseased patients is higher than

1. Based on this empirical evidence, we included the

range of ratios of SDs from 1:l to 1:3. We chose

mixtures of Gaussian distributions for diseased pa-

tients since the distribution may contain unidenti-

fied disease subtypes. Thus, we allow for more var-

iation for the diseased than the non-diseased

patients.
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STATISTICAL ANALYSIS

Each generated data set underwent two analyses:

1) nonparametric ROC analysis using the raw data,

and 2) parametric ROC analysis of the categorized

data via the LARROC approach.

Nonparametric approach. The nonparametric es-

timate of the AUC was calculated directly from the

raw data using the Wilcoxon-Mann-Whitney two-

sample statistic; the SE of the AUC was calculated by

DeLong  et al.‘s  method.”

Parametric ROC analysis: Each data set was ana-

lyzed via Metz's LABROC procedure.16 The program

categorizes the data according to a data-dependent

rule that tries to ensure the greatest possible uni-

formity of spread of ROC operating points. We stip-

ulated a maximum of ten data categories for sample

sizes of 40/40 and 20 data categories for lOO/lOO

(these are the default numbers of data’ categories

used in the LARROC software). The program then

fits a two-parameter binormal ROC curve by the

method of maximum-likelihood estimation (MLE)

using the categories as ratings. From the two param-

eters of this binormal model, it calculates an esti-

mate of the ALJC and its SE, which we call the “cal-

culated” SE.

FIGURE 1. Non-binormal distributions

used to generate data sets, with the dis-

tribution for non-diseased (broken lines)

chosen to be Gaussian. The distributions

for diseased (solid lines) were formed

from mixtures of two Gaussian distribu-

tions to create moderate right skew (top

row), very right skew (second row), a bi-

modal distribution third row), and mod-

erate left skew (fourth row). Each pair of

the last row was generated by mapping

the t-q +4 scale used in row 2 into the

(0, 1) scale by applying the transformation

exptX)/[l  + expcY)I. The distributions in

this last row were not used in the simu-

lations because they would give the same

results as the distributions in the second

row. The degrees of separation were low

AUC = 0.60 (leftmost column), moderate

AUC = 0.75 (middle column), and high

AUC = 0.90 (rightmost column).

\!’
A
A”

i

FIGURE 2. Additional non-binormal distributions used to gen-

erate data sets with non-Gaussian distributions for both non-

diseased and diseased. Distributions for both non-diseased (bro-

ken lines) and diseased (solid lines) were formed from mixtures

of two Gaussian distributions to create moderate left skew (first

row) and moderate right skew (second row). The degrees of sep-

aration were: low AUC = 0.60 (leftmost column), moderate AUC

= 0.75 (middle column), and high AUC = 0.90 (right  most col-

umn).
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Table la 0 Comparison of Parametric and Nonparametric Approaches with Respect to Bias of the Estimates of AUC and the
Corresponding Standard Errors in 1,000 Data Sets Generated from Various Configurations of the Binormal Model,
N = 4O/40

Degree of
Accuracy Ratio

(True of SDS
Index) D:NDf

Low 1
AUC = 0.60 1.4

2
3

Parametric*

100 x
100 x SE (Est
Bias of AUC)

Est AUC Emoir Ave Est

(4 61 63

0.5 6.69 6.22
-0.2 6.95 6.30
-0.3 6.86 6.51
-0.3 8.71 8.77

Nonparametric Ratio of SEs

100 x
Bias of 100 x SE

Est (Est AUC) Ave Est
AUC Emoir Delano

6’) (E’) F) - (W(B) (W(E) (E)/(B) W(C)

-0.1 6.42 6.38 0.93 0.99 0.98 1.02
-0.1 6.47 6.42 0.91 0.99 0.93 1.02
-0.1 6.59 8.59 0.96 1 .oo 0.96 1.01
-0.2 6.82 6.85 1.01 1 .oo 1.02 1.01

Moderate 1 0.9 5.68 5.26 0.1 5.53 5.42 0.93 0.98 0.97 1.03
AUC = 0.75 1.4 0.8 5.89 5.33 -0.0 5.60 5.49 0.90 0.98 0.95 1.03

2 0.3 6.11 5.58 0.0 5.78 5.67 0.91 0.98 0.95 1.02
3 -0.1 8.15 5.89 0.1 6.03 5.93 0.96 0.98 0.98 1.01

High 1 0.7 3.35 3.24 0.0 3.51 3.34 0.97 0.95 1.05 1.03
AUC = 0.90 1.4 0.6 3.46 3.31 -0.1 3.62 3.42 0.96 0.94 1.05 1.03

2 0.6 3.75 3.46 0.0 3.83 3.59 0.93 0.94 1.02 1.03
3 0.4 4.19 3.76 0.1 4.10 3.83 0.90 0.93 0.96 1.02

*Ten data categories were used in fitting the binormal model.
tD = diseased; ND = non-diseased; Est = estimate; Ave = average; Empir = empirical; SE = standard error; SD = standard deviation.

Table 1 b s Comparison of Parametric and Nonparametric Approaches with Respect to Bias of the Estimates of AUC and the
Corresponding Standard Errors in 1,000 Data Sets Generated from Various Configurations of the Binormal Model,
N = lOO/lOO

Parametric* Nonparametric Ratio of SEs

100 x
Degree of 100 x 100 x SE Bias of 100 x SE

Accuracy Ratio Bias of (Est AUC) Est (Est AUC) Ave Est

(True of SDS Est AUC Empir Ave Est AUC Empir Delong

Index) D:NDt (A) (B) (C) (D) (E) (0 ( C ) / ( B )  ( W E )  ( W ( B )  ( V ( C )

Low 1 0.2 3.91 3.91 -0 .1  3.89 4.00 1 .oo 1.03 0.99 1.02

AUC = 0.60 1.4 0.0 3.97 3.96 -0 .1  3.94 4.04 1 .oo 1.03 0.99 1.02

2 -0 .1  3.97 4.07 -0 .1  4.05 4.15 1.03 1.02 1.02 1.02

3 - 0 . 2  4.08 4.21 -0.1 4.22 4.32 1.04 1.02 1.04 1.03

Moderate 1 0.5 3.29 3.34 0.0 3.31 3.41 1.02 1.03 1.01 1.02
AUC = 0.75 1.4 0.3 3.39 3.39 -0.1 3.37 3.48 1.00 1.03 0.99 1.02

2 0.0 3.50 3.52 0.0 3.50 3.58 1 .Ol 1.02 1 .oo 1.02
3 -0.2 3.60 3.68 0.0 3.71 3.75 1.02 1 .Ol 1.03 1.02

High 1 0.2 1.99 2.10 -0.1 2.07 2.13 1.06 1.03 1.04 1.01
AUC = 0.90 1.4 0.1 2.03 2.16 -0 .1  2.15 2.19 1.06 1.02 1.08 1.01

2 2.28 -0.1 2.28 2.31 1.02 1 .Ol 1.02 1.01” 0.0 2.23
3 -0.1 2.50 2.44 -0.0 2.47 2.48 0.98 1 .oo 0.99 1.02

*20 data categories were used in fitting the binormal model.
tD = diseased; ND = non-diseased; Est = estimate; Ave = average: Empir = empirical; SE = standard error; SD = standard deviation.

COMPARISON OF STATISTICAL BEHAVIORS OF

PARAMETRIC AND NONPARAMETRIC ESTIMATES

The biases in the estimates of the ALJC (i.e., the

difference between the average of the 1,000 esti-

mates of the AUC and the true value) from the par-

ametric and nonparametric approaches were cal-

culated and compared. The magnitude of the bias

in the estimates of the AUC and the absolute dis-

crepancy between individual estimates of the AUC

from the two approaches were used to judge the

impact of model mis-specification.
The SD of the 1,000 estimates of the AUC derived

from one approach was compared with the corre-
sponding SD of the 1,000 AUC estimates from the

other approach. For each approach, this SD (which
we call the empirical SE) was also compared with

the average of the 1,000 calculated SEs. In addition,
we compared the average calculated SE of the AUC
derived from the binormal model with that calcu-
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Table 2a 0 Comparison of Parametric and Nonparametric Approaches with Respect to Bias of the Estimates of AUC and the
Correspondlng Standard Errors in 1,000 Data Sets Generated from Various Configurations of Non-binormal Models,
N = 40/40

Parametric* Nonparametric Ratio of S,Es

100 x 100 x SE 100 x 100 x SE
Distributions Degree of Bias of (Est AUC) Ave Bias of (Est AUC) Ave Est

for ND Accuracy Est AUC Empir Est Est AUC Empir Delong
8, Dt (True Index) (A) (B) (C) (D) (E) (P) (W(B) (P)/(E) (E)/(B) (WC)

ND: G
D:MG&

moderate
skew

(nght)

ND: G
0: MG 81

very
skew
(right)

ND: G
0: MO &

bimodal

ND: G
0: MG &

left skew

ND: MG
0: MG

both left
skew

ND: MG
0: MG

both right
skew

Low
AUC = 0.807 0.5 8.10
Moderate
AUC = 0.755 1.1 5.16
High
AUC = 0.898 0.9 3.14

*The binormal model was fitted using ten data categories.

6.21

5.22

3.34

Low
AUC = 0.805
Moderate
AUC = 0.753
High
AUC = 0.907

1.2

1.5

0.8

8.22

5.24

3.11

8.37

5.29

3.18

4.93

4.50

3.04

8.83

5.38

3.35

0.2 5.87 8.48 1.02 1.10 0.94 1.02

0.3 5.15 5.45 1.01 1.08 0.98 1.03

0.2 3.29 3.21 1.02 0.98 1.06 1 .oe

Low
AUC = 0.808 0.2 0.3 4.77 6.78 1.34 1.42 0.97 1.02
Moderate
AUC = 0.752 2.1 0.3 4.48 5.59 1.20 1.25 1 .oo 1.04
High
AUC = 0.898 .O.Q 0.2 3.27 3.41 1.10 1.04 1.08 1.02

Low
AUC = 0.605 1.1 0.2 3.95 8.82 1.48 ‘1.73 0.87 1.02
Moderate
AUC = 0.751 2.2 0.1 3.73 5.74 1.82 1.54 1.10 1.05
High
AUC = 0.900 0.9 0.1 2.93‘ 3.41 1.30 1.18 1.14 1.02

Low
AUC = 0.807 -1.3 0.0 5.91 8.57 1.03 1.11 0.94 1 .Ol
Moderate
AUC = 0.741 -0.5 -0.2 5.21 5.88 1.04 1.13 0.93 1 .Ol
High
AUC ; 0.891 0.8 0.2 3.69 3.84 1 .oo 1.04 0.99 1.03

Low
AUC = 0.809 0.4 0.0 5.53 6.38 1.03 1.15 0.91 1.02
Moderate
AUC = 0.750 1.3 0.1 4.84 5.53 1.02’ 1.14 0.93 1.04
High
AUC = 0.885 1.1 0.0 3.54 3.79 1.12 1.07 1.10 1.05

4.58

3.38

2.57

8.88

5.48

3.34

6.32

5.59

3.71

8.48

5.81

3.72

8.07

5.22

3.23

6.24

5.32

3.61

0.2 5.61 6.35 1.02 1.13 0.92 1.02

0.2 4.88 5.39 1.01 1.11 0.94 1.03

0.1 3.28 3.44 1.08 1.05 1.04 1.03

tND = non-diseased; D = diseased; G = Gaussian; MG = mixture of Gaussian; SE = standard error; Empir = empiriial.

lated for the nonparametric estimate using De- erate23,244 data sets. In other words, the MLE iteration

Long’s method. procedure converged for all data sets.

PERFORMANCE WITH BINORMAL  DATA

Results

Table 1 compares the results from the parametric

and nonparametric approaches when data are gen-

erated from the binormd model, while table 2 com-

pares the results for non-binormal data. When

fitting the binormal model, there were no degen-

Columns (A) and (D ) in tables la and lb show that

when data were generated from a pair of Gaussian

distributions both the parametric and the nonpar-

ametric  approaches yielded close to unbiased esti-

mates of the AUC.  The biases were 50.9%  and

S0.2%,  respectively, for the sample sizes of 40/40;
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Table 2b 0 Comparison of Parametric and Nonparametric Approaches with Respect to Bias of the Estimates of AUC and the
Corresponding Standard Errors in 1,000 Data Sets Generated from Various Configurations of Non-binormal  Models,
N = 100/100

Parametric* Nonparametric Ratio of SEs

100 x 100 x SE 100 x 100 x SE
Distributions Degree of Bias of (Est AUC) Ave Bias of (Est AUC) Ave Est

for ND Accuracy Est AUC Empir Est Est AUC Emoir Delona
8zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Dt (True index) (A) (B) (C) (D) (i tP) - (C)/(B) (W(B) (E)/(B) (W(C)

ND: G
D:MG&

moderate
skew

(nght)

Low
AUC = 0.605
Moderate
AUC = 0.753
High
AUC = 0.907

1.2

0.9

0.2

ND: G
D: MG &

very
skew
(right)

ND: G
D: MO &

ND: G
D:MG&

left skew

ND: MO
D: MO

both left
skew

ND: MG
D: MG

both right
skew

Low
AUC = 0.607 0.3 3.89 0.1 3.46
Moderate
AUC = 0.755 0.6 3.30 0.1 2.96
High
AUC = 0.898 0.4 2.14 0.1 1.98

*The binormal mqClel  was fitted using 20 data categories.
PND = non-diseased: D = diseased: G = Gaussian: MG = mixture of Gaussian; SE = standard error; Empir = empirical.

3.60

3.01

1.93

3.98

3.39

2.18

1.06

1.10

1.11 1.10 1.03

Low
AUC = 0.606
Moderate
AUC = 0.752
High
AUC = 0.896

Low
AUC = 0.605
Moderate
AUC = 0.751
High
AUC = 0.900

2.3 2.92 4.10 0.1 2.97

1.6 2.61 3.41 0.1 2.77

0.3 1.83 2.18 0.1 1.95

1.2 2.67 4.13 0.0 2.42

2.0 2.19 3.44 0.0 2.27

0.5 1.53 2.18 0.1 1.73

Low
AUC = 0.607 -1.2 3.69 4.05 0.0 3.86
Moderate
AUC = 0.741 -0.7 3.26 3.63 -0.1 3.21

High
AUC = 0.891 0.4 2.16 2.39 0.3 2.16

Low
AUC = 0.609
Moderate
AUC = 0.750
High
AUC = 0.665

0.4 3.55 3.90 0.0 3.38

0.9 2.99 3.36 0.1 2.97

0.8 1.93 2.31 0.0 2.09

3.55

3.11

1.91

3.98 0.0 3.81

3.37 0.1 3.17

2.07 0.1 1.96

4.08 1.12

3.44 1.08

2.08 1.08’

4.25 1.40

3.25 1.31

2.17 1.19

4.28 1.55

3.61 1.57

2.15 1.41

4.13 1.10

3.69 1.11

2.44 1.11

4.01 1.10

3.48 1.12

2.39 1.20

1.13 1.02

1.08 1.02

1.05 1.03

1.43 1.02

1.27 1.06

1.11 1.07

1.77 0.91

1.59 1.04

1.24 1.13

1.13 0.99

1.15 0.98

1.13 1 .oo

1.19 0.95

1.17 0.99

1.14 1.08

1.15 0.96

1.15 0.98

1.03

1.02

1 .oo

1.04

1.03

1 .oo

1.04

1.05

1 .oo

1.02

1.02

1.02

1.03

1.04

1.03

1.02

1.03

1.02

(0.5%zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA and =O.l%, respectively, for those of 100 /100

Estimated SE versus empirical SE of estimates of
the AUC. For the parametric approach, the average

calculated SE from the binormal model [Column (C)

in table lb ]  is close to the actual (empirical) variation

[Column (B)]. The ratio of SEs for Column 02) to Col-

umn (B) ranged from 0.91 to 1.01 over the configu-

rations studied for the 40/40 case and from 0.98 to

1.06 for the 100/100 case.

DeLong et al.‘s nonparametric estimate of the SE

[Column ( F]  is close to the actual (empirical) varia-

tion of the Wilcoxon-Mann-Whitney statistic [col-

umn (E)] for all configurations studied: the ratio of

SEs for Column (F) to Column (E) ranged from 0.93

to 1 for the 40/40 case and from 1 to 1.03 for the

100/100 case.

Sampling variability of parametric and nonpara-
metric estimates. With sample sizes of 100 /100 the

empirical variation of the nonparametric AUC, Col-

umn (E), tended to be slightly greater than the

model-based estimates, Column (B).  The corre-

sponding ratios ranged from 0.99 to 1.06; these
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ratios ranged from 0.93 to 1.05 with sample sizes of

40/40. Also, the estimated SEs of the nonparametric

estimates, obtained by DeLong et al’s method, were

slightly greater than those of the parametric model

for the 40/40 and the 100/100 cases (the ratio of SEs

ranging from 1.01 to 1.03).

PERFOBMANCEWITHNON-BINOBMALDATA

Bias in the estimates of the AUC. Columns (A) and

(D) in tables 2a and 2b show that the biases in the

parametric and nonparametric estimates of the AUC

are both very small. Nonparametric estimates of the

AUC were virtually unbiased [the largest bias across

column (D) with both sample sizes was 0.3% (or

0.003 in absolute value)]. The bias in the estimates

of the AUC from fitting the binormal model to non-

binormal data was usually less than 1%. With the

parametric approach, the greatest bias, 2.3%, oc-

curred when the distribution for the diseased was

highly skewed and the sample sizes were 100/100

(true AUC = 0.6061. The results were similar when

the distribution for the non-diseased patients was

Gaussian and the distribution for the diseased pa-

tients was bimodal and there was a moderate de-

gree of separation between them (true AUC = 0.75).

We also examined the discrepancy between the

parametric and nonparametric estimates of the AUC

in each of the 1,000 individual data sets. In the case

of the most serious departure from normality (bi-

modal form), the absolute discrepancy between the

two estimates of the AUC was always less than 0.05;

in 99% of data sets the discrepancy was less 0.04,

and in 52% the discrepancy was less than 0.02.

Sampling variability. The binormal estimates of the

calculated SE of the AUC and DeLong et al’s esti-

mate of the SE of the nonparametric AUC almost

always overestimated the true SEs: by -2% to 73%
in the 40/40 case and by 5% to 77% in the lOO/lOO

case. The greatest overestimation occurred when

the distribution for the diseased patients was Gaus-

sian and that for the non-diseased patients was bi-

modal.
While it is difficult to know what to expect with

the parametric SE when the data do not fit the

model, we were surprised to find that overestima-

tion is just as large with the nonparametric SE.

With both the 40/40 and the lOO/lOO  cases, the em-

pirical variation of the AUCs from parametric fits

was usually smaller than that from the nonpara-

metric approach when the AUC was 0.90; but the

pattern was less clear when the AUC was 0.75 or

0.60. However, the average nonparametric estimated

SE of the AUC (DeLong et al’s method) was equal to

or slightly greater than the corresponding value us-

ing the binormal model (the ratios ranged from 1 to

1.051. Overall, the parametric and nonparametric

approaches yielded very similar estimates of the AUC

and of the corresponding sampling variability.

Discussion

This numerical investigation was conducted with

a wide range of parameters of diagnostic accuracy

and various degrees of departures from binormality.

The results also apply to all pairs of distributions

that could be converted, by some monotonic trans-

formation, to those we studied. The findings should

help users to understand the consequences of using

either a parametric or a nonparametric approach to

ROC analysis of the accuracies of diagnostic tests

that yield results on continuous scales.

Investigators may worry that when data are non-
Gaussian, estimates of diagnostic accuracy based on

a binormal model could be distorted. However, our

results show that any biases in the estimates of the

AUC derived from both parametric and nonpara-

metric approaches are very small. The results sug-

gest that the AUC is robust to departures from bi-

normality if one uses the binormal model as

implemented in the LARROC program. However,

other indices, such as true-positive fraction at a spe-

cific false-positive fraction point, might be more sen-

sitive to departures from binormality.25

Since the bias in the nonparametric and model-

based estimates of the AUC is for all practical pur-

poses negligible, the choice should depend on

which approach yields greater precision of the es-

timate of diagnostic accuracy (AUC) and on the feas-

ibility  of each approach. Generally, if one uses a cor-

rect model, one might expect more precision using

a model-based estimate of diagnostic accuracy than

using a nonparametric estimate. This hypothesis is

supported by the results of the parametric estimates

of the AUC derived from data generated from vari-

ous configurations of {G, G) pairs with sample sizes

of 100/100 The model-based estimates of the AUC

tended to have slightly less empirical variation than

the nonparametric estimates. However, with sample

sizes of 40/40  our investigation showed that with bi-

normal data, there was no such gain, presumably

because of the presence of the considerable noise

with these small sample sizes. With non-binormal

data, the gain in precision is achieved only when the

AUC = 0.90, since in this situation there is less room

for error in ROC space from fitting an incorrect

model. Although we compared the two approaches

on the basis of both their empirical SEs and their

calculated SEs, we are more interested in the em-

pirical SEs, since the calculated SEs  might be dis-

torted by fitting an incorrect model. For non-binor-

mal data, our results show that the calculated SEs

of both approaches tended to be greater than the



VOL 17/NO 1, JAN-MAR 1997 Parametric and Nonparametric ROC Analysis l 101

corresponding empirical SEs.

We have shown elsewhere” that, for a given sam-

ple size, if one wishes to use the parametric model

used in LABROC, some gain in the precision of mea-

sures of diagnostic accuracy can be achieved by in-

creasing the number of data categories. The greatest

gain in precision (10%) could be obtained when the

number of data categories was increased from five

to ten. When the number of data categories was fur-

ther increased, the additional gain in precision was

sma11.25

In terms of practicality, the parametric approach

has several advantages: The LABROC program is

available in the public domain for several computer

platforms. The LABROC procedure (which uses ten

or 20 data categories with sample sizes of 40/40 or

more) almost always converges, because the cate-

gorization algorithm used in this program automat-

ically ensures the largest possible uniformity of the

spread of ROC operating points for continuous data.

This is in contrast to the poorer performance of

ROCFIT16 with rating data, where, in one investiga-

tion,22 some 16% to 37% of data sets containing rating

data with small numbers of rating categories were

degenerate. Moreover, one can obtain a smooth

ROC curve by fitting a parametric model.

On the other hand, the nonparametric approach

avoids making  distributional assumptions, which

can be perceived as somewhat restrictive. This ap-

proach also has the appeal that the AUC is easy to

calculate and is obtainable even for small sample

sizes. The disadvantage is that the method does not

yield a smooth estimate of the entire ROC curve.

While one might consider the ease of use of the ex-

ponential approximation of the SE of the nonpara-

metric AUC to be an advantage, based on our re-

sults, we recommend DeLong  et al.‘s estimate of the

SE for the nonparametric AUC, which is based di-

rectly on the Wilcoxon-Mann-Whitney statistic.

However, the software is not currently widely avail-

able.

the rank transformation obliterates the original dis-

tributions. In the LABROC approach, and to a lesser

extent in procedures such as ROCFIT16 and

RSCORE,10 the categorization procedure used is a

coarser version of ranking, and a binormal model

is fitted to these categories. Thus, this procedure is

essentially “semi-parametric.” There have been sim-

ilar findings concerning the effect of rank transfor-

mation in two allied situations26-28 Conover  and

Iman26 showed that the ranking procedure reduces

the probability of misclassification in discriminant

analysis with non-binormal data. O’Gorman  and

Woolson27 reported that the use of rank transfor-

mation increases the chance of correctly identifying

important non-Gaussian explanatory variables in

discriminant analysis. In another paper,” Conover

and Iman  showed the close relation between the

nonparametric Wilcoxon-Mann-Whitney two-sam-

ple test and the corresponding t-test applied to the

ranks of the data.
Thus, neither the nonparametric nor the LABROC

approach to estimating the AUC depends on know-

ing what transformation would make the distribu-

tions close to those we studied. Both use ranking

procedures, so neither makes use of the actual scale

in which the test results were recorded. This may

explain the similarity of the results obtained from

the two procedures and the ability of these proce-

dures to adapt to a wide range of distributions.

The authors thank the reviewers for their helpful suggestions.
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